導(dǎo)數(shù)的概念說課稿(熱門19篇)

格式:DOC 上傳日期:2023-12-03 09:53:04
導(dǎo)數(shù)的概念說課稿(熱門19篇)
時間:2023-12-03 09:53:04     小編:ZS文王

在總結(jié)的過程中,我們需要保持客觀、公正,真實地反映事實并且提出合理的建議。在寫總結(jié)時,要著重強調(diào)重點和突出亮點。掌握了以下幾個實用的總結(jié)寫作技巧,你就能寫出一篇優(yōu)秀的總結(jié)。

導(dǎo)數(shù)的概念說課稿篇一

“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié),它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識,掌握了棱柱的概念和性質(zhì)的基礎(chǔ)上進一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進一步學(xué)習(xí)棱臺的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時,這節(jié)課也是進一步培養(yǎng)高一學(xué)生的'空間想象能力和邏輯思維能力的重要內(nèi)容。

2、教學(xué)內(nèi)容。

本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運用正棱錐的性質(zhì)解決有關(guān)計算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會感到自然,好接受。對教材的內(nèi)容則有所增減,處理方式也有適當改變。

3、教學(xué)目標。

根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點和高一學(xué)生對空間圖形的認知特點,我把本節(jié)課的教學(xué)目標確定為:

(1)知識目標:使學(xué)生理解棱錐以及正棱錐的概念,掌握正棱錐的性質(zhì),領(lǐng)會應(yīng)用正棱錐的性質(zhì)解題的一般方法初步學(xué)會應(yīng)用性質(zhì)解決相關(guān)問題。

(2)能力目標:通過對正棱錐中相關(guān)元素的相互轉(zhuǎn)化的研究,培養(yǎng)學(xué)生知識遷移的能力及數(shù)學(xué)表達能力,提高學(xué)生的空間想象能力以及空間問題向平面轉(zhuǎn)化的能力。

(3)德育、美育目標:通過教學(xué)進行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

4、教學(xué)重點,難點,關(guān)鍵。

對于高一學(xué)生來說,空間觀念正逐步形成。而實際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點是通過對具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點實現(xiàn)突破,教學(xué)的關(guān)鍵是正確認識正棱錐的線線,線面垂直關(guān)系。

二、說教法。

由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時機,因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識關(guān)鍵點制成了投影片,既節(jié)省時間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識點發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會知識發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實際問題的能力。因此我把本節(jié)的教法確定為:類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)的啟發(fā)式教學(xué)。

三、說學(xué)法。

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點,這節(jié)課主要是教給學(xué)生“動手做,動腦想;嚴格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會逐步感到數(shù)學(xué)美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

四、說教學(xué)過程。

導(dǎo)數(shù)的概念說課稿篇二

理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.

理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.

終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.

一、問題.

1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?

2、在平面直角坐標系內(nèi)角分為哪幾類?與終邊相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關(guān)系?

4、弧度制下圓的弧長公式和扇形的面積公式是什么?

5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?

6、你能在單位圓中畫出正弦、余弦和正切線嗎?

7、同角三角函數(shù)有哪些基本關(guān)系式?

二、練習(xí).

1.給出下列命題:

(1)小于的角是銳角;

(2)若是第一象限的角,則必為第一象限的角;

(3)第三象限的角必大于第二象限的角;

(4)第二象限的角是鈍角;

(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

(6)角2與角的終邊不可能相同;

2.設(shè)p點是角終邊上一點,且滿足則的值是。

4.若則角的終邊在象限。

5.在直角坐標系中,若角與角的終邊互為反向延長線,則角與角之間的關(guān)系是。

6.若是第三象限的角,則-,的終邊落在何處?

例1.如圖,分別是角的終邊.

(1)求終邊落在陰影部分(含邊界)的所有角的集合;

(2)求終邊落在陰影部分、且在上所有角的集合;

(3)求始邊在om位置,終邊在on位置的所有角的集合.

例2.

(1)已知角的終邊在直線上,求的值;

(2)已知角的終邊上有一點a,求的值。

例3.若,則在第象限.

1、若銳角的終邊上一點的坐標為,則角的弧度數(shù)為.

2、若,又是第二,第三象限角,則的取值范圍是.

3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是弧度或角度,該扇形的面積是.

4、已知點p在第三象限,則角終邊在第象限.

5、設(shè)角的終邊過點p,則的值為.

6、已知角的終邊上一點p且,求和的值.

1、經(jīng)過3小時35分鐘,分針轉(zhuǎn)過的角的弧度是.時針轉(zhuǎn)過的角的弧度數(shù)是.

2、若點p在第一象限,則在內(nèi)的取值范圍是.

3、若點p從(1,0)出發(fā),沿單位圓逆時針方向運動弧長到達q點,則q點坐標為.

4、如果為小于360的正角,且角的7倍數(shù)的角的終邊與這個角的終邊重合,求角的值.

導(dǎo)數(shù)的概念說課稿篇三

導(dǎo)數(shù)是研究現(xiàn)代科學(xué)技術(shù)必不可少的工具,是進一步學(xué)習(xí)數(shù)學(xué)和其他自然科學(xué)的基礎(chǔ),在物理學(xué)、經(jīng)濟學(xué)等領(lǐng)域都有廣泛的應(yīng)用。對于中學(xué)階段而言,導(dǎo)數(shù)是研究函數(shù)的有力工具,在求函數(shù)的單調(diào)性、極值、曲線的切線以及一些優(yōu)化問題時有著廣泛的應(yīng)用,同時對研究幾何、不等式起著重要作用.導(dǎo)數(shù)的概念毫無疑問是教學(xué)的關(guān)鍵,考慮到學(xué)生的可接受性,教材中并沒有引進極限概念,而是通過實例引導(dǎo)學(xué)生經(jīng)歷由平均變化率到瞬時變化率的過程,直至建立起導(dǎo)數(shù)的數(shù)學(xué)模型。而從平均變化率到瞬時變化率,教材中所選取的實例是曲線上一點處的切線和瞬時速度、瞬時加速度,筆者以為從學(xué)生的知識背景出發(fā),與其用切線來引入導(dǎo)數(shù),還不如將之視為導(dǎo)數(shù)知識的.幾何解釋,因此教學(xué)處理時采用數(shù)值逼近、幾何直觀感受、解析式抽象三種方式實現(xiàn)由平均變化率到瞬時變化率的過渡。

教學(xué)時需關(guān)注:一是邏輯主線是以問題為背景,按照“問題情境—建立模型—解釋應(yīng)用與拓展”的程序展開;二是學(xué)生極限思想的形成,需設(shè)計活動讓學(xué)生經(jīng)歷從平均變化率到瞬時變化率的過程,先通過求物體在某一時刻的平均速度的極限去得出瞬時速度,再由此抽象出函數(shù)在某點的平均變化率的極限就是瞬時變化率的的模型,并將瞬時變化率定義為導(dǎo)數(shù);三是從特殊到一般,通過若干個特殊時刻的瞬時速度過渡到任意時刻的瞬時速度;從物體運動的平均速度的極限是瞬時速度過渡到函數(shù)的平均變化率的極限是瞬時變化率。

1、知識與技能目標:

理解并能復(fù)述導(dǎo)數(shù)的概念,掌握利用求函數(shù)在某點的平均變化率的極限實現(xiàn)求導(dǎo)數(shù)的基本步驟,初步學(xué)會求解簡單函數(shù)在一點處的切線方程。

2、過程與方法目標:

通過數(shù)值逼近計算的方法經(jīng)歷從平均變化率到瞬時變化率的過程,并在歸納抽象的過程中建構(gòu)導(dǎo)數(shù)的概念,嘗試幾何解釋的過程中領(lǐng)悟數(shù)學(xué)發(fā)現(xiàn)的全過程。

3、情感、態(tài)度、價值觀目標:

通過數(shù)學(xué)建模的過程感受數(shù)學(xué)研究方法,并在使用手持技術(shù)過程中改善學(xué)習(xí)方法,即初步形成向技術(shù)學(xué)數(shù)學(xué)的基本理念。

教學(xué)重點。

數(shù)值逼近法生成建構(gòu)導(dǎo)數(shù)概念及導(dǎo)數(shù)的計算。

教學(xué)難點。

本節(jié)課需要用到的知識儲備包括平均變化率、直線的斜率、物理中物體運動的瞬時速度、解析幾何中的切線等,而所要用到的歸納、概括、類比、抽象思維能力等也已具備,特別地實驗班的學(xué)生均能熟練操作圖形計算器,也多次經(jīng)歷過數(shù)學(xué)再創(chuàng)造的過程,對“問題情境—建立模型—解釋應(yīng)用與拓展”這樣的學(xué)習(xí)程序并不陌生,這些都是開展本節(jié)課學(xué)習(xí)的基礎(chǔ)。

導(dǎo)數(shù)的概念說課稿篇四

“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié),它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識,掌握了棱柱的概念和性質(zhì)的基礎(chǔ)上進一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進一步學(xué)習(xí)棱臺的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時,這節(jié)課也是進一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。

2、教學(xué)內(nèi)容。

本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運用正棱錐的性質(zhì)解決有關(guān)計算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會感到自然,好接受。對教材的內(nèi)容則有所增減,處理方式也有適當改變。

3、教學(xué)目標。

根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點和高一學(xué)生對空間圖形的認知特點,我把本節(jié)課的教學(xué)目標確定為:

(1)知識目標:使學(xué)生理解棱錐以及正棱錐的概念,掌握正棱錐的性質(zhì),領(lǐng)會應(yīng)用正棱錐的性質(zhì)解題的一般方法初步學(xué)會應(yīng)用性質(zhì)解決相關(guān)問題。

(2)能力目標:通過對正棱錐中相關(guān)元素的相互轉(zhuǎn)化的研究,培養(yǎng)學(xué)生知識遷移的能力及數(shù)學(xué)表達能力,提高學(xué)生的空間想象能力以及空間問題向平面轉(zhuǎn)化的能力。

(3)德育、美育目標:通過教學(xué)進行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

4、教學(xué)重點,難點,關(guān)鍵。

對于高一學(xué)生來說,空間觀念正逐步形成。而實際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點是通過對具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點實現(xiàn)突破,教學(xué)的關(guān)鍵是正確認識正棱錐的線線,線面垂直關(guān)系。

由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時機,因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識關(guān)鍵點制成了投影片,既節(jié)省時間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識點發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會知識發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實際問題的能力。因此我把本節(jié)的教法確定為:類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會應(yīng)用、發(fā)展?jié)撃堋⑿纬赡芰?、提高素質(zhì)的啟發(fā)式教學(xué)。

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點,這節(jié)課主要是教給學(xué)生“動手做,動腦想;嚴格證,多訓(xùn)練,勤鉆研。”的研討式學(xué)習(xí)方法。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會逐步感到數(shù)學(xué)美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

導(dǎo)數(shù)的概念說課稿篇五

函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。

本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、重難點分析。

根據(jù)對上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。

三、學(xué)情分析。

1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。

四、目標分析。

1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

五、教法學(xué)法。

本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程。

學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

六、教學(xué)過程。

(一)創(chuàng)設(shè)情景,引入新課。

情景1:提供一張表格,把上次運動會得分前10的情況填入表格,我報名次,學(xué)生提供分數(shù)。

名次(得分)。

情景3:某市一天24小時內(nèi)的氣溫變化圖:(圖略)。

提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)。

提問(2):當其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)。

提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題。

[設(shè)計意圖]在創(chuàng)設(shè)本課開頭情境1、2的時候,我并沒有運用書中的前兩個例子。第一個例子我改成提供給學(xué)生一張運動會成績統(tǒng)計單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學(xué)生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數(shù)方法的意圖。這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認知特點。

(二)探索新知,形成概念。

1、引導(dǎo)分析,探求特征。

思考:如何用集合的語言來闡述上述三個問題的共同特征?

[設(shè)計意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個角度思考問題,進入本節(jié)課的重點。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時對學(xué)生進行指引。

提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)。

[設(shè)計意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。

提問(5):兩個集合的元素之間具有怎樣的關(guān)系?(對應(yīng))。

及時給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達這種對應(yīng)。

提問(6):現(xiàn)在你能從集合角度說說這三個問題的共同點嗎?

[設(shè)計意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。

上述一系列問題,始終在學(xué)生知識的“最近發(fā)展區(qū)”,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動,生生互動中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點。

3、探求定義,提出注意。

提問(7):你覺得這個定義中應(yīng)注意哪些問題?

[設(shè)計意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。

4、例題剖析,強化概念。

例1、判斷下列對應(yīng)是否為函數(shù):

[設(shè)計意圖]通過例1的教學(xué),使學(xué)生體會單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。

例2、(1);(2)y=x-1;(3);[設(shè)計意圖]首先對求函數(shù)的定義域進行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強調(diào)只有對應(yīng)法則與定義域相同的兩個函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進一步理解函數(shù)符號的本質(zhì)內(nèi)涵。

例3、試求下列函數(shù)的定義域與值域:

[設(shè)計意圖]讓學(xué)體會理解函數(shù)的三要素。

5、鞏固練習(xí),運用概念。

書本練習(xí)p24:1,2,3,4。

6、課堂小結(jié),提升思想。

引導(dǎo)學(xué)生進行回顧,使學(xué)生對本節(jié)課有一個整體把握,將對學(xué)生形成的知識系統(tǒng)產(chǎn)生積極的影響。

七、教學(xué)評價。

1、我通過對一系列問題情景的設(shè)計,讓學(xué)生在問題解決的過程中體驗成功的樂趣,實現(xiàn)對本課重難點的突破。

2、為使課堂形式更加豐富,也可將某些問題改成判斷題。

4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。

導(dǎo)數(shù)的概念說課稿篇六

教材的地位和作用:

集合是學(xué)習(xí)高中數(shù)學(xué)的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數(shù)與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節(jié)內(nèi)容的教學(xué)重點和難點。

(一)教學(xué)重點:集合的基本概念和表示方法,集合元素的特征。

(一)知識目標:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法;

(2)使學(xué)生初步了解“屬于”關(guān)系的意義;

(3)使學(xué)生初步了解有限集、無限集、空集的意義。

(二)能力目標:

(1)重視基礎(chǔ)知識的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng);

(3)通過教師指導(dǎo),發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力;

(三)德育目標:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情。

操,培養(yǎng)學(xué)生堅忍不拔的意志,實事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。

針對現(xiàn)在的學(xué)生知識遷移能力差、計算能力差的`特點,第一節(jié)課的內(nèi)容不要求學(xué)生太多的計算,通過大量的舉例讓學(xué)生充分掌握集合的基礎(chǔ)知識。

為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動性,將知識的形成過程轉(zhuǎn)化為學(xué)生親自探索類比的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個過程中力求把握好以下幾點:。

(1)通過實例,讓學(xué)生去發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識的形成和發(fā)展,力求使學(xué)生學(xué)會用類比的思想去看待問題。

(2)營造民主的教學(xué)氛圍,使學(xué)生參與教學(xué)全過程。

(3)力求反饋的全面性、及時性,通過精心設(shè)計的提問,讓學(xué)生的思維動起來,針對學(xué)生回答的問題,老師進行適當?shù)狞c評。

(4)給學(xué)生思考的時間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察,分析,類比得出結(jié)果,提高學(xué)生的推理能力。

(一)復(fù)習(xí)導(dǎo)入。

(1)簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

(2)教材中的章頭引言;

(3)教材中例子(p4)。

(二)講解新課。

(1)集合的有關(guān)概念。

(2)常用集合及表示方法。

(3)元素對于集合的隸屬關(guān)系。

(4)集合中元素的特性。

(三)課堂練習(xí)。

1下列各組對象能確定一個集合嗎?

(1)所有很大的實數(shù)的集合(不確定)。

(2)好心的人的集合(不確定)。

(3){1,2,2,3,4,5}(有重復(fù))。

(4)所有直角三角形的集合(是的)。

(5)高一(12)班全體同學(xué)的集合(是的)。

(6)參加2008年奧運會的中國代表團成員的集合(是的)。

2、教材p5練習(xí)1、2。

1.本節(jié)主要學(xué)習(xí)了集合的基本概念、表示符號;一些常用數(shù)集及其記法;集合的元素與集合之間的關(guān)系;以及集合元素具有的特征.

2.我們在進一步復(fù)習(xí)鞏固集合有關(guān)概念的基礎(chǔ)上,又學(xué)習(xí)了集合的表示方法和有限集、無限集、空集的概念,同學(xué)們要熟練掌握.

導(dǎo)數(shù)的概念說課稿篇七

各位專家、各位老師:

大家好!

今天我說課的題目是《函數(shù)的概念》,本課題是人教a版必修1中1.2的內(nèi)容,計劃安排兩個課時,本課時的內(nèi)容為:函數(shù)的概念、三要素及簡單函數(shù)的定義域及值域的求法。下面我將以“學(xué)什么、怎么學(xué)、學(xué)了有何用”為思路,從教材、教法、學(xué)法、教學(xué)評價、教學(xué)過程設(shè)計、板書設(shè)計等幾個方面對本節(jié)課的教學(xué)加以說明。

一、教學(xué)目標。

1、課程標準。

課節(jié)內(nèi)容的課標要求是:

(1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。

(2)在實際情景中,會根據(jù)不同的需要選擇恰當?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。

(3)通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。

(4)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。

(5)學(xué)會運用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。

2、課標解讀。

關(guān)于函數(shù)內(nèi)容的整體定位和基本要求解讀:

(2)強調(diào)對函數(shù)本質(zhì)的認識和理解,因此要求在高中數(shù)學(xué)學(xué)習(xí)中多次接觸、螺旋上升;

(3)關(guān)注背景、應(yīng)用、增加了函數(shù)模型及其應(yīng)用;

(4)削弱和淡化了一些內(nèi)容,如函數(shù)的定義域、值域、反函數(shù)、復(fù)合函數(shù)等;

(5)注重思想和聯(lián)系——增加了函數(shù)與方程、用二分法求方程的近似根。

(6)合理地使用信息技術(shù),旨在幫助學(xué)生更好地認識和理解函數(shù)及其性質(zhì)。

【依據(jù)意圖】。

(1)教材如此要求的根本目的是希望幫助學(xué)生更好地從整體上認識和理解函數(shù)的本質(zhì),而真正理解函數(shù)概念是不容易的。因此,不要在過于細枝末節(jié)的非本質(zhì)問題上作過多的訓(xùn)練,有了定義域和對應(yīng)關(guān)系,值域自然就定了。此外,“課標”建議先講函數(shù)再講映射,也是為了幫助學(xué)生把注意力集中在函數(shù)的本質(zhì)理解。

(2)希望通過方程根與函數(shù)零點的內(nèi)在聯(lián)系,加強對函數(shù)概念、函數(shù)思想及函數(shù)這一主線在高中數(shù)學(xué)中的地位作用的認識和理解。并通過用二分法求方程近似根將函數(shù)思想以及方程的根與函數(shù)零點之間的聯(lián)系具體化。

(3)二分法是求方程近似根的常用方法,更為一般、簡單,能很好地體現(xiàn)函數(shù)思想,“大綱”只是用“三個二”解決根的分布問題。

(4)現(xiàn)代信息技術(shù)不能替代艱苦的學(xué)習(xí)和人腦精密的思考,信息技術(shù)只是作為達到目的的一種手段,一種快速計算的工具。

3、教材分析。

(1)地位作用。

函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個高中數(shù)學(xué)學(xué)習(xí)中,其重要性體現(xiàn)在以下幾個方面:

3、這一節(jié)所學(xué)習(xí)的函數(shù)概念既是對初中所學(xué)函數(shù)概念的一次升華和再認識、對集合語言的一次重要應(yīng)用;又是以后繼續(xù)學(xué)習(xí)函數(shù)的性質(zhì)、數(shù)列等等知識的必備理論基礎(chǔ),在函數(shù)學(xué)習(xí)中是承上啟下的關(guān)鍵章節(jié)。

(2)內(nèi)容與課時劃分。

本課題是高中數(shù)學(xué)人教a版必修1中1.2節(jié),計劃教學(xué)2個課時,第一課時內(nèi)容包括函數(shù)的概念、函數(shù)的三要素、簡單函數(shù)的定義域及值域的求法;第二課時內(nèi)容為:區(qū)間表示、較復(fù)雜函數(shù)的定義域及值域的求法、分段函數(shù)、函數(shù)圖象等。本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。

4、學(xué)情分析。

(1)學(xué)生在初中已經(jīng)在初中學(xué)習(xí)過函數(shù)的概念。

(2)本班級學(xué)生個體差異較明顯。

基于以上分析,我把本節(jié)課的教學(xué)目標和教學(xué)重難點制定如下:

5、教學(xué)目標。

【依據(jù)意圖】:教學(xué)目標的設(shè)計,要簡潔明了,具有較強的可操作性,容易檢測目標的達成度,同時也要體現(xiàn)出新課標下對素質(zhì)教育的要求?;谝陨戏治鲎鳛橐罁?jù),課時目標分解如下:

【課時分解目標】。

1、能夠列舉生活中具有函數(shù)關(guān)系的實例;

2、能用集合與對應(yīng)的語言描述函數(shù)的定義,能對具體函數(shù)指出定義域、對應(yīng)法則、值域;

3、會求一些簡單函數(shù)(帶根號,分式)的定義域和值域;

4、能夠從函數(shù)的三要素的角度去判定兩個函數(shù)是否是同一個函數(shù)。

二、教學(xué)重難點。

重點:讓學(xué)生體會函數(shù)是描述變量之間的相互依賴關(guān)系的重要數(shù)學(xué)模型,正確理解形成函數(shù)的概念。

難點:引導(dǎo)學(xué)生從具體實例抽象出函數(shù)概念。

[意圖依據(jù)]:本課時是概念課,重在概念的理解和形成,但教師應(yīng)把重點放在讓學(xué)生形成概念的過程中,聯(lián)系舊知、突破難點、生長新知。為此通過教學(xué)目標和難重點的展示,讓學(xué)生明確本節(jié)課的任務(wù)及精髓,帶著目標去學(xué)習(xí),才能達到事半功倍的效果。

三、教法。

問題式教學(xué)法(實例情境、啟發(fā)引導(dǎo)、合作交流、歸納抽象)。

由于本課題是從集合與對應(yīng)的角度揭示函數(shù)的本質(zhì),無論難度還是跨度都有質(zhì)的飛躍。根據(jù)學(xué)生的心理特征和認知規(guī)律,我通過以問題為主線,以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)理念。采用一系列的設(shè)問、引導(dǎo)、啟發(fā)、發(fā)現(xiàn),讓學(xué)生歸納、概括出函數(shù)概念的本質(zhì),并靈活應(yīng)用多媒體、黑板呈現(xiàn)、展示、交流。

[意圖依據(jù)]:函數(shù)的`概念的教學(xué)要注重以下幾個方面:(1)把集合作為一種語言;(2)對函數(shù)本質(zhì)的理解不能一步到位,要注重螺旋上升;(3)重視信息技術(shù)的使用。為此,教師要在課堂上搭建一個平臺,通過展示實例、學(xué)生舉例、典例分析、小結(jié)歸納等環(huán)節(jié)穿插若干問題,引起思考,達成教學(xué)目標。

四、學(xué)法。

自主探究、合作交流、展示互評。

我們知道越是基礎(chǔ)性的概念,其統(tǒng)攝性就越強,學(xué)生從中領(lǐng)悟到的數(shù)學(xué)就越本質(zhì);但事物總有兩面性,這些概念的理解和掌握往往難度大、時間長,需要更多的經(jīng)驗積累.因此本節(jié)課在學(xué)法上我重視學(xué)生在列舉大量實際背景的前提下對所給出實例觀察,類比,歸納,分析,探究,合作,提煉,感悟函數(shù)概念的“本來面目”,以此培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力;同時在預(yù)習(xí)環(huán)節(jié)有學(xué)生的自主學(xué)習(xí)、在互動環(huán)節(jié)有學(xué)生的合作交流、在課后拓展環(huán)節(jié)有學(xué)生的探究學(xué)習(xí)。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑以及思考問題的方法,使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有所“思”,“思”有所“獲”,“獲”有所“用”。也恰好能夠體現(xiàn)我以“學(xué)什么、怎么學(xué)、學(xué)了有何用”來設(shè)計本課題的整體思路。

[意圖依據(jù)]:本課時是以問題為主線的教學(xué)過程,著重讓學(xué)生經(jīng)過對大量實例的剖析、了解、歸納而形成概念。在這個過程中,教師的作用是引導(dǎo),經(jīng)過一系列問題的提出、解決讓學(xué)生在思考、交流的基礎(chǔ)上層層深入的理解函數(shù)概念。

五、教學(xué)過程設(shè)計。

本節(jié)內(nèi)容的教學(xué)過程我設(shè)計為以下逐層推進六個步驟:

1、課前預(yù)習(xí)、生成問題:

2、創(chuàng)境設(shè)問、引入課題:

3、觀察分析、探索新知:

4、思考辨析、深刻理解:

5、提煉總結(jié)、分享收獲:

6、布置作業(yè)、拓展延伸.

導(dǎo)數(shù)的概念說課稿篇八

教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。

二、教學(xué)目標。

理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

三、重難點分析確定。

一、教學(xué)基本思路及過程。

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、學(xué)情分析。

一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。

三、教法、學(xué)法。

1、本節(jié)課采用的方法有:

直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。

2、采用這些方法的理論依據(jù):

我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。

導(dǎo)數(shù)的概念說課稿篇九

聽了康教師的課,本人受益匪淺。康教師整節(jié)課充分體現(xiàn)了讓學(xué)生成為數(shù)學(xué)活動的主人,教師只是數(shù)學(xué)活動的組織者、引導(dǎo)者和合作者的基本理念。在教學(xué)過程中,教師本著科學(xué)、新穎、實用的原則,使整堂課體現(xiàn)出新趣活實四個特點:

一新:教學(xué)理念新。本課教師在組織形式、教學(xué)方法、師生主角轉(zhuǎn)換、評價多元化、學(xué)生主體參與等諸多方面進行了大膽的改革與創(chuàng)新,從而大大激發(fā)了學(xué)生的學(xué)習(xí)興趣,提高了學(xué)習(xí)效率。

二趣:教學(xué)過程趣。本課教師注重給學(xué)生供給充分從事數(shù)學(xué)活動的機會,如從舉左右手到找身體中有左右之分的部位,再到介紹左右兩邊的同學(xué),再到淘氣家的位置、整理學(xué)具等等,無一不讓學(xué)生感覺到學(xué)生來源于生活,學(xué)習(xí)數(shù)學(xué)是一個充滿樂趣的過程。

三活:教學(xué)方法活。本課教學(xué)中,教師轉(zhuǎn)變了傳統(tǒng)的教學(xué)方式,讓學(xué)生在充分的自主探索與合作交流的基礎(chǔ)上學(xué)習(xí)知識。如在體驗左右的相對性環(huán)節(jié),教師不是直接的告訴,而是讓學(xué)生在充分的體驗基礎(chǔ)上,進行交流,從而自行體會到左右的相對性。

四實:教學(xué)結(jié)果實。本課的教學(xué)效果十分好。孩子們能在良好的課堂教學(xué)氛圍中,學(xué)有所得、學(xué)有所獲。不一樣層次的孩子都得到了應(yīng)有的發(fā)展,到達了預(yù)期的教學(xué)目標。

總之,本課教師在充分理解教材、掌握教材的基礎(chǔ)上,創(chuàng)造性地使用教材,緊密聯(lián)系學(xué)生的生活實際,使每個教學(xué)環(huán)節(jié)緊緊相連、環(huán)環(huán)相扣、活而有序。在此不難發(fā)現(xiàn),學(xué)生的主體地位得到應(yīng)有的凸顯,孩子們自主探究的學(xué)得到有效落實。自然這樣的課堂是生動的、鮮活的。

導(dǎo)數(shù)的概念說課稿篇十

工商行政管理是國家實施經(jīng)濟監(jiān)督職能的重要組成部分,它通過國家特設(shè)的行政管理機關(guān)(在我國叫工商行政管理局),運用行政權(quán)力依法對市場經(jīng)濟活動進行監(jiān)督管理,行政執(zhí)法,對被管理對象的行為依法進行控制、支持、制止、處罰等。以維護市場經(jīng)濟秩序。

不同的社會經(jīng)濟制度的管理活動,其社會性質(zhì)有所不同。按照社會屬性的要求,我國的工商行政管理必須緊密結(jié)合我國的國情.體現(xiàn)社會主義經(jīng)濟制度的要求,體現(xiàn)社會主義國家和全體人民的利益。

導(dǎo)數(shù)的概念說課稿篇十一

一、引導(dǎo)學(xué)生觀察、類比、聯(lián)想已學(xué)的一元一次方程、二元一次方程,歸納、總結(jié)出一元二次方程,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)之中,使新概念的得出覺得意外,讓學(xué)生跳一跳就可以摘到桃子。

二、合理選材,優(yōu)化教學(xué),在教學(xué)中,忠實于教材,要研究的基礎(chǔ)上使用教材。教學(xué)方法合理化,不拘于形式,通過一系列的活動來展開教學(xué),發(fā)展了學(xué)生的思維能力,增強了學(xué)生思考的習(xí)慣,增強了學(xué)生運用數(shù)學(xué)知識解決實際問題的能力。

四、為了真正做到有效的合作學(xué)習(xí),我在活動中大膽地讓學(xué)生自主完成。先讓學(xué)生把問題提出來,然后讓學(xué)生帶著問題去討論,這樣學(xué)生在討論時就有目的,就會事半功倍。也讓不同層次的學(xué)生得到不同的發(fā)展。也符合新課程的教學(xué)理念。

不足之處:引入方面有待加強,不夠激發(fā)學(xué)生的學(xué)習(xí)興趣;板書還有待加強,應(yīng)給學(xué)生做出示范;給學(xué)生思考的時間還不夠。

導(dǎo)數(shù)的概念說課稿篇十二

在職人才引進:

業(yè)務(wù)定義。

在職人才引進申報:符合當在職人才引進申報政策的人員,可辦理在職人才引進申報。具體參看當政策。

政策依據(jù):

深圳市人才引進實施辦法(深府辦函[2013]37號)《深圳市人才引進綜合評價指標及分值表》(深人社規(guī)〔2013〕5號)。

在職人才引進的條件:

(一)符合以下基本條件,且人才引進積分分值達到100分的,可以申請辦理人才引進手續(xù):

1.年齡在18周歲以上,48周歲以下;

2.身體健康;

3.已在我市辦理居住證和繳納社保;

4.符合《深圳經(jīng)濟特區(qū)人口與計劃生育條例》的規(guī)定;

5.未參加國家禁止的組織及活動,無刑事犯罪記錄。

(二)符合上款基本條件的第2、4、5項,且符合以下條件之一,可直接申請辦理人才引進手續(xù):

1.兩院院士;

6.取得《深圳市出國留學(xué)人員資格證明》,且年齡不超過48周歲的留學(xué)回國人員。

(三)根據(jù)我市戶籍遷入規(guī)定,以下人員申請人才引進年齡上限可放寬:

本款第2至5項所規(guī)定人員,須在最近連續(xù)3個納稅內(nèi)具備與申請事由相適應(yīng)的身份資格;納稅額超過以上規(guī)定納稅額一倍以上的,其年齡可放寬至55周歲。

(四)市政府對高層次專業(yè)人才及其配偶、獲得特殊獎項或表彰人員、投資納稅人員、隨軍家屬、機關(guān)事業(yè)單位或駐深單位人員等引進另有規(guī)定的,按其規(guī)定執(zhí)行。

導(dǎo)數(shù)的概念說課稿篇十三

質(zhì)數(shù)又稱素數(shù)。一個大于1的自然數(shù),除了1和它自身外,不能被其他自然數(shù)整除的數(shù)叫做質(zhì)數(shù);否則稱為合數(shù)(規(guī)定1既不是質(zhì)數(shù)也不是合數(shù))。

2、質(zhì)數(shù)的性質(zhì)。

(1)質(zhì)數(shù)p的約數(shù)只有兩個:1和p。

(2)初等數(shù)學(xué)基本定理:任一大于1的自然數(shù),要么本身是質(zhì)數(shù),要么可以分解為幾個質(zhì)數(shù)之積,且這種分解是唯一的。

(3)質(zhì)數(shù)的個數(shù)是無限的。

(4)若n為正整數(shù),在n2到(n+1)2之間至少有一個質(zhì)數(shù)。

(5)若n為大于或等于2的正整數(shù),在n到n!之間至少有一個質(zhì)數(shù)。

(6)所有大于10的質(zhì)數(shù)中,個位數(shù)只有1,3,7,9。

導(dǎo)數(shù)的概念說課稿篇十四

2)列方程解決問題的關(guān)鍵是尋找等量關(guān)系。

提升:某學(xué)校會議室的地面是一個長方形,長比寬多一米,用320塊邊長為25厘米的正方形瓷磚恰好可將地面鋪滿。求會議室地面的長和寬。

作業(yè):

建構(gòu)主義認為,教學(xué)方法的核心是強調(diào)學(xué)習(xí)者是一個主動的積極的知識構(gòu)建者。本節(jié)課,從審題,到找等量關(guān)系,列方程等一系列活動都從學(xué)生實際出發(fā),借助適當?shù)膯栴}情景或?qū)嵗偈箤W(xué)生反思,引起學(xué)生的認知沖突,從而讓學(xué)生最終通過主動的思考建構(gòu)起新的認知結(jié)構(gòu)。以上是我對本節(jié)課的理解與構(gòu)思,不到之處請多多指正。

導(dǎo)數(shù)的概念說課稿篇十五

采取的教學(xué)方法是引導(dǎo)發(fā)現(xiàn)教學(xué)法:用數(shù)、式通性的思想,類比分數(shù)。引導(dǎo)學(xué)生獨立思考、小組合作,完成對分式概念及意義的自主探索,突出數(shù)學(xué)合情推理能力的養(yǎng)成;通過“課后練習(xí)應(yīng)用拓展”這一環(huán)節(jié)發(fā)展了學(xué)生思維,鞏固了課堂知識,增強了學(xué)生實踐應(yīng)用能力。讓學(xué)生自己閱讀課文,然后提出問題讓學(xué)生解決,問題由易到難,層層深入,既復(fù)習(xí)了舊知識又在類比過程之中獲得了解決新知識的途徑,學(xué)生感到數(shù)學(xué)知識原來就這么簡單。我在這一環(huán)節(jié)提問問題注意了循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成。

本節(jié)課中,我設(shè)計了三個例題,第一個例題是區(qū)分整式與分式,第二個例題是未知數(shù)取什么值可以使分式有意義,第三個例題是當未知數(shù)取什么值時分式的值為零。并且,我有意的在每個例題之后加入了討論和練習(xí)題,讓學(xué)生及時總結(jié)及時運用,目的就是讓學(xué)生切實掌握概念。三個例題也是先易后難、由簡到繁、層層遞進,三個例題之后我安排了一個討論探究題,難度稍微大一點,但學(xué)生因為有前面對概念理解的基礎(chǔ),在理論上具備了解題的依據(jù),最后還是通過小組合作解決了這一問題。我密切關(guān)注學(xué)生探究的過程,對學(xué)生活動既放手,但又不袖手旁觀,盡量參與、掌握、了解學(xué)生活動的整個過程,隨時發(fā)現(xiàn)問題,讓學(xué)生動手實踐、自主探索與合作交流真正落到了實處。通過這節(jié)課的教學(xué)我對大家說的這兩句話認識非常深刻。一是:只要你給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給你一個意外的驚喜。二是:學(xué)生的潛力是無窮的,只有我們想不到,沒有學(xué)生做不到的。

本節(jié)課的缺點,我認為有:一是在體現(xiàn)數(shù)學(xué)的實用價值方面不到位。二是我本人普通話不是很好。三是在因材施教方面做得還不到位,對學(xué)困生的`照顧做的不是很好,課后的“拓展應(yīng)用”對學(xué)困生來說就有相當大的困難,在這一環(huán)節(jié)沒有呈現(xiàn)出梯度性。在課程改革的今天,我們應(yīng)對數(shù)學(xué)教學(xué)活動充分滲透新課標理念,為學(xué)生營造數(shù)學(xué)活動空間,創(chuàng)設(shè)教學(xué)情境,教學(xué)活動要把準教材,關(guān)注學(xué)生探究活動,關(guān)注學(xué)生的發(fā)展,讓學(xué)生學(xué)得輕松,學(xué)得開心,以真正達到“教是為了不教”的目的。

導(dǎo)數(shù)的概念說課稿篇十六

教學(xué)內(nèi)容:

六年制小學(xué)數(shù)學(xué)第十二冊課本第55頁例1.例2.作業(yè)本第31(29)。

教學(xué)目標:

1.使學(xué)生理解比例的意義。

2.使學(xué)生能應(yīng)用比例尺的知識求平面圖的比例尺,以及根據(jù)比例尺求圖上距離和實際距離。

3.培養(yǎng)學(xué)生分析問題、解決問題的能力和創(chuàng)新能力。

教學(xué)重點:

理解比例尺的意義。

教學(xué)難點:

根據(jù)比例尺求圖上距離和實際距離。

教具準備:

多媒體課件一套。

教學(xué)過程:

一、問題的情景:

1.出示郵票。問:你能同樣大小的把它畫在圖紙上嗎?

讓同學(xué)們畫一畫,再拿出郵票的長,比一比,怎么樣?

歸納:(同樣長)得:圖上的長和實際的長的比是1:1。

2.教室的長是9米,你能同樣長的畫在圖紙上嗎?更大一些呢?

4.導(dǎo)入新課:人們在繪制地圖和平面圖時,往往因為紙的大小有限,不可能按實際的大小畫在圖紙上,經(jīng)常需要把實際距離縮小一定的倍數(shù)以后再畫成圖。象手表等機器零件比較小,又得把實際長度擴大一定的倍數(shù)以后,才能畫到圖紙上去。這就.需要涉及到一種新的知識。也就是今天我們一起來研究比例尺的問題。

板書:比例尺。

二、問題解決:

5.一個教室長是9米,如果我們要畫這個教室的平面圖,為了看圖和攜帶方便,就需要把實際距離縮小一定的倍數(shù)后畫在平面圖上,縮小多少倍由你自己決定,你打算設(shè)計:用幾厘米表示9米。請四人小組討論并設(shè)計。

6.小組回報設(shè)計方案,教師選擇以下四種方案。

(1).用9厘米表示9米。

(2).用4.5厘米表示9米。

(3).用3厘米表示9米。

(4).用1厘米表示9米。

7.說說以上方案是圖上距離比實際距離縮小了多少倍?

算一算,每幅圖圖上距離和實際距離的比。

(1).9厘米9米=9900=1100。

(2).4.5厘米9米=4.5900=1200。

(3).3厘米9米=3900=1300。

(4).1厘米9米=1900。

8.這四個比的前項代表什么?(圖上距離),后項代表什么?(實際距離),我們把這樣的`比,叫比例尺。

齊讀:比例尺是圖上距離與實際距離的比,化簡后得到最簡整數(shù)比。

比例尺怎樣求:(看上述四個比例式得出):

圖上距離實際距離=比例尺或圖上距離。

實際距離。

9.討論匯報:上面四幅圖,比例尺是多少圖最大?

比例尺是多少圖再???為什么?

10.練習(xí):

(1).甲、乙兩座城市相距120千米,在地圖上量得兩城市的距離是4厘米。求這幅地圖的比例尺。

(2).學(xué)校里修建運動場,在設(shè)計圖上用25厘米長線段來表示操場的實際長度150米。求圖上距離和實際距離的比。

(3).一張中國圖,圖上4厘米表示實際距離1040千米,求這幅地圖的比例尺?

(4).一張緊密圖紙中,圖上1厘米表示實際1毫米,求這幅精密圖紙的比例尺?

(觀察精密零件如果要畫在圖紙上,怎么辦?(放大)。那這幅精密圖紙的比例尺會求嗎?

上述四題分層練習(xí),后講評。

11.比較(3)、(4)兩題的比例尺有什么不同?

教師小結(jié):一般把縮小圖的比例尺寫成前項是1的比,而把放大圖的比例尺寫成后項是1的長。

12.比例尺有多少種表示方法?讓生說一說。

(常見的有:比的形式分數(shù)的形式線段形式)。

三、問題的應(yīng)用:

根據(jù)比例尺的關(guān)系式,求實際距離。

(學(xué)生獨立解答,同時抽一生板演)。

解:設(shè)上海到北京的實際距離為x厘米,

x=105000000。

105000000厘米=1050千米。

答:上海到北京的實際距離大約是1050千米。

(2).分析講述:

根據(jù)比例尺的計算公式,已知圖上距離和比例尺求實際距離,用方程解。

(先設(shè)x,再根據(jù)比例尺的計算公式列出方程。)。

(3).圖上距離和實際距離的單位要統(tǒng)一,一般都統(tǒng)一為低級單位厘米。

(4)怎樣設(shè)x,.教師指出:設(shè)未知數(shù)時,單位要與已知單位統(tǒng)一,后再化聚到問題單位。

(5)嘗試練習(xí)第57頁試一試。

導(dǎo)數(shù)的概念說課稿篇十七

《等比數(shù)列前n項和》選自北師大版高中數(shù)學(xué)必修5第一章第3節(jié)的內(nèi)容。等比數(shù)列的前n項和是“等差數(shù)列及其前n項和”與“等比數(shù)列”內(nèi)容的延續(xù),也是函數(shù)的延續(xù),它實質(zhì)上是一種特殊的函數(shù);公式推導(dǎo)中蘊涵的數(shù)學(xué)思想方法如分類討論等在各種數(shù)學(xué)問題中有著廣泛的應(yīng)用,如在“分期付款”等實際問題中也經(jīng)常涉及到.具有一定的探究性。

二、學(xué)情分析。

在認知結(jié)構(gòu)上已經(jīng)掌握等差數(shù)列和等比數(shù)列的有關(guān)知識。在能力方面已經(jīng)初步具備運。

用等差數(shù)列和等比數(shù)列解決問題的能力;但學(xué)生從特殊到一般、分類討論的數(shù)學(xué)思想還需要進一步培養(yǎng)和提高。在情感態(tài)度上學(xué)習(xí)興趣比較濃,表現(xiàn)欲較強,但合作交流的意識等方面尚有待加強。并且讓學(xué)生在探究等比數(shù)列前n項和的過程中體會合作交流的重要性。

三、教學(xué)目標分析:

知識與技能目標:

(1)能夠推導(dǎo)出等比數(shù)列的前n項和公式;

(2)能夠運用等比數(shù)列的前n項和公式解決一些簡單問題。

過程與方法目標:提高學(xué)生的建模意識及探究問題、分析與解決問題的能力。體會公式探求。

過程中從特殊到一般的思維方法、錯位相減法和分類討論思想。

情感與態(tài)度目標:培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神,磨練思維品質(zhì),從中獲得成功的體驗。

四、重難點的確立。

《等比數(shù)列的前n項和》是這一章的重點,其中公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了多種重要的數(shù)學(xué)思想,因此,本節(jié)課的教學(xué)重點為等比數(shù)列的前n項和公式的推導(dǎo)及其簡單應(yīng)用.而等比數(shù)列的前n項和公式的推導(dǎo)過程中用到的方法學(xué)生難以想到,因此本節(jié)課的難點為等比數(shù)列的前n項和公式的推導(dǎo)。

五、教學(xué)方法。

為突出重點和突破難點,我將采用的教學(xué)策略為啟發(fā)式和探究式相結(jié)合的教學(xué)方法,教學(xué)手段采用計算機進行輔助教學(xué)。

六、教學(xué)過程。

為達到本節(jié)課的教學(xué)目標,我把教學(xué)過程分為如下6個階段:

1、創(chuàng)設(shè)情境:

2、探究問題,講授新課:

根據(jù)創(chuàng)設(shè)的情景,在教師的誘導(dǎo)下,學(xué)生根據(jù)自己掌握的知識和經(jīng)驗,很快建立起兩個等比數(shù)列的數(shù)學(xué)模型。提出如何求等比數(shù)列前n項和的問題,從而引出課題。通過回顧等差數(shù)列前n項和公式的推導(dǎo)過程,類比觀察等比數(shù)列的特點,引導(dǎo)學(xué)生思考,如果我們把每一項都乘以2,則每一項就變成了它的后一項,引導(dǎo)學(xué)生比較這兩個式子有許多相同的項的特點,學(xué)生自然就會想到把兩式相減,進而突破了用錯位相減法推到公式的難點。教師再由特殊到一般、具體到抽象的啟示,正式引入本節(jié)課的重點等比數(shù)列的前n項和,請學(xué)生用錯位相減法推導(dǎo)出等比數(shù)列前n項和公式。得出公式后,學(xué)生一起探討兩個問題,一是當q=1時sn又等于什么,引導(dǎo)學(xué)生對q進行分類討論,得出完整的等比數(shù)列前n項和公式,二是結(jié)合等比數(shù)列的通項公式,引導(dǎo)學(xué)生得出公式的另一形式。

3、例題講解:

我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學(xué)生的思維能力。本節(jié)課設(shè)置如下兩種類型的例題:

1)例1是公式的直接應(yīng)用,目的是讓學(xué)生熟悉公式會合理的選用公式。

2)等比數(shù)列中知三求二的填空題,通過公式的正用和逆用進一步提高學(xué)生運用等比數(shù)列前n項和的能力.4.形成性練習(xí):

練習(xí)基本上是直接運用公式求和,三個練習(xí)是按由易到難、由簡單到復(fù)雜的認識規(guī)律和心理特征設(shè)計的,有利于提高學(xué)生的積極性。學(xué)生練習(xí)時,教師巡查,觀察學(xué)情,及時從中獲取反饋信息。對學(xué)生練習(xí)中出現(xiàn)的獨到解法提出表揚和鼓勵,對其中偶發(fā)性錯誤進行辨析、指正。通過形成性練習(xí),培養(yǎng)學(xué)生的應(yīng)變和舉一反三的能力,逐步形成技能。

5.課堂小結(jié)。

本節(jié)課的小結(jié)從以下幾個方面進行:(1)等比數(shù)列的前n項和公式。

(2)推導(dǎo)公式的所用方法——從特殊到一般的思維方法、錯位相減法和分類討論思想。通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識,也能培養(yǎng)學(xué)生的歸納和概括能力。進一步完成認知目標和素質(zhì)目標。

6.作業(yè)布置。

針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,從而達到拔尖和“減負”的`目的。并可布置相應(yīng)的研究作業(yè),思考如何用其他方法來推導(dǎo)等比數(shù)列的前n項和公式,來加深學(xué)生對這一知識點的理解程度。

導(dǎo)數(shù)的概念說課稿篇十八

“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識,掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進一步學(xué)習(xí)棱臺的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時,這節(jié)課也是進一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。

本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運用正棱錐的性質(zhì)解決有關(guān)計算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會感到自然,好接受。對教材的內(nèi)容則有所增減,處理方式也有適當改變。

根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點和高一學(xué)生對空間圖形的認知特點,我把本節(jié)課的教學(xué)目的確定為:

(1)通過棱錐,正棱錐概念的教學(xué),培養(yǎng)學(xué)生知識遷移的'能力及數(shù)學(xué)表達能力;

(2)領(lǐng)會應(yīng)用正棱錐的性質(zhì)解題的一般方法,初步學(xué)會應(yīng)用性質(zhì)解決相關(guān)問題;

(4)進行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

對于高一學(xué)生來說,空間觀念正逐步形成。而實際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點是通過對具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點實現(xiàn)突破,教學(xué)的關(guān)鍵是正確認識正棱錐的線線,線面垂直關(guān)系。

類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)。

由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時機,因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識關(guān)鍵點制成了投影片,既節(jié)省時間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識點發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會知識發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實際問題的能力。

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點,這節(jié)課主要是教給學(xué)生“動手做,動腦想;嚴格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會逐步感到數(shù)學(xué)美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)。

將現(xiàn)實生活的實例抽象成數(shù)學(xué)模型,獲得新的幾何體――棱錐。(板書課題)。

請同學(xué)們描述一下棱錐的本質(zhì)特征?(學(xué)生觀察模型,提示學(xué)生可以從底面,側(cè)面的形狀特點加以描述)。

結(jié)論:(1)有一個面是多邊形;

(2)其余各面是三角形且有一個公共頂點。

由滿足(1)、(2)的面所圍成的幾何體叫做棱錐。

(設(shè)計意圖:由觀察具體事物,經(jīng)過積極思維,歸納、抽象出事的本質(zhì)屬性,形成概念,培養(yǎng)學(xué)生抽象思維能力,提高學(xué)習(xí)效果。)。

――棱錐的頂點。

――棱錐的側(cè)棱。

――棱錐的底面。

棱錐的高――――。

觀察圖1:依次逐個介紹棱錐各個部分。

名稱及表示法。表示法:棱錐s-abcde。

或棱錐s-ac。與棱柱相似,棱錐可以按。

底面多邊形的邊數(shù)分為三棱錐,四棱錐、

五棱錐,···,n棱錐。

(設(shè)計意圖:從簡處理棱錐的表示法,

分類等,為后面重點解決正棱錐的性質(zhì)問。

題節(jié)省時間。)。

由于實際生活中,遇到的往往是一種。

特殊的棱錐――正棱錐,它的性質(zhì)用處較多。

通過對比正棱柱的定義,讓學(xué)生描述正棱錐。

(拿出各式各樣的棱錐模型讓學(xué)生辨認)。

討論:底面是正多邊形的棱錐對嗎?聯(lián)想正棱柱的定義,棱柱補充幾點后才是正棱柱?

結(jié)論:底面是正多邊形,并且頂點在底面射影是底面中心。為什么?

(設(shè)計意圖:采用觀察、聯(lián)想、類比、猜想、發(fā)現(xiàn)的方法引出正棱錐的定義比課本直接給出顯得自然,學(xué)生好接受)。

正棱錐的頂點在底面的射影是底面下多邊形中心,這是正棱錐的本質(zhì)特征。它決定了正棱錐的其他性質(zhì)。下面以正五棱錐為例,請同學(xué)們說出其側(cè)棱,各側(cè)面有何性質(zhì)?(將圖2出示給學(xué)生)。

結(jié)論:各棱相等,各側(cè)面是全等的等腰三角形。

為什么?

(學(xué)生口答證明)(略)。

如果我們把等腰三角形底邊上的高叫做正棱錐。

的斜高,請在圖2中作出兩條斜高。(學(xué)生作出。)(略)。

結(jié)論:兩條斜高相等。為什么?(學(xué)生回答)。

想一想:正棱錐的斜高與高有什么關(guān)系?

結(jié)論:斜高大于高,為什么?(可啟發(fā)學(xué)生聯(lián)系。

垂線段,斜線段的有關(guān)知識,然后回答)。

小結(jié):對于一般棱錐其側(cè)面不一定是等腰三角形。棱錐的高是指頂點到底面的距離,垂足可以在底面多邊形內(nèi),也可以在底面多邊形外,我們剛才所得到的性質(zhì)都是對正棱錐而言的。

(設(shè)計意圖:再次讓學(xué)生領(lǐng)會類比、觀察、猜想等合情合理得到正棱錐的性質(zhì)之一并加以證明,培養(yǎng)學(xué)生的直覺思維能力的同時,訓(xùn)練學(xué)生數(shù)學(xué)思維的嚴謹性。)。

導(dǎo)數(shù)的概念說課稿篇十九

工商行政管理的上述概念包括以下幾個方面的涵義:。

1、工商行政管理的主體,是國家,是國家特設(shè)的行政管理機構(gòu)。這個行政管理機構(gòu),在我國叫工商行政管理局,而在別的國家則有其不同的名稱,例如英國叫公平交易局,日本叫公正交易委員會,美國叫聯(lián)邦貿(mào)易委員會,法國叫競爭消費反詐騙總局。

2、工商行政管理的對象,是市場主體及其市場經(jīng)濟活動。這里所講的市場主體是指經(jīng)國家批準,以營利為目的參與市場生產(chǎn)經(jīng)營活動的組織和個人。

3、工商行政管理的目標,是建立和維護市場經(jīng)濟秩序.我國過去長期實行計劃經(jīng)濟體制,目前正處在從計劃經(jīng)濟向市場經(jīng)濟過渡時期,建立和維護市場經(jīng)濟秩序,既是工商行政管理的目標,也是工商行政管理的基本任務(wù).

4、工商行政管理的性質(zhì),是經(jīng)濟行政監(jiān)督管理。工商行政管理既不同于工商企業(yè)管理,也不同于一般的部門經(jīng)濟管理,而是國家經(jīng)濟行政監(jiān)督管理,具有宏觀性的特點。

2

工商行政管理的性質(zhì):

從總的性質(zhì)來說,工商行政管理是國家經(jīng)濟行政監(jiān)督管理,它是國家經(jīng)濟管理職能的重要組成部分。從具體分析上可以從兩個層次去認識。

1、工商行政管理具有作為國家經(jīng)濟管理的二重性:自然屬性和社會屬性。其自然屬性是指作為維護市場經(jīng)濟初字的一般要求的管理活動所體現(xiàn)出來的科學(xué)性。這是不同的社會經(jīng)濟形態(tài)都具有的共同的管理要求。有商品生產(chǎn)與交換,有市場經(jīng)營活動,就要有維護市場秩序的管理活動。按照自然屬性的要求,工商行政管理必須遵循市場經(jīng)濟發(fā)展的一般規(guī)律,注重學(xué)習(xí)和借鑒國際通行的管理規(guī)則,對市場主體及其市場經(jīng)濟活動進行科學(xué)有效的組織、監(jiān)督和管理,降低管理成本,提高管理效果。

工商行政管理的社會屬性,是指體現(xiàn)社會經(jīng)濟制度的要求和國家的意志、利益的管理活動所具有的階級性。

2、工商行政管理是國家經(jīng)濟管理職能的重要組成部分,具有經(jīng)濟行政監(jiān)督性質(zhì)。在市場經(jīng)濟條件下,國家的經(jīng)濟管理職能主要有:一是配置資源職能,用以彌補市場機制的不足:二是經(jīng)濟調(diào)控職能,主要利用經(jīng)濟杠桿調(diào)節(jié)市場經(jīng)濟活動:三是經(jīng)濟監(jiān)督職能,對生產(chǎn)經(jīng)營者及其經(jīng)營活動進行依法監(jiān)督,建立和維護市場經(jīng)濟秩序。

【本文地址:http://mlvmservice.com/zuowen/17091500.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔