在生活中時不時總結(jié)一下,讓自己成為更好的人。多讀名著是提升語文能力的有效途徑之一。這是一篇總結(jié)范文,供大家參考和借鑒。
對模糊數(shù)學(xué)的體會篇一
數(shù)學(xué)模糊是一門獨具特色的數(shù)學(xué)學(xué)科,它挑戰(zhàn)人們對于數(shù)學(xué)的傳統(tǒng)理解,開拓了數(shù)學(xué)思維的邊界。在學(xué)習(xí)和研究數(shù)學(xué)模糊的過程中,我獲得了一些心得和體會,下面將從數(shù)學(xué)模糊的背景和定義、數(shù)學(xué)模糊的應(yīng)用領(lǐng)域、數(shù)學(xué)模糊的優(yōu)勢和挑戰(zhàn)以及數(shù)學(xué)模糊對于個人的啟示和影響等方面進行分析和探討。
首先,我們來了解數(shù)學(xué)模糊的背景和定義。數(shù)學(xué)模糊起源于20世紀60年代,是從模糊集合理論發(fā)展而來的一門學(xué)科。模糊集合是對現(xiàn)實世界中存在不確定性和模糊性的一種數(shù)學(xué)描述方式。在傳統(tǒng)的集合論中,一個元素只能屬于某個集合或者不屬于某個集合,而模糊集合允許一個元素以模糊或者不確定的方式屬于某個集合。數(shù)學(xué)模糊通過引入模糊邏輯和隸屬函數(shù)等概念,對模糊集進行描述和運算,從而使數(shù)學(xué)能夠更好地處理實際問題中存在的不確定性和模糊性。
接下來,我們來探討數(shù)學(xué)模糊的應(yīng)用領(lǐng)域。數(shù)學(xué)模糊在各個領(lǐng)域都具有廣泛的應(yīng)用,尤其是在工程學(xué)和人工智能領(lǐng)域。在工程學(xué)中,數(shù)學(xué)模糊被應(yīng)用于控制系統(tǒng)、信號處理、模式識別等領(lǐng)域。例如,通過模糊控制理論可以設(shè)計出能夠適應(yīng)環(huán)境變化的控制系統(tǒng),提高系統(tǒng)的穩(wěn)定性和魯棒性。在人工智能領(lǐng)域,數(shù)學(xué)模糊可以用來處理不確定性和模糊性的問題,提高決策系統(tǒng)和專家系統(tǒng)的性能。此外,數(shù)學(xué)模糊還可以應(yīng)用于經(jīng)濟學(xué)、管理學(xué)、醫(yī)學(xué)等領(lǐng)域,為這些領(lǐng)域的決策和分析提供支持。
然后,讓我們來分析數(shù)學(xué)模糊的優(yōu)勢和挑戰(zhàn)。數(shù)學(xué)模糊在處理實際問題中的不確定性和模糊性方面具有明顯的優(yōu)勢。它能夠充分利用不完全和模糊的信息,減少了對精確數(shù)據(jù)和準確規(guī)則的要求。數(shù)學(xué)模糊還能夠進行靈活的推理和決策,適應(yīng)環(huán)境變化和信息更新的需要。然而,數(shù)學(xué)模糊也面臨著一些挑戰(zhàn)。首先是模糊性的量化問題,如何從模糊的描述中得出可執(zhí)行的數(shù)值解是一個較為困難的問題。其次是規(guī)則的確定和模糊集合的構(gòu)建問題,如何選擇合適的規(guī)則和構(gòu)建恰當?shù)哪:蠈τ谀:到y(tǒng)的性能至關(guān)重要。
最后,我們來談?wù)剶?shù)學(xué)模糊對于個人的啟示和影響。學(xué)習(xí)數(shù)學(xué)模糊使我認識到數(shù)學(xué)并不僅僅是一門冷漠的符號游戲,而是與現(xiàn)實世界緊密相連,具有廣泛的應(yīng)用價值。數(shù)學(xué)模糊的研究使我更加尊重和理解不確定性和模糊性,學(xué)會在不確定的環(huán)境中進行推理和決策。數(shù)學(xué)模糊也讓我意識到專業(yè)知識的跨學(xué)科性和綜合性,需要我們具備跨學(xué)科的思維和解決問題的能力。此外,數(shù)學(xué)模糊還培養(yǎng)了我的抽象思維和邏輯推理能力,提高了我的數(shù)學(xué)素養(yǎng)和研究能力。
總之,數(shù)學(xué)模糊是一門富有挑戰(zhàn)性和創(chuàng)新性的學(xué)科,它為我們認識和理解現(xiàn)實世界提供了新的視角和方法。通過學(xué)習(xí)和研究數(shù)學(xué)模糊,我深刻體會到模糊集合和模糊邏輯的重要性,學(xué)會在不確定性和模糊性中進行思考和決策。數(shù)學(xué)模糊的應(yīng)用和挑戰(zhàn)使我成長和進步,同時也給我?guī)砹烁嗟膯⑹竞退伎?。在今后的學(xué)習(xí)和工作中,我會繼續(xù)深入研究數(shù)學(xué)模糊,發(fā)揮其在實際問題中的作用,為解決現(xiàn)實世界中的復(fù)雜和模糊問題做出貢獻。
對模糊數(shù)學(xué)的體會篇二
近年來,模糊數(shù)學(xué)作為一門新興學(xué)科,受到越來越多科學(xué)家和研究者的關(guān)注。作為大學(xué)生,我也有幸在大學(xué)課程中接觸到了模糊數(shù)學(xué),并對其展開了一些學(xué)習(xí)和探索。通過學(xué)習(xí)模糊數(shù)學(xué),我深刻地體會到了它在解決現(xiàn)實問題中的重要性和應(yīng)用前景,同時也明白了它的理論基礎(chǔ)。下面我將從學(xué)習(xí)的收獲、解決實際問題、應(yīng)用前景以及應(yīng)注意的問題四個方面進行闡述。
首先,通過學(xué)習(xí)模糊數(shù)學(xué),我對這門學(xué)科有了更深入的了解。傳統(tǒng)的數(shù)學(xué)以精確性為基礎(chǔ),但在現(xiàn)實生活中,很多問題卻往往無法用精確的數(shù)值來描述。模糊數(shù)學(xué)可以有效地解決這些問題,打破了傳統(tǒng)數(shù)學(xué)的界限,使得我們可以更好地處理不確定性和模糊性。通過學(xué)習(xí)模糊數(shù)學(xué)的基本理論和方法,我逐漸明白了它的核心思想和基本原理,對模糊集合、模糊數(shù)值和模糊邏輯等概念有了更加清晰的認識。這些知識不僅拓寬了我的數(shù)學(xué)視野,也為我今后的科研和實踐工作打下了堅實的基礎(chǔ)。
其次,模糊數(shù)學(xué)在解決實際問題中具有重要的應(yīng)用價值?,F(xiàn)實世界中的問題往往充滿了不確定性和模糊性,而傳統(tǒng)的數(shù)學(xué)方法在處理這些問題時顯得有些力不從心。而模糊數(shù)學(xué)則很好地彌補了這一缺陷。比如,在醫(yī)學(xué)診斷中,患者的癥狀和體征常常是模糊不清的,傳統(tǒng)的診斷方法往往難以準確判斷疾病的程度和性質(zhì)。而模糊數(shù)學(xué)可以通過建立模糊集合和運用模糊邏輯,對患者的癥狀進行模糊推理,從而得到更準確的診斷結(jié)果。類似地,在金融風險評估、交通流量控制和決策支持系統(tǒng)等領(lǐng)域,模糊數(shù)學(xué)也有著廣泛的應(yīng)用。通過學(xué)習(xí)模糊數(shù)學(xué),我明白了它在解決實際問題中的巨大潛力和優(yōu)勢。
此外,模糊數(shù)學(xué)在未來的應(yīng)用前景非常廣闊。隨著科學(xué)技術(shù)的不斷發(fā)展和社會的進步,人們對于處理模糊性問題的需求將越來越大。模糊數(shù)學(xué)作為一種能夠處理模糊性問題的有效工具,具有廣闊的應(yīng)用前景。在人工智能、機器學(xué)習(xí)和大數(shù)據(jù)分析等領(lǐng)域,模糊數(shù)學(xué)的應(yīng)用已經(jīng)取得了一定的進展,并且在不斷完善和拓展。尤其是在面對海量復(fù)雜數(shù)據(jù)和不確定性事件時,模糊數(shù)學(xué)的應(yīng)用將更加重要和必不可少。因此,學(xué)習(xí)模糊數(shù)學(xué)不僅能夠滿足我們對知識的渴求,也能夠為未來的發(fā)展提供更多可能性和機遇。
最后,學(xué)習(xí)模糊數(shù)學(xué)也需要注意一些問題。模糊數(shù)學(xué)作為一門新興學(xué)科,其理論體系和應(yīng)用方法還在不斷發(fā)展和完善中。因此,在學(xué)習(xí)過程中我們要保持謹慎和客觀的態(tài)度,不盲目迷信和過分依賴模糊數(shù)學(xué)。同時,模糊數(shù)學(xué)的學(xué)習(xí)需要較強的數(shù)學(xué)基礎(chǔ)和抽象思維能力,對于一些概念和原理的理解和掌握也需要時間和精力的投入。學(xué)習(xí)者應(yīng)該注重注意力和思維能力的培養(yǎng),通過不斷的練習(xí)和實踐提高自己的學(xué)習(xí)水平和能力。
綜上所述,通過學(xué)習(xí)模糊數(shù)學(xué),我對這門學(xué)科有了更深入的了解,并從中獲得了很多收獲。模糊數(shù)學(xué)在解決實際問題中具有重要的應(yīng)用價值,同時也有著廣闊的應(yīng)用前景。然而,學(xué)習(xí)模糊數(shù)學(xué)也需要注意一些問題??傊?,學(xué)習(xí)模糊數(shù)學(xué)是一個綜合能力提升的過程,通過學(xué)習(xí)模糊數(shù)學(xué),我不僅提升了自己的數(shù)學(xué)水平,也培養(yǎng)了自己的思考能力和創(chuàng)新意識。
對模糊數(shù)學(xué)的體會篇三
在我們的日常生活中,數(shù)學(xué)可能是最常被忽視或者被害怕的學(xué)科之一。然而,當我們開始認真地去探究數(shù)學(xué),我們將會發(fā)現(xiàn)數(shù)學(xué)正如同一道迷人的謎題,它背后隱藏著許多不為人知的奧秘。今天我將會分享我在玩數(shù)學(xué)的實踐中所得到的一些心得體會。
第二段:數(shù)學(xué)需求邏輯思維。
在數(shù)學(xué)中,邏輯思維非常重要,我們需要學(xué)習(xí)如何去運用邏輯來推理和解決問題,以及如何用正確的方式來建立數(shù)學(xué)模型。這些能力不僅對解決數(shù)學(xué)問題很有用,也對我們?nèi)粘I罱?jīng)驗的思考和決策非常有幫助。
第三段:數(shù)學(xué)需要細心和耐心。
數(shù)學(xué)是一門需要細心和耐心的學(xué)科,我們需要仔細地閱讀并理解題目,同時需要耐心地進行計算和核對。這些技能將會培養(yǎng)我們的觀察力和自控能力。
許多人對數(shù)學(xué)有著錯誤的觀念,他們認為數(shù)學(xué)沒有任何實際意義或者只適用于一小部分天才。事實上,數(shù)學(xué)在我們的生活中無處不在,我們使用數(shù)學(xué)解決各種各樣的問題。數(shù)學(xué)需要時間和努力去學(xué)習(xí)和掌握,任何人都可以通過不斷鍛煉來提高自己的數(shù)學(xué)水平。
第五段:數(shù)學(xué)讓人眼界開闊。
學(xué)習(xí)數(shù)學(xué)能夠讓我們拓展眼界和思考方式,幫助我們了解和掌握世界的基本規(guī)律。數(shù)學(xué)能夠促進我們的創(chuàng)造力和發(fā)散性思維,同時也可以提高我們的直覺和想象力。
總結(jié):
通過學(xué)習(xí)和玩數(shù)學(xué),我意識到數(shù)學(xué)并不可怕,只需要理解它的本質(zhì)和原理,才能夠真正地欣賞和享受它的美妙。數(shù)學(xué)在我們的生活中扮演著非常重要的角色,它能夠提高我們的邏輯思維、細心和耐心,同時也能夠拓展我們的思維方式和眼界。我相信,只要堅持不懈地學(xué)習(xí)和探索,任何人都能夠成為一名優(yōu)秀的數(shù)學(xué)家。
對模糊數(shù)學(xué)的體會篇四
近年來,隨著科學(xué)技術(shù)的發(fā)展和應(yīng)用領(lǐng)域的拓展,模糊數(shù)學(xué)作為一門新興的數(shù)學(xué)分支,引起了廣泛的關(guān)注。作為一名學(xué)習(xí)模糊數(shù)學(xué)的學(xué)生,我從中受益匪淺。在學(xué)習(xí)過程中,我深刻體會到了模糊數(shù)學(xué)的獨特魅力和實用價值。以下將結(jié)合個人學(xué)習(xí)心得,就學(xué)習(xí)模糊數(shù)學(xué)的歷程進行探討。
首先,我認識到模糊數(shù)學(xué)對于我們認知世界的幫助是無可替代的。傳統(tǒng)的數(shù)學(xué)方法總是局限于具體確切的數(shù)值,而在實際應(yīng)用中,很多問題往往是模糊的、模糊程度不同,難以用精確的數(shù)值來描述。而模糊數(shù)學(xué)正是基于這種模糊性的特點,提供了一種全新的思維方式。通過引入概念模糊度的概念,我們可以更好地描述和處理這些不確定性的問題。例如,在談判過程中,各方對于價格的接受程度往往并不一致,此時,可以借助模糊數(shù)學(xué)中的模糊集合理論,通過分析各方對于不同價格的模糊接受度,合理確定最終的價格。這種思維方式的靈活性和適用性,是其他數(shù)學(xué)方法無法比擬的。
其次,學(xué)習(xí)模糊數(shù)學(xué)有助于培養(yǎng)我們的模糊思維能力。所謂模糊思維,即一種能夠處理模糊問題的思考方式。模糊數(shù)學(xué)的學(xué)習(xí)過程中,我們需要面對復(fù)雜、抽象的模糊概念和理論,通過分析和推理,從模糊不清的信息中提取有用的知識和結(jié)論。這種思維方式要求我們具備較強的邏輯思維和抽象能力,培養(yǎng)了我們靈活應(yīng)對復(fù)雜問題的能力。同時,模糊數(shù)學(xué)的學(xué)習(xí)過程中,我們也積極參與到實際問題的解決中,通過實際操作來加深對于模糊概念的理解和運用,進一步提升了我們的模糊思維能力。
再次,學(xué)習(xí)模糊數(shù)學(xué)有助于我們更好地理解和應(yīng)用人工智能。在人工智能領(lǐng)域,模糊數(shù)學(xué)被廣泛應(yīng)用于模糊控制、模糊神經(jīng)網(wǎng)絡(luò)等方面。通過學(xué)習(xí)模糊數(shù)學(xué),我們可以更深入地理解這些人工智能算法的原理和優(yōu)勢。例如,在模糊控制中,傳統(tǒng)的控制方法往往需要精確的數(shù)學(xué)模型和參數(shù),而現(xiàn)實中的許多系統(tǒng)往往是模糊的,模糊控制方法則可以通過模糊推理和模糊規(guī)則來實現(xiàn)對這些系統(tǒng)的控制,更加適應(yīng)實際情況。通過學(xué)習(xí)模糊數(shù)學(xué),我們可以更好地理解和應(yīng)用這些人工智能算法,為現(xiàn)代科學(xué)技術(shù)的發(fā)展做出更多貢獻。
最后,學(xué)習(xí)模糊數(shù)學(xué)需要我們具備良好的數(shù)學(xué)基礎(chǔ),并且需要付出較大的努力。模糊數(shù)學(xué)作為一門新興的數(shù)學(xué)分支,其理論體系和研究方法還不夠成熟,因此在學(xué)習(xí)過程中,我們需要通過大量的閱讀和實踐,不斷豐富和拓展自己的知識面。同時,模糊數(shù)學(xué)的學(xué)習(xí)過程中,我們也需要具備良好的數(shù)學(xué)思維和分析能力,以便更好地理解和應(yīng)用其中的理論和方法。因此,學(xué)習(xí)模糊數(shù)學(xué)需要我們付出較大的努力,但這些努力必將會得到回報。
綜上所述,學(xué)習(xí)模糊數(shù)學(xué)是一項有意義的、挑戰(zhàn)性的任務(wù)。通過學(xué)習(xí)模糊數(shù)學(xué),我們能夠更好地認識世界、培養(yǎng)模糊思維能力、深入理解和應(yīng)用人工智能等。然而,學(xué)習(xí)模糊數(shù)學(xué)也需要我們具備良好的數(shù)學(xué)基礎(chǔ)和較大的努力,以便更好地理解和應(yīng)用其中的理論和方法。我相信,隨著模糊數(shù)學(xué)的發(fā)展,它將在更多領(lǐng)域得到應(yīng)用,并為我們提供更多解決問題的思路和方法。
對模糊數(shù)學(xué)的體會篇五
本次,我參加了興慶區(qū)舉辦的新課標教材培訓(xùn),培訓(xùn)內(nèi)容是我所執(zhí)教的二年級課程。主講人是劉秋霞老師,首先她帶領(lǐng)二小學(xué)生完成了一節(jié)20分鐘的模擬課堂。聽了這節(jié)課我最大的感觸就是:她將一堂枯燥的數(shù)學(xué)課美化了,并且從多個角度訓(xùn)練了學(xué)生的思維能力,使得學(xué)生在原有的基礎(chǔ)上有了更大的提高,對所學(xué)課程掌握的更加牢固。
本次課是一節(jié)乘除法的綜合練習(xí)課,按照一般的教學(xué)常規(guī)來說,教師會給學(xué)生呈現(xiàn)出很多關(guān)于乘除法的'應(yīng)用題去讓學(xué)生做,但劉老師打破了原有的常規(guī),設(shè)計了一堂很新穎的課。舉例來說,第一個環(huán)節(jié)是直接列式,然后再根據(jù)乘法算式寫出文字題,這一環(huán)節(jié)設(shè)計的很巧妙,例如:根據(jù)5×6寫出一道文字題。學(xué)生在這一環(huán)節(jié)表現(xiàn)的非常出色,在編寫5的6倍應(yīng)用題的這一環(huán)節(jié),學(xué)生更是發(fā)揮了自己的想象力,使得一堂是學(xué)課講得豐富多彩。
這節(jié)課給我的感覺是數(shù)學(xué)課并不是我想像的那么生硬,充分體現(xiàn)了新課標對學(xué)生的要求。整節(jié)課下來,學(xué)生的熱情絲毫沒有減退?;叵肫鹞业慕虒W(xué),我只是向?qū)W生傳遞本節(jié)課的知識要點,至于課外的知識也很少向?qū)W生講授。上課的內(nèi)容也比較單一,沒有很好地調(diào)動學(xué)生的積極性,在今后的教學(xué)中,我應(yīng)該好好的研讀教材,設(shè)計好課堂的教學(xué)內(nèi)容,從而達到很好地教學(xué)實效。
對模糊數(shù)學(xué)的體會篇六
我不知道人們?yōu)槭裁撮L久以來稱數(shù)學(xué)為“科學(xué)的女皇”,也許是女皇有著一種讓人無法親近的神秘感,但是她的面容又是如此的讓人們向往和陶醉。女皇陛下,揭開你神秘的面紗,讓我目睹你絕世的風姿,體會你無盡的風韻,感動你帶給我所有的感動吧!
仰望者,唯巨星也!數(shù)學(xué)的漫漫長河中,涌出過無數(shù)的璀璨巨星,從畢達哥拉斯、歐幾里德得、祖沖之到牛頓、歐拉、高斯、龐加萊、希爾伯特……當他們一個個從我的心底流過時,有一種興奮,更有一種感動,他們才是時代真正的弄潮兒。
牛頓和萊布尼茲聯(lián)手創(chuàng)造了微積分(盡管他們之間有這樣那樣的矛盾),開創(chuàng)了數(shù)學(xué)的分析時代,微積分也被譽為“人類精神的最高勝利”(恩格斯語);歷史就是這樣被書寫,歷史就是這樣被引領(lǐng),歷史就是這樣被創(chuàng)造。
一個多世紀前的1900年,德國數(shù)學(xué)家希爾伯特正在做一個題為《數(shù)學(xué)問題》的演講,提出了23個需要被重視和解決的數(shù)學(xué)問題。正是這23個數(shù)學(xué)問題,引領(lǐng)了整個二十世紀數(shù)學(xué)發(fā)展的主流。
1994年,當二十世紀即將落幕的時候,年輕的英國數(shù)學(xué)家維爾斯創(chuàng)造了一個新的歷史——費馬大定理獲證,從而結(jié)束了這場長達300年之久的競逐,給二十世紀的數(shù)學(xué)演奏了一首美妙的終曲。
就這樣一次次的被感動,不僅為成功者喜悅感動,也為不被承認的成功者默默感動。
天才往往是孤獨的,先知者注定得不到世人的理解。
許多天才的數(shù)學(xué)家,英年早逝,終生難以得志。
橢圓函數(shù)論的創(chuàng)始人阿貝爾一生貧病交加,大學(xué)畢業(yè)長期找不到工作,在他僅僅27年的短暫生命中,卻留下許多創(chuàng)造性的貢獻。但當人們認識到他的才華,柏林大學(xué)終身教授的聘書下達時,他已經(jīng)離開人世兩年了。
同維爾斯一樣,伽羅瓦同樣攻克了歷經(jīng)三百年的難題——方程根式解的存在問題;但不同的是,維爾斯成為數(shù)學(xué)的終身成就獎——沃爾夫獎最年輕的得主,那年他44歲,而伽羅瓦死時不到21歲,他的研究只能藏身于廢紙簍中。
集合論和無限概念的創(chuàng)始人康托爾,由于他的理論不被世人理解而廣受排擠,最后郁郁而終。
……。
在那漫漫長河中,璀璨巨星令我欣然神往,驚濤駭浪更令我心潮澎湃。三次數(shù)學(xué)危機掀起的巨浪,真正體現(xiàn)了數(shù)學(xué)長河般雄壯的氣勢,海洋般偉岸的身姿。
每一次危機巨浪之后,納百川,聚眾流,數(shù)學(xué)以更加廣闊的胸懷滾滾向前,盡管這其中有很多悲壯的成分。
第一次數(shù)學(xué)危機,無理數(shù)成為數(shù)學(xué)大家庭中的一員,推理和證明戰(zhàn)勝了直覺和經(jīng)驗,一片廣闊的天地出現(xiàn)在眼前。但是最早發(fā)現(xiàn)根號2的希帕蘇斯被拋進了大海。
第二次數(shù)學(xué)危機,數(shù)學(xué)分析被建立在實數(shù)理論的嚴格基礎(chǔ)之上,數(shù)學(xué)分析才真正成為數(shù)學(xué)發(fā)展的主流。但牛頓曾在英國大主教貝克萊的攻擊前,顯得蒼白無力。
第三次數(shù)學(xué)危機,“羅素悖論”使數(shù)學(xué)的確定性第一次受到了挑戰(zhàn),徹底動搖了整個數(shù)學(xué)的基礎(chǔ),也給了數(shù)學(xué)更為廣闊的發(fā)展空間。但歌德爾的不完全性定理卻使希爾伯特雄心建立完善數(shù)學(xué)形式化體系、解決數(shù)學(xué)基礎(chǔ)的工作完全破滅。
對模糊數(shù)學(xué)的體會篇七
數(shù)學(xué)模糊是一門獨特的學(xué)科,它的特點是不同于其他學(xué)科的明確性和確定性,而是相對模糊與不確定的。在學(xué)習(xí)數(shù)學(xué)模糊的過程中,我深刻體會到了數(shù)學(xué)模糊所蘊含的思維方式和方法論,以及它在實際生活中的應(yīng)用。以下是我對數(shù)學(xué)模糊的心得體會。
首先,數(shù)學(xué)模糊給我?guī)淼牡谝粋€體會是它所寓意的思維方式。數(shù)學(xué)模糊的思維方式與傳統(tǒng)的數(shù)學(xué)思維方式有所不同,它更注重于模糊性、不確定性和變化性。在處理數(shù)學(xué)模糊問題時,我們不需求得一個精確的答案,而是需要給出一個模糊的、可能的答案。這種思維方式使我們能夠更好地適應(yīng)復(fù)雜多變的現(xiàn)實世界,并且能夠容忍各種不確定性帶來的模糊性。
其次,數(shù)學(xué)模糊給我?guī)淼牡诙€體會是它所蘊含的方法論。數(shù)學(xué)模糊通過模糊集合論、模糊關(guān)系、模糊邏輯等方法,為我們處理模糊問題提供了一種有效的工具和思路。模糊集合論的應(yīng)用使我們能夠?qū)Σ淮_定和模糊的概念進行精確的描述和處理,而模糊關(guān)系和模糊邏輯的運用則使我們能夠處理帶有模糊信息和模糊約束的問題。這些方法論的應(yīng)用使得我們能夠更好地處理模糊不確定的問題,并且能夠快速找到最優(yōu)解。
第三,數(shù)學(xué)模糊給我?guī)淼牡谌齻€體會是它在實際生活中的應(yīng)用。數(shù)學(xué)模糊被廣泛應(yīng)用于經(jīng)濟管理、工程控制、醫(yī)學(xué)診斷、人工智能等領(lǐng)域。在經(jīng)濟管理中,數(shù)學(xué)模糊被用來處理各種不確定因素對經(jīng)濟決策的影響;在工程控制中,數(shù)學(xué)模糊被用來處理復(fù)雜的系統(tǒng)控制問題;在醫(yī)學(xué)診斷中,數(shù)學(xué)模糊被用來處理診斷過程中的模糊因素;在人工智能領(lǐng)域,數(shù)學(xué)模糊被用來處理模糊語言和推理問題。這些應(yīng)用使我們能夠更好地應(yīng)對現(xiàn)實生活中的不確定性和復(fù)雜性,提高決策和問題解決的效率和準確性。
第四,數(shù)學(xué)模糊給我?guī)淼牡谒膫€體會是它所蘊含的批判性思維。數(shù)學(xué)模糊的學(xué)習(xí)過程強調(diào)觀察、分析和判斷的能力。在處理數(shù)學(xué)模糊問題時,我們需要對問題進行全面的觀察和分析,并且要善于進行判斷和抉擇。這種批判性思維能力的培養(yǎng)不僅對數(shù)學(xué)模糊學(xué)科的學(xué)習(xí)有益,對我們自身的思維能力的提升也有積極的影響。
最后,數(shù)學(xué)模糊給我?guī)淼淖詈笠粋€體會是它所蘊含的新的教育價值觀。數(shù)學(xué)模糊作為一門新興的學(xué)科,它所強調(diào)的是培養(yǎng)學(xué)生的創(chuàng)造性思維和解決實際問題的能力。在傳統(tǒng)教育中,我們注重學(xué)生的記憶和機械化運算能力,而忽視了學(xué)生的思維能力和創(chuàng)造力的培養(yǎng)。而數(shù)學(xué)模糊作為一門關(guān)注學(xué)生思維能力和實際應(yīng)用的學(xué)科,強調(diào)培養(yǎng)學(xué)生的創(chuàng)造性思維和解決實際問題的能力。這種教育價值觀的轉(zhuǎn)變?yōu)槲覀兲峁┝艘环N新的教育方式和方向。
總之,通過學(xué)習(xí)數(shù)學(xué)模糊,我深刻體會到了數(shù)學(xué)模糊所蘊含的思維方式和方法論,以及它在實際生活中的應(yīng)用。數(shù)學(xué)模糊不僅是一門學(xué)科,更是一種思維方法和問題解決方式。應(yīng)用數(shù)學(xué)模糊的思維方式和方法論,我們能夠更好地應(yīng)對現(xiàn)實生活中的不確定性和復(fù)雜性,并且能夠提高決策和問題解決的效率和準確性。
對模糊數(shù)學(xué)的體會篇八
模糊數(shù)學(xué)是由扎德群(L.A.Zadeh)于1965年創(chuàng)立的一種數(shù)學(xué)理論,該理論主要用于處理那些難以量化的問題。在我學(xué)習(xí)模糊數(shù)學(xué)的過程中,我有幸領(lǐng)略到了這一理論在解決實際問題上的獨特魅力。通過學(xué)習(xí)模糊數(shù)學(xué),我不僅對于這一理論的基本概念有了更深入的了解,還體會到了它對于人們?nèi)粘I钪械臎Q策和問題解決具有重要的指導(dǎo)意義。
首先,學(xué)習(xí)模糊數(shù)學(xué)使我重新認識到了現(xiàn)實世界的復(fù)雜性。傳統(tǒng)的數(shù)學(xué)方法往往只適用于那些可以精確量化的問題,而對于那些存在較大不確定性的問題,傳統(tǒng)的數(shù)學(xué)方法就顯得力不從心。模糊數(shù)學(xué)則提供了一種處理這類問題的數(shù)學(xué)工具。在模糊數(shù)學(xué)的框架下,我可以將一個事物或概念的模糊性進行量化,從而能夠更好地描述和解決實際問題。這讓我深刻意識到,現(xiàn)實世界的問題并不像我們想象的那樣簡單,而是充滿了各種不確定性和相互影響。
其次,學(xué)習(xí)模糊數(shù)學(xué)讓我明白了在決策過程中,不一定要追求絕對的最優(yōu)解。在傳統(tǒng)的數(shù)學(xué)模型中,我們通常追求一個唯一的最優(yōu)解,即使這個解在實際中可能并不可行或造成較大的風險。而在模糊數(shù)學(xué)的框架下,我們可以接受一定的模糊性和不確定性,通過模糊數(shù)的運算得到一系列可能的解,再根據(jù)具體的條件和考慮進行評估和選擇。這大大提高了我們在復(fù)雜環(huán)境下的決策能力和靈活性,也減少了決策的盲目性和風險性。
再次,學(xué)習(xí)模糊數(shù)學(xué)讓我意識到了信息的不完備性在決策過程中的重要性。在現(xiàn)實世界中,我們常常面臨到的是信息不完備的情況,即我們無法獲取到所有的相關(guān)信息,也無法確切地知道信息的準確性和可靠性。在傳統(tǒng)的數(shù)學(xué)模型中,這往往是無法解決的問題。而在模糊數(shù)學(xué)中,我們可以通過給出不同情況下的不同可能性進行描述和分析,從而更好地處理信息不完備性帶來的問題。這讓我意識到,不完備的信息并不意味著決策的無法進行,而是需要我們靈活地運用模糊數(shù)學(xué)的方法進行選擇和判斷。
最后,學(xué)習(xí)模糊數(shù)學(xué)讓我深刻認識到了模糊數(shù)學(xué)的應(yīng)用前景和實際意義。模糊數(shù)學(xué)的理論和方法迅速發(fā)展,并被廣泛應(yīng)用于各個領(lǐng)域,如控制與決策、人工智能、金融和經(jīng)濟等。通過學(xué)習(xí)模糊數(shù)學(xué),我深刻體會到了它在實際問題中解決問題的靈活性和有效性。在未來的工作和學(xué)習(xí)中,我將繼續(xù)鉆研模糊數(shù)學(xué)的理論與方法,不斷探索其在實際中的應(yīng)用,并努力將其運用到解決實際問題中,為社會的發(fā)展和進步做出更多的貢獻。
總之,通過學(xué)習(xí)模糊數(shù)學(xué),我重新認識到了現(xiàn)實世界的復(fù)雜性,明白了在決策過程中不一定要追求絕對的最優(yōu)解,意識到了信息的不完備性在決策中的重要性,并深刻認識到了模糊數(shù)學(xué)的應(yīng)用前景和實際意義。我相信,在未來的學(xué)習(xí)和工作中,模糊數(shù)學(xué)將成為我解決實際問題的有力工具,為我?guī)砀嗟臋C遇和發(fā)展。
對模糊數(shù)學(xué)的體會篇九
數(shù)學(xué)是一門精確的科學(xué),它所追求的是邏輯的嚴密性和推理能力的培養(yǎng)。然而,眾所周知,數(shù)學(xué)對于很多人來說并不容易掌握。當我們接觸到一些抽象的數(shù)學(xué)概念和復(fù)雜的數(shù)學(xué)問題時,往往感到迷茫和困惑。然而,通過學(xué)習(xí)數(shù)學(xué)模糊,我逐漸意識到,數(shù)學(xué)的迷糊與我們的思維方式以及對問題的理解方式相關(guān)。以下是我在學(xué)習(xí)數(shù)學(xué)模糊過程中的一些心得體會。
第一,我們需要改變對于“正確答案”的刻板印象。在學(xué)習(xí)數(shù)學(xué)的過程中,我們經(jīng)常習(xí)慣于尋找一個唯一的正確答案。然而,數(shù)學(xué)模糊告訴我們,數(shù)學(xué)問題是可以有多個解答的。例如,在一道求解方程的問題中,原本我們只關(guān)注解的唯一性,而數(shù)學(xué)模糊則考慮到了方程是否有無窮多解的可能。這樣一來,我們就需要放下對于“正確答案”的執(zhí)著,更加注重問題本身,從不同的角度去思考。只有這樣,我們才能夠在數(shù)學(xué)上更加靈活地思考和解決問題。
第二,數(shù)學(xué)模糊告訴我們,數(shù)學(xué)是與現(xiàn)實世界緊密相關(guān)的。傳統(tǒng)的數(shù)學(xué)教育往往將數(shù)學(xué)與實際生活割裂開來,給人一種數(shù)學(xué)只是一種抽象的概念和符號的印象。然而,通過學(xué)習(xí)數(shù)學(xué)模糊,我意識到數(shù)學(xué)與我們?nèi)粘I钕⑾⑾嚓P(guān)。數(shù)學(xué)模糊強調(diào)現(xiàn)象的多樣性和復(fù)雜性,提醒我們在解決實際問題時要考慮的因素非常多。例如,在處理經(jīng)濟學(xué)中的決策問題時,我們需要考慮到多種因素,例如成本、效益、風險等等。只有將數(shù)學(xué)與現(xiàn)實結(jié)合起來,我們才能夠得到更加準確和全面的答案。
第三,數(shù)學(xué)模糊讓我們更加注重思維的靈活性和創(chuàng)造性。傳統(tǒng)的數(shù)學(xué)教育強調(diào)的是標準化和規(guī)范化的解法,要求學(xué)生按部就班地學(xué)習(xí)和應(yīng)用數(shù)學(xué)規(guī)則。然而,數(shù)學(xué)模糊推崇的是多樣化和豐富性的思維方式。通過數(shù)學(xué)模糊的學(xué)習(xí),我們可以發(fā)現(xiàn)在解決數(shù)學(xué)問題時,有各種各樣的方法和思路可以選擇。不同的角度和思維方式都可能帶來不同的解決方案,這讓我們的思維更加靈活和開放。同時,數(shù)學(xué)模糊也鼓勵我們嘗試一些非傳統(tǒng)的方法和解法,令我們的思維更加富有創(chuàng)造性。
第四,數(shù)學(xué)模糊強調(diào)數(shù)學(xué)思維的溝通能力。學(xué)好數(shù)學(xué)不僅僅是事關(guān)個人的學(xué)業(yè)成績,更是為了培養(yǎng)良好的溝通能力。數(shù)學(xué)模糊告訴我們,數(shù)學(xué)不是一種獨自進行的學(xué)科,而是需要與他人交流和合作的過程。在解決問題的過程中,我們需要與他人討論和交流,共同探索解決方案。這不僅可以提高我們的數(shù)學(xué)思考能力,還能夠培養(yǎng)團隊合作和溝通能力。因此,數(shù)學(xué)模糊的學(xué)習(xí)讓我更加深刻地認識到數(shù)學(xué)作為一門學(xué)科的交流和合作的重要性。
總之,通過學(xué)習(xí)數(shù)學(xué)模糊,我深刻認識到數(shù)學(xué)的魅力和實際應(yīng)用。數(shù)學(xué)不僅僅是一門理論學(xué)科,更是需要與現(xiàn)實生活和思維方式緊密結(jié)合的一門學(xué)科。數(shù)學(xué)模糊讓我們更加注重問題本身,放下對于正確答案的執(zhí)著,靈活和多樣化地思考和解決問題。同時,數(shù)學(xué)模糊也增強了我們的溝通能力和創(chuàng)造力。通過數(shù)學(xué)模糊的學(xué)習(xí),我深刻體會到數(shù)學(xué)對我們思維方式和生活習(xí)慣的影響,也增強了我對于數(shù)學(xué)的興趣和熱愛。
對模糊數(shù)學(xué)的體會篇十
數(shù)學(xué)是一門偉大而又充滿魅力的學(xué)科,它在人們生活中扮演著非常重要的角色。在我接觸數(shù)學(xué)的過程中,不僅學(xué)習(xí)了各種算法和公式,更體驗到了數(shù)學(xué)的思維樂趣。這篇文章將圍繞數(shù)學(xué)的體會和心得展開,分享我在數(shù)學(xué)領(lǐng)域所學(xué)到的東西,以及對數(shù)學(xué)的深刻理解和認識。
第二段:數(shù)學(xué)思維的重要性。
數(shù)學(xué)思維是一種能力,是解決問題和創(chuàng)新的關(guān)鍵。在學(xué)習(xí)數(shù)學(xué)時,我們要學(xué)會思考,運用邏輯思維和數(shù)學(xué)知識去解決復(fù)雜的問題。數(shù)學(xué)思維不僅僅是為了解決數(shù)學(xué)題目,還可以在日常生活中幫助我們更好地接受和分析事物。通過數(shù)學(xué)思維,我們可以更好地理解各種自然現(xiàn)象和社會現(xiàn)象,更好地解決實際問題。在數(shù)學(xué)思維的啟迪下,我們可以發(fā)現(xiàn)更多的規(guī)律和關(guān)聯(lián),從而更加深刻地理解世界。
第三段:數(shù)學(xué)中的樂趣。
學(xué)習(xí)數(shù)學(xué)不僅僅是為了應(yīng)付考試,更體現(xiàn)在其中的樂趣。數(shù)學(xué)是一門極富挑戰(zhàn)性的學(xué)科,要求我們不斷地思考和探索。在解題的過程中,我們往往會體驗到解開難題的創(chuàng)意和成就感。同時,數(shù)學(xué)也是一門美學(xué),其內(nèi)在的美和完美性質(zhì)令人著迷。在探索數(shù)學(xué)的世界中,我們會感受到無限的美好與神秘。通過學(xué)習(xí)數(shù)學(xué),我們可以找到自己的興趣愛好,體驗到數(shù)學(xué)給我們帶來的無盡快樂。
第四段:數(shù)學(xué)思維對其他學(xué)科的影響。
數(shù)學(xué)思維不僅對數(shù)學(xué)、科學(xué)等學(xué)科具有重要意義,還對其他學(xué)科具有深遠影響。數(shù)學(xué)思維需要一種創(chuàng)造力和想象力,能使我們從事創(chuàng)新性工作。在學(xué)習(xí)其他學(xué)科時,我們可以創(chuàng)造性地運用數(shù)學(xué)思維解決一些復(fù)雜問題。數(shù)學(xué)思維還有助于加強我們的邏輯思維和分析能力,并提高我們的機遇意識。在提升我們的學(xué)習(xí)技巧方面,數(shù)學(xué)思維為我們打開了一扇新的思維窗口,為我們的未來發(fā)展提供了不竭的動力。
第五段:結(jié)論。
總之,數(shù)學(xué)作為一門重要而又有趣的學(xué)科,不僅在考試中具有重要意義,更是為我們?nèi)粘I詈臀磥淼穆殬I(yè)發(fā)展提供了支持。學(xué)習(xí)數(shù)學(xué)需要我們不斷思考,并通過對數(shù)學(xué)的思維樂趣有所體驗。通過數(shù)學(xué)學(xué)習(xí)和思考,我們可以得到更多的認識和理解,提高我們的思維能力和創(chuàng)新能力,為我們未來的發(fā)展奠定堅實而良好的基礎(chǔ)。
對模糊數(shù)學(xué)的體會篇十一
課堂教學(xué)有效性問題已經(jīng)成為課堂教學(xué)改革的熱點問題。一年來,數(shù)學(xué)課題組緊緊圍繞“先學(xué)后教”—以學(xué)定教的理念開展教學(xué)研究,把“如何優(yōu)化數(shù)學(xué)的教學(xué)過程”作為數(shù)學(xué)組的著力研究的課題,經(jīng)過一個學(xué)期的理論學(xué)習(xí)和教學(xué)實踐,取得了階段性成果,下面談?wù)勚饕龇ㄅc收獲:
為使課題研究更加有針對性和實效性,我們數(shù)學(xué)課題組成員利用四周的時間研讀余文森教授編著的《課堂教學(xué)》一書,對相關(guān)理論進行學(xué)習(xí),消化。形成自己的理論體系,并進行交流研討,形成共識。
本學(xué)期,數(shù)學(xué)組成員共有五位老師舉行實驗課觀摩研討:魏哲老師的七年級數(shù)學(xué)《一元一次方程的解法綜合》、王淑煥老師的七年級數(shù)學(xué)《一元一次方程解法初步》、李美淑老師九年級的《圓的認識》、王云老師的九年級數(shù)學(xué)《垂徑定理》、楊崢嶸老師的八年級數(shù)學(xué)《實數(shù)》。課題組成員根據(jù)各自教材的特點,確定實驗單元為單位進行觀察式教學(xué)研討,從創(chuàng)設(shè)情景導(dǎo)入,優(yōu)化練習(xí)設(shè)計等入手,優(yōu)化教學(xué)過程,提高教學(xué)效益。
如李美淑老師的《圓的認識》基本上體現(xiàn)了先學(xué)后教,以學(xué)定教的理念,充分展現(xiàn)教學(xué)自主、合作、探究的學(xué)習(xí)過程。教師的教建立在學(xué)生自學(xué)的基礎(chǔ)上,針對性強,教學(xué)效果好。
王淑煥老師的七年級數(shù)學(xué)《一元一次方程解法初步》,從已有的等式的性質(zhì)入手,激發(fā)學(xué)生的學(xué)習(xí)興趣,整個教學(xué)過程以性質(zhì)貫穿,練習(xí)形式多樣又緊扣教學(xué)重點,學(xué)生參與積極性高,教學(xué)效果好。
楊崢嶸老師的八年級數(shù)學(xué)《實數(shù)》,以學(xué)生喜愛的拼圖導(dǎo)入,精心設(shè)計生活中與有關(guān)的實例,以比賽等形式的練習(xí)鞏固新知,緊扣教學(xué)重點,針對性、實效性強。
魏哲老師的七年級數(shù)學(xué)《一元一次方程的解法綜合》,在學(xué)生通過動手計算,自主探索出一元一次方程解法后,能針對這些方法進行分類、總結(jié)。
王云老師的九年級數(shù)學(xué)《垂徑定理》。采取回憶的形式導(dǎo)入,在通過設(shè)置問題情景,激發(fā)學(xué)生的求知欲,整個教學(xué)設(shè)計頗有意境,針對性強,充分體現(xiàn)學(xué)生自主探究的教學(xué)理念。
經(jīng)過全組同仁不懈的理論學(xué)習(xí),結(jié)合教學(xué)實踐及聽評課研討活動,數(shù)學(xué)組成員根據(jù)余文森教授提出的教學(xué)理念對數(shù)學(xué)的教學(xué)環(huán)節(jié)的設(shè)計精心揣摩、大膽實踐,探索,深入反思,不斷完善。
為提高課題組成員的理論水平和自身的業(yè)務(wù)素質(zhì),20xx年數(shù)學(xué)組全組多次外出觀摩學(xué)習(xí),數(shù)學(xué)組一位成員到山東杜郎口中學(xué)直接參與學(xué)習(xí)其先進的教育理念,全組教師更是多次到四中、七中聽課研討、參加評課活動,提高自身的說課、評課及理論聯(lián)系實踐的能力。課題成員的教學(xué)案例設(shè)計和教學(xué)隨筆、反思多篇以備研討時交流、探討。
對模糊數(shù)學(xué)的體會篇十二
數(shù)學(xué)思想方法是數(shù)學(xué)知識的精髓。下面是本站小編為大家整理的學(xué)習(xí)數(shù)學(xué)的
心得體會
,供你參考!我參加了中小學(xué)教師遠程繼續(xù)教育培訓(xùn),它為我們提供了一個學(xué)習(xí)先進教學(xué)方法的平臺,通過學(xué)習(xí),在思想上受到很大的震動。下面是我通過培訓(xùn)獲得的兩點體會:
一、教師要終生學(xué)習(xí):
要成為一名好教師,必須樹立終身學(xué)習(xí)觀念。通過學(xué)習(xí)讓我認識到一個成功的教育者,首先是一個善于自我更新知識的學(xué)習(xí)者。打破傳統(tǒng)的、陳舊的教育理念、理論和教學(xué)的方式、方法,建立起一整套全新的、科學(xué)的、先進的、合乎時代潮流的教育思想體系,必須與時俱進。作為教師,實踐經(jīng)驗是財富,同時也可能是羈絆。缺乏知識的教師,僅靠那點舊有的教學(xué)經(jīng)驗,自然會導(dǎo)致各種能力的下降甚至是缺失,這時舊有的教學(xué)經(jīng)驗就成了阻礙教師教學(xué)能力的發(fā)展和提高的障礙。在充分尊重教育者的基礎(chǔ)上,強調(diào)打破教育霸權(quán),用全新的、科學(xué)的、與時代相吻合的教育思想、理念、方式、方法來武裝教育者的頭腦,使之打破其堅冰一樣的由陳舊的知識和經(jīng)驗累積起來的教育思想和理念,那么,在此基礎(chǔ)上建立起來的新的知識結(jié)構(gòu)和教學(xué)理念必然充滿生機和活力。
二、教師應(yīng)樹立新課程意識:
通過學(xué)習(xí),我知道教師的課程觀不能停留在“課程即教材”這一層面上,課程也是師生共同構(gòu)建學(xué)習(xí)經(jīng)驗的過程。課程不再是由專家編制、教師執(zhí)行的,物化的、靜止的、僵化的文本形態(tài),課程也是師生在教學(xué)中共同創(chuàng)制的、鮮活的、過程性的、發(fā)展著的活動形態(tài)。課程不是一種結(jié)果,而是一種過程,更是一種意識。正如著名課程專家斯騰豪斯所說,課程本質(zhì)上是一種藝術(shù),藝術(shù)的本質(zhì)是一種探究。這就要求教師在教學(xué)過程中具有探究、創(chuàng)新的精神。
這次的培訓(xùn)學(xué)習(xí),讓我有了緊迫感。要成為一名好教師,我要學(xué)習(xí)的、要做的還有很多很多。教育作為一門藝術(shù),而我們怎樣成為一名藝術(shù)家,這就需要我們必須提高我們的教育管理水平和我們的教育科研能力,提高自身修養(yǎng)。雖然我從事教育教學(xué)工作多年,有了一些進步,但這個培訓(xùn)讓我進一步豐富自已的專業(yè)知識,提高理論水平,使自己取得更大的進步??傊ㄟ^這次培訓(xùn)的學(xué)習(xí)收獲很大,同時我也努力將這次的學(xué)習(xí)收獲盡快地運用到我的工作實踐中,為教育事業(yè)貢獻自己的一份力量。
有幸參加20xx年省培計劃---中小學(xué)教師遠程培訓(xùn)的學(xué)習(xí),感到十分高興。經(jīng)過兩個月的學(xué)習(xí),本人從思想、業(yè)務(wù)等方面得到很大提升,我把學(xué)習(xí)的感受,總結(jié)如下。
1·通過學(xué)習(xí)和交流更加堅定了熱愛教育事業(yè)的信念,深入的認識了教育事業(yè)的意義和教師工作的重要性,今后一定會以此為動力更加努力工作,全心全意投入事業(yè)和工作之中,為我國的教育事業(yè)做出更大的新的貢獻。
2·觀念先進了。通過學(xué)習(xí)交流我的教育觀念發(fā)生了積極的變化。發(fā)現(xiàn)了新形勢、新發(fā)展,自己一定要努力學(xué)習(xí),積極進取,更新觀念,促進工作。
3·業(yè)務(wù)水平得到提高。通過學(xué)習(xí)線上視頻專家講座,教師之間網(wǎng)上討論交流,學(xué)習(xí)了一些新知識,自己在網(wǎng)上查閱大量資料,閱讀和學(xué)習(xí)了教師同志們的一些作品。這樣就學(xué)習(xí)了新知,充實了自己,提升了業(yè)務(wù)水平。
4·通過利用網(wǎng)絡(luò)平臺的學(xué)習(xí),體會到了我們的工作條件更加優(yōu)越了,體驗了高科技成果對我們教育事業(yè)的作用和力量,這樣就激勵了我的工作。
5·在左璐玲老師的直接支持下,在參訓(xùn)同志的幫助和鼓勵下,我寫出了一點工作小結(jié)和體會,得到了同志們的關(guān)注。在此一并表示感謝!
有效性是課堂教學(xué)的生命。一節(jié)課,使師生的生命有了怎樣的變化;收獲了那些知識與思考;獲得了怎樣的身心體驗,是考量課堂教學(xué)有效性的三個重要指標。客觀地說,師生從走進課堂到走出課堂,總要發(fā)生一些變化,收獲一些東西,好像每節(jié)課都是有效的。但是課堂的有效程度是很不一樣的,有的課堂能對師生產(chǎn)生終生的影響;有的課堂只給學(xué)生留下一些機械的記憶,日積月累的差異就導(dǎo)致人的素質(zhì)的差異,人的生活狀態(tài)的差異。因此,每一節(jié)課的效果都不可忽視。
任何一個負責任的教師都想提高課堂教學(xué)的有效性,有關(guān)這方面的文章也有很多,從我的經(jīng)歷和體會來說,我認為最重要的有以下三點。
一、教師要有吸引學(xué)生的本事
首先要放正心態(tài)。當我們拿著
教案
走進課堂時,如果心里想著:我講課來了,學(xué)生必須坐好認真聽我講課!那么這節(jié)課一定不會太精彩!如果你微笑著走進課堂時心里想:我和大家一起學(xué)習(xí)來了,我一定讓我們每個人學(xué)得愉快。這節(jié)課就成功了一半。人坐在飛機上和坐在自行車上想問題角度是不一樣的,老師站在講臺上和走進學(xué)生中間想問題也是不一樣的。因此走進課堂時,就要把自己的角色擺正,當成學(xué)生學(xué)習(xí)的合作者、促進者、引導(dǎo)者,忘記師道尊嚴,全身心投入,營造一個溫馨和諧的學(xué)習(xí)氛圍。其次,老師要學(xué)會美化目標。任何一節(jié)課都有預(yù)定的目標,但是如何讓目標具有吸引力,就不是每個老師能做到的了。上課前,老師要善于用最美好的語言描述達到教學(xué)目標后的美景,吸引每個孩子向著目標前進。
第三,要關(guān)注學(xué)習(xí)過程中的身心體驗。教學(xué)是師生的雙邊活動,在這個過程中,師生是快樂還是痛苦,是主動還是被動,是評價一節(jié)課有效性的重要指標。比如去看大海,如果我們只管看到大海就行了,旅途中吃不好,睡不好,難受極了,等欣賞到大海的美景時,一定會大打折扣。對于師生,學(xué)習(xí)過程是生命的常態(tài),是我們生活的重要內(nèi)容,讓學(xué)習(xí)過程充滿快樂是提高我們生存質(zhì)量的重要問題,不可忽視。
第四、精心準備每一節(jié)課。我們都有這樣的感覺:備好課和沒有備好課走進課堂時,心情是不一樣的。蘇霍姆林斯基也說過:要用一生來準備一節(jié)課。真的是這樣,課堂的高效率來自于精心的準備!課堂的魅力也來自于精心的準備!能夠吸引學(xué)生是提高課堂效率的保證。
二、努力拓展課堂的寬度
一節(jié)課的時間是有限的,要達到的目標是一定的,如果在達到目標的過程中,多了解一些相關(guān)的知識,增加課堂的寬度,課堂教學(xué)的有效性就會提高。
達到這樣的境界,需要教師有深厚的知識儲備,需要教師留心身邊的一切事物,更需要不停的思考,精心的設(shè)計。課堂的寬度是提高課堂有效性的決定因素。
三、挖掘課堂的深度
決定一個容器大小的是它的容積,容積的大小跟它的深度成正比。一節(jié)課的有效性,也與知識的深度成正比。我們的課本知識都是很淺顯的,一般智力的學(xué)生自己看幾遍就能明白,如果老師像傳聲筒一樣,只傳授課本知識,很難滿足學(xué)生的求知欲望。適當?shù)耐诰蛑R的深度,是提高教學(xué)效率有效途徑。
其實,每節(jié)課都應(yīng)該在課本知識的基礎(chǔ)上有所加深,增加課堂的容量,以提高課堂教學(xué)效率。
四、延伸課堂的長度
學(xué)生走出課堂時,如果覺得課堂上的東西都學(xué)會了,那這節(jié)課決不是完美的課;如果學(xué)生還愁眉不展,在思索還沒有解決的問題,這樣的課堂絕對是精彩的。課堂上高懸的永遠應(yīng)該是問號,而不是句號。所以,下課的時候,一定要讓學(xué)生帶著思考走出教室,延伸課堂的長度,提高課堂教學(xué)的有效性。
跟課堂教學(xué)有效性相關(guān)的因素太多了,只要我們勤思考,肯探索,把自己當作學(xué)生探求知識的同行者,一定會找到更好的辦法。美國教育家帕爾墨說:“教學(xué)就是要開創(chuàng)一個實踐真理的共同體空間,在這個共同體中,我們與志同道合的朋友一起追求真理。”讓我們共同努力,不斷探索提高課堂教學(xué)效率的有效途徑吧。
對模糊數(shù)學(xué)的體會篇十三
玩數(shù)學(xué),或許是很多人小時候最不想碰的活動之一,更別說成為一項愛好或?qū)I(yè)了。不過,隨著年齡的增長,我們逐漸意識到了數(shù)學(xué)在日常生活中的重要性,以及它所具有的美妙和神奇。而當我們真正開始嘗試去玩、去探索數(shù)學(xué)時,或許會有意想不到的心得和體會。
第二段:數(shù)學(xué)的美妙和神奇。
數(shù)學(xué)并不僅僅是一種工具或考試科目,它更是一種抽象美學(xué)體驗和思想探究。比如,在數(shù)學(xué)中,我們可以發(fā)現(xiàn)一些看似古怪但卻實用的公式和定理,比如歐拉公式和貝爾數(shù),它們都有著數(shù)學(xué)家們所發(fā)掘的神秘和美妙。而在數(shù)學(xué)的探索過程中,我們也常常會遇到一些難以想象的問題或悖論,比如著名的“維達定理”和“巴赫-塔爾木特猜想”,它們展示了數(shù)學(xué)的無盡深度和奧秘。這些美妙和神奇的數(shù)學(xué)現(xiàn)象,都啟示著我們?nèi)ネ鏀?shù)學(xué)。
第三段:數(shù)學(xué)的趣味和挑戰(zhàn)。
除了美妙和神奇,數(shù)學(xué)還有另一個吸引人的方面:趣味和挑戰(zhàn)。數(shù)學(xué)游戲可以是一種有趣的活動,比如拼圖、數(shù)獨、推理游戲等,它們不僅可以鍛煉我們的思維能力和空間感知能力,還可以帶來樂趣和滿足感。而對于更有挑戰(zhàn)性的數(shù)學(xué)問題,比如數(shù)學(xué)競賽題目和研究性問題,它們常常需要我們動用多種思考方法和技巧,去攻克難關(guān)。這種挑戰(zhàn)和收獲的過程,也是玩數(shù)學(xué)所帶來的美妙體驗之一。
除了美妙和趣味,數(shù)學(xué)還有另一個重要的方面:應(yīng)用和影響。數(shù)學(xué)不僅為科學(xué)技術(shù)和工程領(lǐng)域提供了理論基礎(chǔ)和工具,還為人類社會的各個領(lǐng)域做出了巨大貢獻。比如,在經(jīng)濟學(xué)和金融領(lǐng)域,數(shù)學(xué)模型和概率論等理論極大地促進了市場分析和風險管理的發(fā)展;在醫(yī)學(xué)和生物學(xué)領(lǐng)域,數(shù)學(xué)方法被廣泛應(yīng)用于疾病預(yù)測、病人治療和合成生物學(xué)等領(lǐng)域。數(shù)學(xué)的影響無處不在,讓人不由得想要深入了解并去玩數(shù)學(xué)。
第五段:結(jié)語。
玩數(shù)學(xué),不僅可以讓我們更深入地了解這門學(xué)科,還可以幫助我們鍛煉獨立思考和解決問題的能力,甚至是激發(fā)我們的潛力和創(chuàng)造力。因此,當我們面對數(shù)學(xué)時,不妨嘗試放下對它的恐懼和壓力,用一顆好奇心和探究心去探尋它的本質(zhì)和意義?;蛟S,你也會像許多數(shù)學(xué)愛好者一樣,從玩數(shù)學(xué)中汲取到無窮無盡的美妙和智慧。
對模糊數(shù)學(xué)的體會篇十四
評教評學(xué)活動結(jié)束了,聽了五位老師的課,有一些自己的認識,說出來與大家交流:
一、注重學(xué)生自主探索,三維目標得到充分體現(xiàn)。新課程標準對數(shù)學(xué)課的教學(xué)目標有明確要求:就是使學(xué)生在獲得必須的基本數(shù)學(xué)知識和基本技能的同時,在情感、態(tài)度、價值觀和能力方面都得到發(fā)展。五位老師的課堂中,教者都能夠充分扮演好組織者、引導(dǎo)者和合作者的角色,所以對于一個問題的解決,我們老師不是傳授的現(xiàn)在的方法,而是教給學(xué)生解決問題的策略,給學(xué)生一把在知識的海洋中航行的槳,讓學(xué)生積極思考,大膽嘗試,在主動探索中獲取成功并估驗成功的喜悅。
二、合作交流,充分獲取數(shù)學(xué)活動經(jīng)驗。五位老師的課中,在不同程度上都能夠讓學(xué)生進行獨立思考,鼓勵學(xué)生發(fā)表自己的意見,與同伴交流,并充分給足了學(xué)生動手、觀察、交流、合作的時間和空間,讓學(xué)生在具體的活動中獲得知識,體驗知識的形成過程,獲得學(xué)習(xí)的主動權(quán)。
三、數(shù)學(xué)思想方法得到了充分滲透,學(xué)生的學(xué)習(xí)能力和學(xué)習(xí)品質(zhì)得到進一步優(yōu)化。
以上是我聽了這幾節(jié)課的總體感受,如果就每一節(jié)課而言,我認為五位教師各有所長,每節(jié)課從不同的角度,不同的層面充分展示了各自的教學(xué)水平和教學(xué)藝術(shù)。
李瑛老師課堂中能充分利用兒童的心理特點,用不同方法對學(xué)生實施激勵評價,為學(xué)生對新知的探究和整節(jié)課教學(xué)任務(wù)的完成起到了舉足輕重的作用。
楊紅雁老師課堂激情高,教學(xué)環(huán)節(jié)緊湊,合理把握重點,突破教學(xué)難點,通過有效的合作交流和自主探索,把一節(jié)枯燥的計算課上的很精彩。
王美靜老師能夠在充分考慮學(xué)生認知水平的基礎(chǔ)上,大膽放手讓學(xué)生自主動手操作,然后通過小組合作交流參與對新知的探究,對提高學(xué)生的學(xué)習(xí)品質(zhì)和和自學(xué)能力起起到了一定的幫助作用。
候巧紅.賈茹老師的課語言優(yōu)美,儀表大方,教學(xué)環(huán)節(jié)過渡自然,過程由淺入深,對于課堂中的意外生成及意外問題能靈活處理。
當然,我們每位老師的課都不可能達到完美,所以就五節(jié)課在以下幾方面還值得進一步加強改進和研討:
一、合作學(xué)習(xí)的過程還需進一步優(yōu)化,特別是對合作學(xué)習(xí)進程中的分工情況、參與率、合作方法等因素還要重點考慮。
二、課堂預(yù)設(shè)不夠細化,學(xué)生的多向性思維沒有得到發(fā)展。
三、在數(shù)學(xué)課堂中情境設(shè)置是有必要的。
總之,五位老師的課堂,積極踐行新課方案的有力步伐,同時又為我們后階段的課改方向指明了航標。
對模糊數(shù)學(xué)的體會篇十五
習(xí)慣養(yǎng)成有很多方面,首先要學(xué)會的是整理書包和帶齊學(xué)習(xí)用品,孩子要逐步學(xué)會自己管理自己,培養(yǎng)孩子細心認真的將學(xué)習(xí)用品準備齊全,這在習(xí)慣形成初期非常重要。其次,作業(yè)格式訓(xùn)練也是學(xué)習(xí)習(xí)慣培養(yǎng)的一方面。要利用數(shù)學(xué)練習(xí)冊和書讓學(xué)生練習(xí)寫數(shù)和寫算式(老師會布置,家長只要督促書寫端正、格式正確和及時改錯即可)。
學(xué)習(xí)習(xí)慣的另一方面就是養(yǎng)成每天復(fù)習(xí)和預(yù)習(xí)的習(xí)慣。這也是我們數(shù)學(xué)常規(guī)作業(yè),即回家三件事,一復(fù)習(xí),二預(yù)習(xí),三口算。
復(fù)習(xí)就是看著書給家長講講今天我們學(xué)了什么,有什么新的收獲和發(fā)現(xiàn)。
預(yù)習(xí)就是讓孩子自己安靜看書后完成書上的相應(yīng)練習(xí)和提出自己的疑問。我們的預(yù)習(xí)要求有兩則:預(yù)習(xí)要求一,見空就填,見問就答。預(yù)習(xí)要求二,遇到問題自己想,獨立思考無價寶,想不出來打問號,帶著問題進課堂。
由于孩子的基礎(chǔ)不同,不同孩子的計算熟練程度和速度也存在一定差異,要縮小這一差異,僅靠每天一節(jié)數(shù)學(xué)課練習(xí)是不客觀的,因此還需要各位家長做有心之人,多進行這方面的練習(xí)。
計算的練習(xí)方式多樣,可以做口算題卡,供孩子獨立練習(xí),也可在做家務(wù)、和孩子上街等時間來個對口令。有時間還可以給孩子聽算。我們關(guān)于口算練習(xí)的要求是:口算口算天天練,時間多我就做(口算題卡本),時間少我就讀(口算卡),想練耳朵就聽算。強烈推薦各位家長多給孩子聽算,聽算可以同時訓(xùn)練孩子聽,寫和算的速度和能力。同時要留心孩子計算錯誤的原因,是粗心還是計算方法存在問題。但要防止枯燥的題海練習(xí),錯了還要罰的做法會扼殺了孩子學(xué)數(shù)學(xué)的興趣的。
有些數(shù)學(xué)知識較抽象,容易混淆,我們家長要注意給孩子創(chuàng)造生活情境,讓孩子在實際體驗中理解知識。如"左右"的認識,有些孩子正確掌握左右需要較長時間和過程,家長要有耐心,在生活中強化孩子對左右手的認識,引導(dǎo)孩子借此來分辨物體間的左右關(guān)系。
同時,我們家長在生活中遇到一些很好的契機,一定別放過,順便就可以教教孩子一些數(shù)學(xué)知識。比如,當孩子問你幾點了,不防和他聊聊怎么認鐘;當孩子問你,3—5不夠減怎么辦,你就可以談?wù)勜摂?shù)的知識等等。這些看似不經(jīng)意的閑談,是他以后在課堂上學(xué)習(xí)數(shù)學(xué)寶貴的經(jīng)驗。
在時間許可時,我們家長不妨和孩子一起做做數(shù)學(xué)游戲或畫畫數(shù)學(xué)畫,通過那些具有訓(xùn)練目的的游戲促進孩子在數(shù)學(xué)、認知、空間理解、想象力和數(shù)形結(jié)合等方面的發(fā)展。
語言是思維的外衣,語言能力的增強可以極大的改善孩子的學(xué)習(xí)能力,促進思維的發(fā)展,因此我們應(yīng)充分認識孩子語言發(fā)展的重要性。不妨給孩子的智力發(fā)展插上"語言的翅膀",讓孩子飛得更高,更遠。
在生活中要多為孩子創(chuàng)設(shè)說數(shù)學(xué)的機會,讓孩子說說自己的觀點、看法與思路。和孩子交談的形式不必過于正式,比如和孩子散步時,和孩子去公園時等等,這樣交流的氣氛要自然親切得多。對話時要有意識的激發(fā)幫助孩子形成規(guī)范的語言表達習(xí)慣。如"我是這樣想的";"我認為……""因為……所以……"。要求孩子說完整的話。
數(shù)學(xué)書中的實際問題小朋友都要能在老師或家長引導(dǎo)下看書說出題意。在這一過程中,我們的家長要能耐住性子,多聽少說,只要我們的話語能引發(fā)交談話題,進行適當?shù)狞c評反饋就夠了。
把孩子推上講臺,做孩子的"學(xué)生"這雖有明知故問的嫌疑,但并不妨礙孩子的為師熱情。他們會很興奮,很熱情的扮演老師的角色,介紹自己今天的學(xué)習(xí)收獲。比如:一年級孩子常常把老師的要求不能完整帶回家,家長對于他們說的不合理的事情,請堅決保持絕對的懷疑,并且裝出絕對的好奇,請他們自己第二天把事情弄清楚,告訴你們。大家再裝出絕對的空前的佩服。這樣我們的孩子以后就會有意識的記住老師的要求,因為他會想到爸爸媽媽要請教他。
俗話"數(shù)子千過,莫如夸子一長",每個孩子都希望自己的能力得到了老師和家長肯定和贊賞。與其說"你不要這樣做!"還不如"你那樣能夠做得更好!";與其讓孩子在沒完沒了的批評中糾纏于做過的錯事,還不如讓適時的表揚給孩子的每次進步都鼓掌喝彩!自信不足的孩子更是特別害怕出錯,家長更應(yīng)盡量讓孩子感受到父母對他的欣賞。"有進步!繼續(xù)努力!""沒關(guān)系,我相信你一定能行!",不要吝嗇真心的表揚。
首先每個孩子由于學(xué)前的教育差異問題,大家的起點不同,因而我建議在一年級上期,我們家長讓我們的孩子自己和自己比!就是將孩子現(xiàn)在同過去不同進期所取得的成績相比較,是進步,還是退步,抑或是原地踏步。進步是因為他在哪些方面有所改進,有所完善,分析得出后要加以鼓勵,讓其發(fā)揚光大,開始表揚的頻率要高,漸弱之,以至形成習(xí)慣;踏步著或退步了是因為他不認真,還是方法不妥,分析得出后對癥下藥,拉起來后再扶上走一程;稍有進步,作為家長可以借助于老師的口吻,夸張一點表揚,樹立起自信,讓他自強不息。切忌讓孩子感受到你覺得他的學(xué)習(xí)很糟糕,你很著急,這樣孩子也會因為沒有成功感而對學(xué)習(xí)缺乏興趣。這里我們說的其實就是縱向比較。
當然我們也需要橫向比較,就是能將自己的小孩與同年級、同班級的`其他孩子比較一下,找差距和不足。具有良好習(xí)慣的孩子,成績一般都很優(yōu)秀,而這一切,一方面歸功于學(xué)校教育,另一方面也不可忽視家庭氛圍的熏陶,對于這些孩子的家長,我們不妨去討教一番,再結(jié)合自己孩子的特點進行實踐,一定有收獲。
其次,當他們面對新內(nèi)容,特別是思維含量較高的問題時,孩子就會感到困難,因此常會出現(xiàn)這樣的狀況:家長在家看孩子的計算很熟練,就以為孩子的數(shù)學(xué)學(xué)得很好,但真正考查或解決實際問題時,孩子往往有些不適應(yīng),或者說不盡如家長之意。這就需要我們家長要多關(guān)注孩子的學(xué)習(xí)過程,關(guān)注孩子的學(xué)習(xí)內(nèi)容,數(shù)學(xué)并不僅僅是單純的計算。
另一方面,我們要能"不唯分數(shù)是問"。分數(shù)只能作為評介孩子的一個參照,90分與100分的孩子的數(shù)學(xué)能力究竟相差多少,不是僅分數(shù)就能說明的,我們得具體分析才是。孩子有失誤,是純粹的粗心,還是思考問題的方式有問題。是臨考心理欠佳,還是知識點沒掌握。
每個孩子都是一個獨一無二的世界,因此很難找到一個適合所有家庭、所有孩子的教育模式,以上所談的一些建議,僅供參考。期待在大家的共同努力之下,為孩子創(chuàng)造一個良好的數(shù)學(xué)學(xué)習(xí)環(huán)境!也期待能給孩子一雙會用數(shù)學(xué)視角觀察世界的眼睛,一個會從數(shù)學(xué)角度思考問題的頭腦。
對模糊數(shù)學(xué)的體會篇十六
經(jīng)過學(xué)習(xí)二年級下冊數(shù)學(xué)《課程綱要》,我從中學(xué)習(xí)到了很多,感觸頗深。
首先,我明確了學(xué)科《課程綱要》的內(nèi)涵和意義?!墩n程綱要》是學(xué)科教師依據(jù)學(xué)科課程標準、學(xué)材、校情、學(xué)情編制的、體現(xiàn)學(xué)科各種課程元素的計劃大綱,是一種規(guī)定時間內(nèi)的課程計劃。編制《課程綱要》,就是對一個學(xué)期或一個模塊、一個單元所要實施的教學(xué)進行整體設(shè)計,也就是從學(xué)生學(xué)習(xí)的角度對一定時期內(nèi)的學(xué)習(xí)內(nèi)容進行整體規(guī)劃,研究和分析教與學(xué)中所涉及到的各方面因素。編制和使用學(xué)科《課程綱要》,有利于教師整體把握課程實施的目標與內(nèi)容,有利于教師審視、滿足課程實施的所需條件,有利于學(xué)生明確所學(xué)課程的總體目標與內(nèi)容框架,有利于學(xué)校開展課程審議、管理與評價。
其次,我把握住了學(xué)科《課程綱要》的基本結(jié)構(gòu)與內(nèi)容?!墩n程綱要》不同于教學(xué)進度表,課程綱要完整的體現(xiàn)了課程元素,而教學(xué)進度表只是教學(xué)時間和教學(xué)內(nèi)容的簡單安排?!墩n程綱要》的構(gòu)成要素包括:
(一)一般項目:學(xué)校名稱、課程類型、設(shè)計教師、日期、適用年級、課時。
(二)課程元素:課程目標、課程內(nèi)容、課程實施、課程評價。
(三)所需條件:為順利實施該課程所需要的條件。
課程目標:是課程的靈魂。制定目標的依據(jù)是對課程標準的分解和對學(xué)生的研究、對學(xué)材及其他教學(xué)資源的分析。具體要求是:全面、適當、清晰;目標要涉及三個維度,特別是認知要求。
課程內(nèi)容:是指依據(jù)課程目標對學(xué)材的內(nèi)容及相關(guān)的資源進行一定的選擇與組織,教師要從總體上把握教學(xué)內(nèi)容的難點、重點,依據(jù)課程標準、學(xué)材及現(xiàn)場學(xué)習(xí)資源進行設(shè)置。
課程實施:是指如何更好的實施課程內(nèi)容,以便于學(xué)生實現(xiàn)預(yù)定的學(xué)習(xí)目標。涉及學(xué)習(xí)主題,課時安排,教與學(xué)的方法等。
課程評價:是指選擇與課程目標匹配的評價方式,以獲得學(xué)生實現(xiàn)目標的證據(jù),包括過程作業(yè)與模塊、單元測試。
我會繼續(xù)對課程綱要細致琢磨,深入學(xué)習(xí)的,把學(xué)習(xí)到的運用到實際的教學(xué)工作中!
對模糊數(shù)學(xué)的體會篇十七
幼兒數(shù)學(xué)教育是以其真、善、美的特定形式存在的。當今社會經(jīng)濟的高速發(fā)展,功利主義已經(jīng)占據(jù)了幼兒教育的原始凈地,對幼兒教育的人文化顯得日益重要?!队變簣@教育指導(dǎo)綱要(試行)》條例中將幼兒數(shù)學(xué)教育的目標明確定位于:“能夠從生活和游戲中感受事物的數(shù)量關(guān)系并且體驗到數(shù)學(xué)的重要和有趣”。讓孩子們學(xué)得輕松,學(xué)得愉快,學(xué)得有效果。怎樣想讓孩子們對學(xué)習(xí)數(shù)學(xué)有興趣,必須重視數(shù)學(xué)教具、學(xué)具的制作,我認為應(yīng)做到以下幾個方面:
在操作材料設(shè)計上,充分注重大班幼兒的年齡特點、心理發(fā)展水平,強調(diào)趣味性。有了趣味,孩子們的興趣便自然而然地被吸引過來,他們會帶著強烈的愿望和環(huán)境相互作用。
例如在設(shè)計加減法運算的材料時,我們設(shè)計了“開鎖”游戲,在鎖的上面寫好加減算式,在鑰匙上寫好數(shù)字,如果算對了就可以用相應(yīng)的鑰匙打開鎖,這樣既可以讓幼兒檢驗自己的運算結(jié)果,又發(fā)展了幼兒的小肌肉動作,培養(yǎng)了幼兒手指的靈活性。又如,“花葉配對”的游戲,是一組練習(xí)分合式的游戲,幼兒按照小花上的數(shù)字,找出兩片葉子,葉上的數(shù)字合起來等于小花上的數(shù)字。幼兒在這些有情節(jié)的游戲中,必然會對數(shù)字操作活動產(chǎn)生愉快的情緒。又如,給一些簡單的幾何形配上鮮艷的色彩,加上手腳、五官擬人化,又可以培養(yǎng)幼兒對幾何形的感知。這些具有兒童情趣的材料,給幼兒以美的享受,孩子們在這種“美”之中不知不覺地發(fā)現(xiàn)數(shù)學(xué)的魅力。
可操作性也理解為讓幼兒“玩”材料,把數(shù)學(xué)材料當成“玩具”來玩,讓幼兒在“玩”中探索,在“玩”中發(fā)現(xiàn)問題、解決問題,自己得出結(jié)論,即利用自身內(nèi)部機制去理解和掌握概念,而不是單純的看后想、想后寫結(jié)論的傳統(tǒng)模式。例如,設(shè)計讓幼兒掌握10以內(nèi)加減法材料時,我們?yōu)橛變簻蕚淞嗽S多動、植物、自然物的圖片,每種均為10個,讓幼兒拼拼擺擺講講編編運用題,然后再給幼兒10以內(nèi)數(shù)字以及加減法符號,讓他們組成算式,這種方式既讓幼兒“玩”到了材料,又學(xué)到了知識,從感性認識上升到理性認識,符合幼兒心理發(fā)展水平。又如在設(shè)計認識時鐘的材料時,我們?yōu)橛變涸O(shè)計了一個可活動的時鐘,上面的時針和分針均可轉(zhuǎn)動,幼兒可以自由地根據(jù)時間來撥指針,或根據(jù)自己撥的指針記錄時間。陶行知先生說:從做中學(xué)。幼兒只有“做”了以后,才有感知,才會有經(jīng)驗。
首先在數(shù)學(xué)操作材料的設(shè)施上必須注意與教師制定的數(shù)學(xué)目標相聯(lián)系,注意循序漸進,一步步地深入,讓幼兒在復(fù)習(xí)已學(xué)過的知識的同時,也能夠預(yù)習(xí)到新的知識。如投放加減速運算材料時,可以根據(jù)課堂教學(xué)內(nèi)容從2的加減法開始,逐步地添加,一直到10以內(nèi)的加減法學(xué)習(xí)完畢。但是,活動材料又要根據(jù)幼兒活動的發(fā)展以及幼兒的內(nèi)心需要來制作。
總之,數(shù)學(xué)教具、學(xué)具的制作富有童趣,是為幼兒打開了另一扇通向數(shù)學(xué)王國的大門,孩子們在這個王國里樂此不疲地“工作”著,激發(fā)了他們主動學(xué)習(xí)數(shù)學(xué)的強烈愿望。
【本文地址:http://mlvmservice.com/zuowen/8978569.html】