語法是語文學習的基礎,掌握好語法規(guī)則有助于寫出正確的表達。在寫總結(jié)之前,我們需要明確總結(jié)的目的和主題。在這里,我們提供一些優(yōu)秀的總結(jié)范文,供大家作為思路與參考。
找因數(shù)的教學設計篇一
教學內(nèi)容:
教學目標:
1、使學生在具體的操作活動中,認識公因數(shù)和最大公因數(shù),會在集合圖中分別表示兩個數(shù)的因數(shù)和它們的公因數(shù)。
2、使學生學會用列舉的方法找到100以內(nèi)兩個數(shù)的公因數(shù)和最大公因數(shù),并能在解決問題的過程中進行有條理的思考。
3、使學生在自主探索與合作交流的過程中,進一步發(fā)展與同伴進行合作交流的意識和能力,獲得成功的體驗。
教學重點:
找因數(shù)的教學設計篇二
教學內(nèi)容:新人教版小學數(shù)學五年級下冊第13~16頁。
教學目標:
1、學生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
2、學生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);
4、培養(yǎng)學生的觀察能力。
教學重點:理解因數(shù)和倍數(shù)的含義;自主探索并總結(jié)找一個數(shù)的因數(shù)和倍數(shù)的方法。
教學難點:自主探索并總結(jié)找一個數(shù)的因數(shù)和倍數(shù)的方法;歸納一個數(shù)的因數(shù)的特點。
教學具準備:學號牌數(shù)字卡片(也可讓學生按要求自己準備)。
教法學法:談話法、比較法、歸納法。
快樂學習、大膽言問、不怕出錯!
課前安排學號:1~40號
課前故事:說明道理:學習最重要的是快樂,要掌握學習的方法。
教學過程:
一、復習
問:“我們在因數(shù)與倍數(shù)的學習中,研究的數(shù)都是什么數(shù)?”(整數(shù))
誰能說說10的因數(shù),你是怎么想的?
今天,我和大家一道來繼續(xù)共同探討“因數(shù)與倍數(shù)”
二、合作交流、共探新知
b、探究找一個數(shù)的因數(shù)的方法(談話法、比較法、歸納法)
1、誰來說說18的因數(shù)有哪些?
學生預設:有的學生可能會說還有6*3,9*2,18*1等,出現(xiàn)這種情況時可以冷一下,讓學生想一想這樣寫的話會出現(xiàn)什么情況,最后讓學生明白一個數(shù)的因數(shù)是不能重復的。
d、介紹寫一個數(shù)因數(shù)的`方法
可以用一串數(shù)字表示;也可以用集合圈的方法表示。
說一說:
18的因數(shù)共有幾個?
它最小的因數(shù)是幾?
最大的因數(shù)是幾?
2、做一做(在做這些練習時應放手讓學生去做,相信學生的知識遷移與消化新知的能力)
a、30的因數(shù)有哪些,你是怎么想的?
b、36的因數(shù)有幾個?你是怎么想的?為什么6*6=36,這里只寫一個因數(shù)?
d、讓學生討論:你從中發(fā)現(xiàn)了“一個數(shù)的因數(shù)”有什么相同的地方嗎?
學生總結(jié):
板書:
一個數(shù)最小的因數(shù)是1;
最大的因數(shù)是它本身;
因數(shù)的個數(shù)是有限的。
輕松一下:
我們來了解一點小知識:完全數(shù),什么叫完全數(shù)呢?就是一個數(shù)所有的因數(shù)中,把除了本身以外的因數(shù)加起來,所得的和恰好是這個數(shù)本身,那這樣的數(shù)我們就叫它完全數(shù),也叫完美數(shù),比如6~~(學生讀課本14頁完全數(shù)的相關知識)
b、探究找一個數(shù)的倍數(shù)的方法(談話法、比較法、歸納法)
因為有了前面探究找一個數(shù)因數(shù)的方法,在這一環(huán)節(jié)更可大膽讓學生自己去想,去說,去發(fā)現(xiàn),去歸納。教師只要適當做點組織和引導工作就行。
過渡:大家都很棒!這么快就找出了一個數(shù)的因數(shù)并總結(jié)好了它的規(guī)律,現(xiàn)在楊老師想放開手來讓大家自己來學習下面的知識:找一個數(shù)的倍數(shù)。
a、2的倍數(shù)有哪些?你是怎么想的?從1開始做手勢:1*2=2,2*2=4,2*3=6,一倍一倍地往上遞加。
b、那5的倍數(shù)有哪些?按從小到大的順序至少寫出5個來,看誰寫得又快又好
c、對比“一個數(shù)的因數(shù)”的規(guī)律,學生自由討論:一個數(shù)的倍數(shù)有什么規(guī)律呢?
(到這一環(huán)節(jié)就無需再提問了,要相信學生能夠在類比中找到學習的方法)
學生總結(jié):
找因數(shù)的教學設計篇三
教學目標:
1.教學中幫助學生從已經(jīng)據(jù)有的經(jīng)驗出發(fā),在用小正方形拼長方形的活動中,體會找一個數(shù)的因數(shù)的方法,提高有序思考的能力。
2.在1~100的自然數(shù)中,能找出某個自然數(shù)的所有因數(shù)。
教學重點:體會找一個數(shù)的因數(shù)的方法
教學難點:提高有序思考的能力
教學過程:
一、創(chuàng)設情境,激情導入
師:同學們喜歡做拼圖的游戲嗎?
也可以使用自己喜歡的方式拼擺或涂畫的方式獨立操作,邊擺邊做好記錄.
然后,把你拼擺的過程和你的伙伴說說。
二、合作交流,探索新知
1、學生:用12個小正方形自由拼(畫)長方形
(教師巡視,指導個別有問題的學生,搜集學生中出現(xiàn)的問題.)
參與小組活動,指導學生總結(jié)學法.
師:你是怎樣拼的,說說好嗎?
學生代表一邊匯報,一邊將所拼的圖在黑板上進行演示
注意讓學生指圖說明。
2、思考:請同學們在合作交流中總結(jié)出找一個數(shù)的因數(shù)的基本方法。
(或者用乘法思路想:哪兩個數(shù)相乘得12?然后一對一對找出來。)
全班交流
師:我發(fā)現(xiàn)同學們真的很聰明,誰愿意把你的想法說給大家聽?
(每個小組由一名代表在全班匯報思考的過程,再次體會“想乘法算式”找一個數(shù)的因數(shù)的方法。)
學生回答,老師同時板演:
(3種,算式一樣的可選擇其中的一種說出來。)
及時板書:1×12=122×6=123×4=12
或:12=1×12=2×6=3×4
師:由黑板上整理出的算式可見,12的因數(shù)有哪些呢?
(1、12、2、6、3、4)
引導思考:找一個數(shù)的因數(shù)怎樣做到即不重復又不遺漏呢?
(通過以上的拼、畫、小組交流,學生已經(jīng)有所發(fā)現(xiàn)。)
學生的答案:
(1)我發(fā)現(xiàn)積是12的乘法算式中,它們的因數(shù)都是12的因數(shù)。
(2)我發(fā)現(xiàn)可以利用乘法口訣一對對的找12的因數(shù)。
師:誰能按順序說出來?
(1、2、3、4、6、12)
3、小結(jié):找一個數(shù)的因數(shù),可以用乘法依次一對一對的找。這樣有順序的給一個倍數(shù)找因數(shù),好處就是不重復、不漏找。
三、鞏固練習
1、獨立完成第8頁“試一試”,注意關注學生是否注意有序思考。
(9的因數(shù):1、3、915的因數(shù):1、3、5、15)
2、師:同學們已經(jīng)掌握了找因數(shù)的方法,現(xiàn)在看看誰找得快,請同學們做課本第9頁的練一練的第1、2題。
第1題學生獨立完成,同桌交流。
(教師巡視,發(fā)現(xiàn)問題及時解決。)
第2小題小競賽:看誰找的快
3、師:同學們已經(jīng)學會了拼長方形找因數(shù),現(xiàn)在能不能在小方格中畫出長方形找因數(shù)呢?請做第9頁的第3題。
(1×16=162×8=164×4=16)
(16=1×16=2×8=4×4)
(16的因數(shù):1、2、4、16)
4、下面的數(shù),各有幾個因數(shù)
11943211
總結(jié):同學們說得很好,我們利用找因數(shù)的方法可以解決很多實際問題。
四、總結(jié)與評價
師:這節(jié)課你學會了什么呢?用學到的方法我們都可以做些什么?
找因數(shù)的教學設計篇四
教學過程:
一,創(chuàng)設情境,明確相互依存的關系。
師:同學們,我們?nèi)伺c人之間存在著各種關系,比如說(指某位同學)他同他的爸爸是什么關系呢?(父子關系)老師和你們是——師生關系。
師:“老師是師生關系”可以這樣說嗎?為什么?
生:師生關系是指老師和學生之間的相互關系,不能單獨說。
師:是呀,人與人之間的關系是相互的,在數(shù)學王國里,也有一些存在著相互依存關系的數(shù),這節(jié)課我們就來學習。
二、動手操作,感受并認識因數(shù)和倍數(shù)
(一)、新課引入:
1、師:同學們的桌上都放著12個同樣大的正方形,請你用這12個正方形拼成一個長方形,注意每排擺幾個?擺了幾排?用乘法算式表示你的擺法.
2、進行交流:
師:誰愿意把自己擺長方形的方法和列出的算式講給大家聽?
師:還有其它擺法嗎?
還有不同的乘法算式嗎?猜一猜,他是怎樣擺的?
學生交流幾種不同的擺法。隨著學生交流屏幕上一一演示。
師:12個同樣大小的正方形能擺出不同的的長方形,可以用乘法算式來表示,千萬別小看這些算式,這節(jié)課我們就從這些算式中學習兩個重要的數(shù)學概念”因數(shù)和倍數(shù)”。(板書課題)
師:我們以一道乘法算式為例。(屏幕出示)
4×3=12,
師:在這個算式中,4、3、12有什么關系呢?
我們一起來讀一讀:
因為:4×3=12,
所以:4是12的因數(shù),3也是12的因數(shù)。
12是4的倍數(shù),12也是3的倍數(shù)。
師:讀讀看,能讀懂嗎?說一說讀后你想到了什么?
生:乘法算式中,兩個數(shù)存在因數(shù)和倍數(shù)的關系。
師:他的說法正確嗎?我們來繼續(xù)讀。
出示:因為:6×2=12 ,所以——
2和6是12的因數(shù),12是2和6的倍數(shù).
因為:1×12=12 ,所以——
生: 1和12是12的因數(shù),12是1和12的倍數(shù).
師:請把書打到12頁,齊讀最后自然段的注意。
生:注意,為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是的整數(shù)(一般不包括0)。
師:現(xiàn)在你們能把存在因數(shù)和倍數(shù)關系的條件說得更準確些嗎?
生:在非0的整數(shù)乘法算式中,兩個數(shù)之間存在因數(shù)和倍數(shù)關系。
師:誰也來出個乘法算式說一說。(略)
課件出示:32÷4=8,你能從這個算式中找到因數(shù)和倍數(shù)嗎?
師:我們不僅可以根據(jù)乘法算式找因數(shù)和倍數(shù),也可以根據(jù)除法算式找因數(shù)和倍數(shù)。 二、創(chuàng)設情境,自主探究找因數(shù)和倍數(shù)的方法.
1、師:我們剛才初步認識了因數(shù)和倍數(shù),明白了因數(shù)和倍數(shù)都表示幾個數(shù)之間的關系?(兩個)。所以,不能單說哪個數(shù)是倍數(shù),哪個數(shù)是因數(shù)。下面我們進一步來研究因數(shù)和倍數(shù)。
屏幕顯示:
試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)? 誰是誰的倍數(shù)?
2、3、5、9、18、20
生:2、3、9、18都是18的因數(shù)。
師:18的因數(shù)只有這4個嗎?
師:看來要找出18的一個因數(shù)并不難,難就難在你能不能把18的所有因數(shù)既不重復又不遺漏地全部找出來。請你選擇你喜歡的方式,可以同桌合作,小組合作,也可以獨立完成,找出18的所有因數(shù)。如果能把怎么找到的方法寫在紙上就更好了。
生:寫后小組內(nèi)交流。
學生填寫時師巡視搜集作業(yè)。
2、交流作業(yè)。(略)
投影儀出示學生的不同作業(yè)。交流找因數(shù)的方法。
師:出示18的因數(shù)有:1、18;2、9;3、6;
你知道這個同學是怎樣找出18的因數(shù)的嗎?看著這個答案你能猜出一點嗎?
生:他是有規(guī)律,一對一對找的,哪兩個整數(shù)相乘得18,就寫上。
師:他是用乘法找的,其他同學還有補充嗎?找到什么時候為止?
生:可以用除法找。用18除以1得18,18和1就是18的因數(shù)。再用18除以2……
師:用乘法和除法找都可以,你們認為用什么方法更容易呢?
生:乘法。
板書:18的因數(shù)有:1、2、3、6、9、18。
師:18的因數(shù)也可以這樣表示。(課件出示集合圈圖)
組織交流:
通過剛才的交流,找一個數(shù)的因數(shù)有辦法了嗎?有沒有方法不重復也不遺漏?
突出要點:有序(從小往大寫),一對對找(哪兩個整數(shù)相乘得這個數(shù)),再按從小到大的順序?qū)懗鰜怼?/p>
用我們找到的方法,試一個。
課件出示:
填空:
24=1×24=2×( )=( ) ×( )=( ) ×( )
24的因數(shù)有:_______________
再試一個:16的因數(shù)有
師:一個數(shù)的因數(shù),我們都是一對一對地找的,為什么16的因數(shù)只有5個呢?
生:因為4×4=16,只寫一個4就可以了。
師:觀察18、16的所有因數(shù),你有什么發(fā)現(xiàn)嗎?可以從因數(shù)的個數(shù),最小的因數(shù)和最大的因數(shù)三個方面觀察。
生:18的因數(shù)有6個,最小的是1,最大的是18.
16的因數(shù)有5個,最小的是1,最大的是16.
師:誰能把同學們的發(fā)現(xiàn),用數(shù)學語言概括起來。先說給小組同學聽。
邊交流邊板書:
個數(shù) 最小 最大
因數(shù) 有限 1 它本身
倍數(shù)
找因數(shù)的教學設計篇五
教材分析:
這部分教材首先以例題的形式介紹因數(shù)和倍數(shù)的概念,然后在例1和例2中分別介紹了求一個數(shù)的因數(shù)和倍數(shù)的方法,引導學生從本質(zhì)上理解概念,避免死記硬背,向?qū)W生滲透從具體到一般的抽象歸納的思想方法。
了解學生:
學生已經(jīng)學習了四年的數(shù)學,有了四年整數(shù)知識的基礎,本課利用實物圖引出乘法算式,然后引出因數(shù)和倍數(shù)的含義,培養(yǎng)了學生的抽象概括能力。
教學目標:
1、知識技能:(1)理解和掌握因數(shù)、倍數(shù)的概念,認識它們之間的聯(lián)系和區(qū)別。(2)學會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練地求出一個數(shù)的因數(shù)或倍數(shù)。(3)知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
2、過程方法:經(jīng)歷因數(shù)和倍數(shù)的認識以及求一個數(shù)的因數(shù)或倍數(shù)的過程,體驗類推、列舉和歸納總結(jié)等學習方法。
3、情感態(tài)度:在學習活動中,感受數(shù)學知識之間的內(nèi)在聯(lián)系,體驗發(fā)現(xiàn)知識的樂趣。
教學重點:學會求一個數(shù)的因數(shù)或倍數(shù)的方法。
教學難點:理解和掌握因數(shù)和倍數(shù)的概念。
教學準備:課件、作業(yè)紙。
教學過程:
一、創(chuàng)設情境——找朋友
1、唱一唱:你們聽過“找朋友”這首歌嗎?誰愿意大聲的唱給大家聽?(一名學生唱,師評價:老師很喜歡你的聲音,你敢于表現(xiàn)自己,老師很愿意和你成為好朋友)
2、說一說:誰能具體的說一說“誰是誰的好朋友”?(鼓勵:老師希望能聽到更多人的聲音)
學生完整敘述:“××是李老師的朋友,李老師是××的朋友”。
3、引入新課:同學們說的很好,那能不能說老師是朋友,××是朋友?看來,朋友是相互依存的,一個人不會是朋友。今天我們就來認識數(shù)學中的一對朋友“因數(shù)和倍數(shù)”(板書課題)
二、探究新知
1、提出問題:現(xiàn)在有12名同學參加訓練,要排成整齊的隊伍,可以怎樣排?用一個簡單的乘法算式表示出排列的方法。
學生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
課件出示相應的圖和算式。
2、揭示概念:以2×6=12為例。
邊說邊板書:()是12的因數(shù),()是12的因數(shù);
12是()的倍數(shù),12是()的倍數(shù)。
學生同桌互相說,指名兩名同學說。(評價:這么短的時間內(nèi),同學們就能準確、完整的表述它們之間的因倍關系,真了不起。)
突出強調(diào):能不能說12是倍數(shù),2是因數(shù)?(學生回答,揭示并板書:相互依存)
3、強化概念:另外兩道乘法算式,你也能像這樣準確地寫出它們之間的關系嗎?分組比賽,在作業(yè)紙上完成,看哪個組能完全做對。
學生在作業(yè)紙上完成,同時課件出示:(指名兩名學生在白板上利用普通筆標注答案)
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
找因數(shù)的教學設計篇六
師:在寫12的因數(shù)時,我們可以一對一對的寫,(課件出示: 1、12、2、6、3、4. )也可以從兩頭開始寫(板書:1、2、3、4、6、12.)找全了畫一個句號。
3、過渡:12的因數(shù)我們已經(jīng)會找了,那么你能用學到的知識找到18的因數(shù)嗎?試一試,看誰能挑戰(zhàn)成功!
學生嘗試,獨立在本上完成。
教師巡視,找出幾個問題學生和完全寫對的學生的作業(yè),在視頻臺上展示。
學生說如何找全的方法,強化“有序”“一對一對的找”。
板書:18的因數(shù)有:1,2,3,6,9,18。
集合圖的形式表示。(課件出示)
4、及時反饋:寫自己學號的因數(shù)。
學生在學號紙上獨立完成,指名板演2的因數(shù),24的因數(shù),25的因數(shù),1的因數(shù)。
做完的同學,互相檢查糾錯。
師:誰剛才幫別人找到錯誤了?(評價:你已經(jīng)熟練的掌握了找因數(shù)的方法,真棒!還有誰是最棒的?祝賀你們)
學生說出“24”和“25”的最小因數(shù)和最大因數(shù)各是多少。
通過找這些數(shù)的因數(shù),從中你發(fā)現(xiàn)了什么?學生回答:一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
其他同學根據(jù)發(fā)現(xiàn)的規(guī)律自己檢驗,并用彩筆圈起來。
小結(jié):雖然一個數(shù),它因數(shù)的個數(shù)有多有少,但最小的因數(shù)是1,最大因數(shù)是它本身。1的因數(shù)只有1。因為一個數(shù)的因數(shù)有最大和最小,所以個數(shù)是有限的。(板書在表格里)。
四、找一個數(shù)的倍數(shù)。
1、過渡:我們已經(jīng)學會了找一個數(shù)的因數(shù),那么怎樣找一個數(shù)的倍數(shù)呢?你能像找一個數(shù)的因數(shù)那樣有序的找嗎?相信這個問題也一定難不倒大家,咱們先來試一個簡單的,找2的倍數(shù),看你能找多少個。
2、學生獨立找,找好后在小組中交流。
3、匯報展示,交流方法。
引導:你能按從小到大的順序找2的倍數(shù)嗎?能寫得完嗎?怎么辦?
明確方法:用2分別乘1、2、3、4……得到的積都是2的倍數(shù)。
4、表示方法:2的倍數(shù)有2,4,6,8,10,…(一般寫完前5個,就可以用省略號表示);集合圖。
5、寫出自己學號的倍數(shù)。
學生獨立完成,指名兩生板演(3的倍數(shù),5的倍數(shù),1的倍數(shù)),糾正錯誤。
小組合作:在找一個數(shù)的倍數(shù)時,你有什么發(fā)現(xiàn)?
交流匯報:一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),個數(shù)是無限的。
找因數(shù)的教學設計篇七
一、教學目標:
1、 結(jié)合具體的生活情景理解公因數(shù)和最大公因數(shù)的含義,并能正確地求出兩個數(shù)的公因數(shù)和最大公因數(shù)。
2、 經(jīng)歷用多樣化的方法找公因數(shù)的過程,提高解決問題的靈活性。
3、 能根據(jù)兩個數(shù)的不同關系靈活的求兩個數(shù)的最大公因數(shù)。
二、教學重點:掌握求公因數(shù)的方法
教學難點:結(jié)合實際理解公因數(shù)的含義。
四、教學過程:
(一)、復習引入
1、說說30的因數(shù),是怎么求的
(二)、深入理解公因數(shù)的含義
可以選邊長是多少的正方形呢? 怎么鋪? 課件演示
2、還有哪些正方形呢? 我們來動手找一找吧
方老師給每個組準備了兩個長18厘米,寬12厘米的長方形代表儲藏室,同學們也準備了大小不同的正方形代表瓷磚,你可以用它鋪一鋪,也可以想其他的辦法。
學生動手實踐,然后交流
3、反饋 你們找出的結(jié)果是什么
邊長時1分米,2分米,3分米。6分米的正方形可以剛好鋪滿.課件演示
邊長是4分米的正方形可以密鋪嗎?為什么?
4、 所以你認為正方形的邊長與長方形的長、寬有什么關系?
正方形的邊長既是長的因數(shù),又是寬的因數(shù),是長和寬的公因數(shù)
5、我們經(jīng)過尋找發(fā)現(xiàn)18和12的公因數(shù)有哪些?
6、如果要使鋪的塊數(shù)最少,應選哪一種?它是12和18的最大公因數(shù)
7、如果用幾何圈表示,你會嗎?
12的因數(shù) 18的因數(shù)
12和18的公因數(shù)
(三)、找兩個數(shù)的公因數(shù)和最大公因數(shù)
1、現(xiàn)在換成27和18,你能找出它們的公因數(shù)和最大公因數(shù)嗎?請試一試。先獨立找,在到小組里進行交流。
2、反饋。先分別羅列出兩個數(shù)的因數(shù),在找共同的的因數(shù)
先列出一個數(shù)的因數(shù),在從這個數(shù)的因數(shù)中找另一個數(shù)的因數(shù)。
3、你覺得哪種方法比較簡便?
4、觀察一下,它們的公因數(shù)和最大公因數(shù)之間有什么關系?
(四)、練習
1、填一填
(1)、8和16的公因數(shù) ,最大公因數(shù)是
(2)、15和50的最大公因數(shù)是
(3)、5和7的最大公因數(shù)
做完后小結(jié)和揭題
2、介紹用分解質(zhì)因數(shù)和短除法的方法求最大公因數(shù)
3、找出下列各數(shù)的公因數(shù)和最大公因數(shù)
4和8 16和32 1和7 8和9
你有什么發(fā)現(xiàn)?
4、做練習十五第4題和第8題
一、教學設計意圖
公因數(shù)和最大公因數(shù)是本冊教材的重要教學內(nèi)容,學生的認知起點是對因數(shù)和倍數(shù)的認識,并學會找一個數(shù)的因數(shù)和倍數(shù),為后續(xù)的通分和異分母分數(shù)加減法做基礎。相對來說用羅列的方法來找公因數(shù)和最大公因數(shù)從學習技能上說比較簡單,對學生來說難度不大,所以整節(jié)課的難點在于理解公因數(shù)和最大公因數(shù)的意義,特別是結(jié)合實際理解意義,很多學生單純的找兩個數(shù)的公因數(shù)和最大公因數(shù)沒有問題,可是結(jié)合實際去求,或者根據(jù)分解質(zhì)因數(shù)來求學生難度就有一定的難度,很多程度上是屬于機械的技能訓練,熟能生巧,從學生的思維上看發(fā)展是不利的。短除法和用分解質(zhì)因數(shù)求公因數(shù)和最大公因數(shù)的方法作為介紹來出現(xiàn)。新課程在這節(jié)課的處理上與舊教材有很大的不同,其一是意義和求法在一節(jié)課完成,其二是降低了難度,教材只要求用羅列的方法來求公因數(shù)和最大公因數(shù),分解質(zhì)因數(shù)法作為一種方法進行介紹,如何在降低技能要求的前提下提高學生的思維水平是我在備課是思考的。所以整節(jié)課的教學設計我主要體現(xiàn)兩點思路。一是從生活實際出發(fā)理解公因數(shù)和最大公因數(shù)的意義,并在此基礎上通過實踐活動或自己的認識基礎探討求出公因數(shù)和最大公因數(shù)的方法;二是重點定位在通過不同羅列方法尋找公因數(shù)和最大公因數(shù),在此基礎上介紹短除法和分解質(zhì)因數(shù)法,培養(yǎng)學生思維的靈活性。
2、教學節(jié)奏快,教學容量大,比較扎實
3、學生學習習慣好
4、教學中的閃光點可以放得更大,給學生提供思維的空間,教師不要過快作評價,抓住課堂生成,讓大家辯一辯,理解更深刻一點。
主要問題環(huán)節(jié):3、找出下列各數(shù)的公因數(shù)和最大公因數(shù)
4和8 16和32 1和7 8和9
你有什么發(fā)現(xiàn)?
當學生說兩數(shù)一奇一偶,那么這兩數(shù)的公因數(shù)就是1時,老師沒有給學生思考、辯論的空間,馬上舉了一個反例6和9進行反駁,對大部分學生來說理解是不透徹的,而且這也是學生的一個共性問題。
5、 還可以更大氣一點,給學生思考的空間更大一點。主要例題環(huán)節(jié),兩個問題可以一起放下去:“可以剪成邊長是多少分米的正方形?你是怎么想的?”動手操作的環(huán)節(jié)可以取消,讓學生通過想象、思維分析來解決,課前的學號游戲也可以取消。 步子可以放得大一點。
三、課后反思:
宋老師的評課讓我有柳暗花明更一村的感覺。要想班中的尖子生能跳出來,給孩子提供充分的思維空間非常重要,不要用教學上的小步子來限制學生的思維,對學生的錯誤要勇敢對待。給孩子充分的反思和辯論的空間,讓孩子越變越明,讓孩子評價在前,老師評價在后。
可以修改的環(huán)節(jié):1、課前通過學號感知環(huán)節(jié)刪去,和后面的例題有一定的 重復。
2、例題環(huán)節(jié)兩個問題可以一起問,給孩子更大的思考空間。學習的過程是一個悟的過程,可以選擇邊長是幾的正方形的呢?你是怎樣想的?學生在得到結(jié)論的過程中,其思考的過程的就是對意義的感悟的過程,孩子能通過自己的思考方式得出結(jié)論,也就找到了求公因數(shù)和最大公因數(shù)的方法,那么下一個環(huán)節(jié)讓學生直接求兩個數(shù)的公因數(shù)和最大公因數(shù)也就沒有難度了,而且學生中也能出項用不同的方法來求,方法不會那么單一。當然完全屏棄動手操作我還有我的想法,可以分不同的層次采取不同的方法,“可以選擇邊長是多少分米的正方形呢?你可以利用手中的學習工具解決這個問題,再想想找出來的邊長和長方形的長和寬有什么關系。也可以不用學習工具,請說說你是怎么想的?”這樣不同層度的孩子提供不同的學習方式,成一個互相補充、驗證的過程。
找因數(shù)的教學設計篇八
《標準》指出“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者和合作者?!边@一理念要求我們教師的角色必須轉(zhuǎn)變。我想教師的作用必須體現(xiàn)在以下幾個方面。一是要引導學生思考和尋找眼前的問題與自己已有的知識體驗之間的關聯(lián);二是要提供把學生置于問題情景之中的機會;三是要營造一個激勵探索和理解的氣氛,為學生提供有啟發(fā)性的討論模式;四是要鼓勵學生表達,并且在加深理解的基礎上,對不同的答案開展討論;五是要引導學生分享彼此的思想和結(jié)果,并重新審視自己的想法。
對照《課標》的理念,我對《公因數(shù)與最大公因數(shù)》的教學作了一點嘗試。
一、引導學生思考和尋找眼前的問題與自己已有的知識體驗之間的關聯(lián)。
《公因數(shù)與最大公因數(shù)》是在《公倍數(shù)和最小公倍數(shù)》之后學習的一個內(nèi)容。如果我們對本課內(nèi)容作一分析的話,會發(fā)現(xiàn)這兩部分內(nèi)容無論是在教材的呈現(xiàn)程序還是在思考方法上都有其相似之處。基于這一認識,在課的開始我作了如下的設計:
“今天我們學習公因數(shù)與最大公因數(shù)。對于今天學習的內(nèi)容你有什么猜測?”
學生已經(jīng)學過公倍數(shù)與最小公倍數(shù),這兩部分內(nèi)容有其相似之處,課始放手讓學生自由猜測,學生通過對已有認知的檢索,必定會催生出自己的一些想法,從課的實施情況來看,也取得了令人滿意的效果。什么是公因數(shù)和最大公因數(shù)?如何找公因數(shù)與最大公因數(shù)?為什么是最大公因數(shù)面不是最小公因數(shù)?這一些問題在學生的思考與思維的碰撞中得到了較好的生成。無疑這樣的設計貼近學生的最近發(fā)展區(qū),為課堂的有效性奠定了基礎。
二、提供把學生置于問題情景之中的機會,營造一個激勵探索和理解的氣氛
三、讓學生進行獨立思考和自主探索
通過學生的猜測,我把學生的提出的問題進行了整理:
(1)什么是公因數(shù)與最大公因數(shù)?
(2)怎樣找公因數(shù)與最大公因數(shù)?
(3)為什么是最大公因數(shù)而不是最小公因數(shù)?
(4)這一部分知識到底有什么作用?
我先讓學生獨立思考?然后組織交流,最后讓學生自學課本
這樣的設計對學生來說具有一定的挑戰(zhàn)性,在問題解決的過程中充分發(fā)揮了學生的主體性。在這一過程中學生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標準》中倡導給學生提供探索與交流的時間和空間的應有之意吧。
找因數(shù)的教學設計篇九
1 讓學生理解倍數(shù)和因數(shù)的意義,掌握找一個非零自然數(shù)的倍數(shù)與因數(shù)的方法,發(fā)現(xiàn)一個非零自然數(shù)的倍數(shù)和因數(shù)中最大的數(shù)、最小的數(shù)以及一個非零自然數(shù)的倍數(shù)與因數(shù)個數(shù)的特征。
2 讓學生初步意識到可以從一個新的角度,即倍數(shù)和因數(shù)的角度來研究非零自然數(shù)的特征及其相互關系,培養(yǎng)學生觀察、分析與抽象概括的能力,體會數(shù)學學習的奇妙,對數(shù)學產(chǎn)生好奇心。
教學重點:理解倍數(shù)和因數(shù)的意義。
教學難點:從倍數(shù)和因數(shù)的意義出發(fā),尋找一個非零自然數(shù)的倍數(shù)與因數(shù)。
一、直接導入
師:自然數(shù)是我們在數(shù)的王國中認識的第一種數(shù),今天我們將從一個特定的角度,即倍數(shù)和因數(shù)的角度來研究自然數(shù)的特征及其相互關系。(板書課題:倍數(shù)和因數(shù))
二、教學倍數(shù)和因數(shù)的意義
(屏幕出示12個完全相同的正方形)
生:我可以拼出一個3×4的長方形。
師:你們猜猜看,這會是一個什么樣的長方形?
生:每排擺3個正方形,擺4排;或每排擺4個正方形,擺3排。(課件演示學生所猜的長方形,并讓學生明白這兩種拼法其實是相同的)
生:我還可以拼出一個2×6的長方形。
生:我還可以拼出一個1×12的長方形。(師問法同上,略)
師:同學們可別小看這三道算式,今天我們學習的內(nèi)容,就將從研究這三道乘法算式拉開帷幕。
師:根據(jù)3×4=12,我們可以說(屏幕出示):12是3的倍數(shù),12也是4的倍數(shù);3是12的因數(shù),4也是12的因數(shù)。
師:同學們一起來讀一讀,感受一下。
師:你讀懂了些什么?(引導學生感知什么是倍數(shù)、什么是因數(shù),即倍數(shù)和因數(shù)的意義;明白在乘法算式中,積就是兩個乘數(shù)的倍數(shù),兩個乘數(shù)就是積的因數(shù))
師:請你從6×2=12和12×1=12這兩道算式中任選一題,用上面的話說一說。
師(出示18÷3=6):誰是誰的倍數(shù)?誰是誰的因數(shù)?為什么?
生:因為18/3=6可以改寫成3×6=18,所以18是3和6的倍數(shù),3和6是18的因數(shù)。(引導學生明白根據(jù)乘除法的互逆關系,在除法算式中也可以說誰是誰的倍數(shù)、誰是誰的因數(shù))
屏幕出示:4是因數(shù),24是倍數(shù)。
師:這句話對嗎?(讓學生理解倍數(shù)和因數(shù)是兩個數(shù)之間的相互依存關系,必須說誰是誰的倍數(shù)、誰是誰的因數(shù))
師:我們再看屏幕上這三道乘法算式(1×12=12、2×6=12、3×4=12),善于觀察的同學一定發(fā)現(xiàn)在這三道乘法算式中。我們其實已經(jīng)找到了12的所有因數(shù),你知道都有哪些嗎?(引導學生說一說)
屏幕出示一組數(shù):36、4、9、0、5、2。
師:請你從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關系來說一說。(生可能會選36和4、36和9、4和2這幾組數(shù))
設疑:
(1)為什么不選0呢?(讓學生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))(屏幕演示將“0”去掉)
(2)為什么不選5呢?(例如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))(屏幕演示將“5”去掉)
(3)去掉了0和5,剩下的這些數(shù)和36有什么關系呢?(它們都是36的因數(shù),或36是它們的倍數(shù);當然,36也是36的因數(shù),36也是36的倍數(shù))
三、探討找一個數(shù)的因數(shù)的方法
生:容易漏掉或重復。
師:你們有沒有什么好辦法,能一個不落地將36的所有因數(shù)都找到呢?同學們可以獨立完成這個任務,也可以同桌的兩位同學合作完成。如果你全部找到了,就請將36的所有因數(shù)寫在練習紙上。同時將你找因數(shù)的方法寫在橫線的下方。(教師巡視,學生討論交流)
展示學生的作品,學生可能出現(xiàn)的答案有:
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等數(shù)都是36的因數(shù)。
在寫法上,可能出現(xiàn)的答案為1、36、2、18、3、12、4、9、6(一對一對地寫),或按照從小到大的順序?qū)?,?、2、3、4、6、9、12、18、36。然后引導學生比較這兩種寫法的不同。將方法優(yōu)化:運用除法算式一對一對地找一個數(shù)的因數(shù)更為簡便,并且不重復、不遺漏,做到答案的完整性;在寫的時候,可以一頭一尾地寫,這樣可以做到答案的有序性。(板書:有序、完整)
2 探討一個數(shù)的因數(shù)的特征。
課件出示12的因數(shù)、15的因數(shù)和36的因數(shù)。(從小到大排列)
課件出示描述一個非零自然數(shù)的因數(shù)的特征的表格(如下),學生討論、交流后再反饋。
師(小結(jié)):一個非零自然數(shù)的最大因數(shù)是它本身,最小因數(shù)是1,因數(shù)的個數(shù)是有限的。
四、探討找一個數(shù)的倍數(shù)的方法
1 師:我們已經(jīng)掌握了如何有序地、完整地找出一個非零自然數(shù)的所有因數(shù)的方法。如果讓你找出一個數(shù)的所有倍數(shù),你會找嗎?(生:會)那么,我們就一起來找找3的倍數(shù)。(學生試著找出3的倍數(shù),教師巡視,對有困難的學生給予幫助)
2 師:你是怎樣有序地、完整地找出3的倍數(shù)的?
生:用3分別乘1、2、3……得出3的倍數(shù)。
生:用3依次地加3得到3的倍數(shù)。
師:你認為哪種方法能更迅速地找出3的倍數(shù)?(學生討論交流)
師:3的倍數(shù)能找得完嗎?(生:找不完)那么,可以怎樣表示3的倍數(shù)的個數(shù)呢?(生:用省略號表示)(相機板書:3、6、9、12、15……)
3 寫出30以內(nèi)5的倍數(shù)。(做在練習紙上)
4 課件出示3的倍數(shù)、4的倍數(shù)、5的倍數(shù),讓學生從最大倍數(shù)、最小倍數(shù)、倍數(shù)的個數(shù)三個方面去描述一個數(shù)的倍數(shù)的特征(見下表)。
師(小結(jié)):一個非零自然數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),所以倍數(shù)的個數(shù)是無限的。
五、組織游戲,深化認識
游戲——請到我家來做客
(每位學生的手中,都有一張寫有該名學生的學號卡片)
課件演示并配有話外音:春天來了,濃濃的春天氣息讓森林里好客的小動物們,紛紛拿出自己最珍貴的食物款待大家。
(1)屏幕上出現(xiàn)了可愛的小狗向同學們走來(配音):24的因數(shù)是我的朋友。如果你卡片上的數(shù)是24的因數(shù),歡迎你,我的朋友!(卡片上的數(shù)若符合要求,就請這位學生站起來)
(2)屏幕上出現(xiàn)了笨笨的小豬向同學們揮手(配音):我邀請的朋友是5的倍數(shù),喜歡我,就快快來吧!
(3)瞧!可愛的小貓咪也來了。(屏幕上出現(xiàn)了俏皮、可愛的小貓咪)配音:如果你卡片上的數(shù)是1的倍數(shù),請來我家做客吧!
(每位學生卡片上的數(shù)都符合要求,所以全班學生都站了起來)
師:小貓咪這么好客,老師也想去她家做客。你們來為老師想一個符合要求的數(shù),好嗎?(生答略)
師:是不是所有的自然數(shù)都可以呢?
生:除了0。
屏幕出示:所有非零自然數(shù)都是1的倍數(shù)。
(4)配音:威嚴的老虎來了!它請的朋友很特別,它是所有非零自然數(shù)的因數(shù)。這個數(shù)是幾呢?(生討論交流)
屏幕出示:只有1才符合要求,因為1是所有非零自然數(shù)的因數(shù)。
六、挑戰(zhàn)自我,拓展升華
師:雖然我們只合作了這短短的三十分鐘,但老師已經(jīng)深深感到我們這個班的同學非常聰明,不僅善于觀察,而且愛動腦筋,所以老師特別準備了一個富有挑戰(zhàn)性的節(jié)目想考考大家,你們敢不敢接受挑戰(zhàn)?(生:敢!)
挑戰(zhàn)——你猜、我猜、大家猜i(屏幕演示動畫標題)
(1)20、5、4、3。
答案:去掉3(屏幕演示隱去“3”),剩下的數(shù)是20的因數(shù),或20是它們的倍數(shù)。
(2)4、12、18、3。
答案有兩種:一是去掉18(屏幕演示隱去“18”),剩下的數(shù)便是12的因數(shù),或12是它們的倍數(shù);二是去掉4(屏幕演示隱去“4”),剩下的數(shù)便是3的倍數(shù)。
七、全課總結(jié)
師:通過今天這節(jié)課的學習,你有什么收獲?你們學得開心嗎?玩得開心嗎?其實。數(shù)學就是這么簡單而有趣,讓我們每天都樂在其中!
總評:
本節(jié)課的教學特色是嚴謹靈活、細膩奔放。在“因數(shù)和倍數(shù)”概念的學習過程中,重視師生情感的交流,注重每個學生的發(fā)展,較好地體現(xiàn)了“教師有效引導下學生自主探索”這一教學策略。
1 意義教學引導學生自主構建。
在多次的實踐教學中,發(fā)現(xiàn)用12個完全相同的小正方形拼出一個長方形。對于四年級的學生來說非常容易。教材這樣安排的目的,在于幫助學生有意識地感受1和12、2和5、3和4這幾組數(shù)之間的有機聯(lián)系。
本課中,倍數(shù)和因數(shù)的意義教學分三個層次:
1 借助三個問題讓學生通過想像及大屏幕的直觀演示,引導學生得出三道乘法算式,同時介紹倍數(shù)和因數(shù)的含義。
2 通過除法算式找因倍關系。
3 滲透倍數(shù)和因數(shù)的相互依存性。
2 合理組織教材,將找一個數(shù)的因數(shù)及其特征教學提前。
尋找一個數(shù)的因數(shù)是本節(jié)課的教學難點,學生往往滿足于答案的尋找,而忽視尋找過程中的思考策略及思維方法。
教學中,教師出示一組數(shù),如36、4、9、0、5、2,讓學生從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關系來說一說。
最后設疑:
(1)為什么不選o呢?(讓學生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))
(2)為什么不選5呢?(如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))
(3)去掉了0和5,剩下的這些數(shù)和36有什么關系呢?(它們都是36的因數(shù),或36是它們的倍數(shù))
這樣的改變,既達到預定目的,又為學習找因數(shù)做了鋪墊,引發(fā)了學生尋找36的因數(shù)的濃厚興趣。在引導學生自主探索一個數(shù)的因數(shù)的特征時,教師讓學生帶著問題去觀察討論:每一個非零自然數(shù)的因數(shù)的個數(shù)是有限的還是無限的?一個非零自然數(shù)的最大因數(shù)是幾?一個非零自然數(shù)的最小因數(shù)是幾?以上安排,降低了學生的學習難度。
3 尋找一個數(shù)的因數(shù)和倍數(shù)的方法讓學生自己生成。
在尋找一個數(shù)的因數(shù)和倍數(shù)的過程中。教師將學生推向發(fā)現(xiàn)與探索的前臺。
尋找一個數(shù)的倍數(shù)和因數(shù)。方法不是惟一的。教師在肯定各種方法合理性的同時,及時引導學生進行溝通,尋找它們的共同點和聯(lián)系,進而比較各種方法之間的優(yōu)劣,遴選最優(yōu)方法,提升思維效率。
4 增強游戲中數(shù)學思維的含量。
知識在游戲中深化,在挑戰(zhàn)中升華。
本節(jié)課以“有效引導下自主探索”為教學策略。以三道乘法算式為線索,以教材文本為依托,以有梯度的游戲活動展開對知識的深化鞏固,并適時、適量引入多媒體輔助教學,將諸多細小的認知活動歸整在一個探究性的課堂自主研究活動中。通過自主觀察、交流發(fā)現(xiàn)、共同分享,引領學生經(jīng)歷“研究與發(fā)現(xiàn)”的真實過程。課尾游戲的運用,激發(fā)了學生的學習熱情,讓學生以愉快的心情和良好的體驗融入學習活動中,培養(yǎng)了學生用數(shù)學眼光看待游戲的意識,大大降低了學生對數(shù)學概念學習的枯燥體驗。
找因數(shù)的教學設計篇十
教材分析:
這部分教材首先以例題的形式介紹因數(shù)和倍數(shù)的概念,然后在例1和例2中分別介紹了求一個數(shù)的因數(shù)和倍數(shù)的方法,引導學生從本質(zhì)上理解概念,避免死記硬背,向?qū)W生滲透從具體到一般的抽象歸納的思想方法。
了解學生:
學生已經(jīng)學習了四年的數(shù)學,有了四年整數(shù)知識的基礎,本課利用實物圖引出乘法算式,然后引出因數(shù)和倍數(shù)的含義,培養(yǎng)了學生的抽象概括能力。
教學目標:
1、知識技能:(1)理解和掌握因數(shù)、倍數(shù)的概念,認識它們之間的聯(lián)系和區(qū)別。(2)學會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練地求出一個數(shù)的因數(shù)或倍數(shù)。(3)知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
2、過程方法:經(jīng)歷因數(shù)和倍數(shù)的認識以及求一個數(shù)的因數(shù)或倍數(shù)的過程,體驗類推、列舉和歸納總結(jié)等學習方法。
3、情感態(tài)度:在學習活動中,感受數(shù)學知識之間的內(nèi)在聯(lián)系,體驗發(fā)現(xiàn)知識的樂趣。
教學重點:學會求一個數(shù)的因數(shù)或倍數(shù)的方法。
教學難點:理解和掌握因數(shù)和倍數(shù)的概念。
教學準備:課件、作業(yè)紙。
教學過程:
一、創(chuàng)設情境——找朋友
1、唱一唱:你們聽過“找朋友”這首歌嗎?誰愿意大聲的唱給大家聽?(一名學生唱,師評價:老師很喜歡你的聲音,你敢于表現(xiàn)自己,老師很愿意和你成為好朋友)
2、說一說:誰能具體的說一說“誰是誰的好朋友”?(鼓勵:老師希望能聽到更多人的聲音)
學生完整敘述:“××是 李老師的朋友,李老師是××的朋友”。
3、引入新課:同學們說的很好,那能不能說老師是朋友,××是朋友?看來,朋友是相互依存的,一個人不會是朋友。今天我們就來認識數(shù)學中的一對朋友“因數(shù)和倍數(shù)”(板書課題)
二、探究新知
1、提出問題:現(xiàn)在有12名同學參加訓練,要排成整齊的隊伍,可以怎樣排?用一個簡單的乘法算式表示出排列的方法。
學生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
課件出示相應的圖和算式。
2、揭示概念:以2×6=12為例。
邊說邊板書:( )是12的因數(shù),( )是12的因數(shù);
12是( )的倍數(shù),12是( )的倍數(shù)。
學生同桌互相說,指名兩名同學說。(評價:這么短的時間內(nèi),同學們就能準確、完整的表述它們之間的因倍關系,真了不起。)
突出強調(diào):能不能說12是倍數(shù),2是因數(shù)?(學生回答,揭示并板書:相互依存)
3、強化概念:另外兩道乘法算式,你也能像這樣準確地寫出它們之間的關系嗎?分組比賽,在作業(yè)紙上完成,看哪個組能完全做對。
學生在作業(yè)紙上完成,同時課件出示:(指名兩名學生在白板上利用普通筆標注答案)
找因數(shù)的教學設計篇十一
( )是( )的因數(shù); ()是( )的倍數(shù),
( )是( )的倍數(shù); ( )是( )的因數(shù);
( )是( )的倍數(shù)。 ()是( )的倍數(shù);
(評價:哪個組的同學都做對了,真是好樣的?。?/p>
4、明確范圍:打開書12頁明確因數(shù)倍數(shù)的范圍。
學生齊讀:為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是整數(shù)(一般不包括0)。
師板書:整數(shù)、不包括“0”。
三、找一個數(shù)的因數(shù)
1、師:通過這些乘法算式,我們找到了12的一些因數(shù),誰能說一說12的因數(shù)有哪些?
學生說出,12的因數(shù)有6,2,4,3,1,12。
2、師:找完了嗎?怎樣就能不重復、不遺漏,找到所有的因數(shù)?
學生可能說出:依據(jù)乘法算式,有序的找。(評價:有序的思考是我們數(shù)學中一種很重要的思維方式,這位同學很了不起,你們學會了嗎?誰還能再說一說這種方法)
找因數(shù)的教學設計篇十二
第45—46頁。
1、經(jīng)歷找兩個數(shù)的公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。2、探索找兩個數(shù)的公因數(shù)的方法,學會正確找出兩個數(shù)的公因數(shù)和最大的公因數(shù)。
3、使學生能探索出解決問題的有效方法。
探索找兩個數(shù)的公因數(shù)的方法。
實物投影儀等。
一、填一填。
1、呈現(xiàn)找公因數(shù)的一般方法:
(1)讓學生分別找出12和18的因數(shù),并交流找因數(shù)的方法。
引出公因數(shù)和最大公因數(shù)的概念。
(3)組織學生展開討論,再引導學生理解“兩個數(shù)公有的因數(shù)是它們的公因數(shù),其中最大的一個是它們的最大公因數(shù)”。
(4)小結(jié):找公因數(shù)的一般方法是先用想乘法算式的方式分別找出兩個數(shù)的因數(shù),再找出公有的因數(shù)和最大公因數(shù)。
2、引導學生討論其它的方法。
二、練一練。
1、第1、2題,通過這兩題的練習,使學生進一步明確找兩個數(shù)的公因數(shù)的一般方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗。
2、第3題,學生獨立完成。
4、讓學生用自己的語言來表述自己的發(fā)現(xiàn)。
5、第5題,寫出下列各分數(shù)分子和分母的最大公因數(shù)?,F(xiàn)自己寫一寫,然后說一說自己是怎樣找公因數(shù)的。
三、數(shù)學探索。
1、寫出1、2、3、4、5、……、20等各數(shù)和4的最大公因數(shù)。
(1)先讓學生填表,找出這些數(shù)與4的最大公因數(shù)。
(2)再根據(jù)表格完成折線統(tǒng)計圖。
(3)組織學生觀察表格,討論“你發(fā)現(xiàn)了什么規(guī)律?”
2、找一找1、2、3、4、5、……、20等各數(shù)和10的最大公因數(shù),是否也有規(guī)律,與同學說一說你的發(fā)現(xiàn)。
四、總結(jié):
誰能說一說找公因數(shù)的一般方法是什么?
板書設計:
找最大公因數(shù)
12=()×()=()×()=()×()
18=()×()=()×()=()×()
12的因數(shù):18的因數(shù):
找因數(shù)的教學設計篇十三
江蘇省興化市楚水小學 袁世斌 225700 【教學內(nèi)容】
在學習本單元之前,學生已經(jīng)較為系統(tǒng)地掌握了十進制計數(shù)法,同時也基本完成了整數(shù)四則運算的學習。這節(jié)課將引領學生從一個新的角度(即倍數(shù)和因數(shù)的角度)來研究非零自然數(shù)的特征及其相互關系,為學生進一步學習數(shù)的分類、公倍數(shù)和公因數(shù)以及分數(shù)的約分、通分等奠定基礎。
1.讓學生理解倍數(shù)和因數(shù)的意義,掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
理解倍數(shù)和因數(shù)的意義 【教學難點】
掌握找一個數(shù)的倍數(shù)和因數(shù)的方法 【設計理念】
1、從學生熟悉的生活入手。首先和學生交流生活中人與人的關系,自然過渡到自然數(shù)中數(shù)與數(shù)之間的關系。并由猜老師的年齡,引入倍數(shù)的概念以及找一個數(shù)倍數(shù)的方法。
2、從學生的操作入手。由淺入深,由無序到有序,通過讓學生用不同個數(shù)的正方形拼成長方形,引入因數(shù)的概念,引導學生將數(shù)和形有機結(jié)合起來,從而有序地找出一個數(shù)的所有因數(shù)。
一、課前談話
1、話家常,拉“關系”
是的,在我們生活中人與人之間總會存在著這樣那樣的關系,而在數(shù)字的世界里,數(shù)和數(shù)之間也會存在各種各樣的關系。今天這節(jié)課,我們就和大家一起研究兩個非零自然數(shù)之間的關系。
二、學習倍數(shù)的意義
1、猜歲數(shù),引“倍數(shù)”
你們?yōu)槭裁串惪谕暤卣f我36歲呢?難道只有36是9的倍數(shù)嗎?
2、按順序,找倍數(shù)
9的倍數(shù)除了36還有什么數(shù)嗎? 能寫完嗎?為什么?
指出:1倍、2倍往下寫,通常只要寫出5個,然后用“??”表示。你能直接寫出2的倍數(shù)和5的倍數(shù)嗎? 學生獨立書寫。
指名回答,板書:2的倍數(shù)有2、4、6、8、10、12??
5的倍數(shù)有5、10、15、20、25、30?? 提問:觀察上面的三個例子,你有什么發(fā)現(xiàn)?在小組內(nèi)討論。
指名匯報,相機出示以下結(jié)論:一個數(shù)的最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)的倍數(shù)的個數(shù)是無限的。
三、學習因數(shù)的意義
1、初擺圖形,感知“因數(shù)” 屏幕出示12個同樣大小的正方形
根據(jù)3х4=12,我們可以說(屏幕出示):12是3的倍數(shù),12也是4的倍數(shù);3是12的因數(shù),4也是12的因數(shù)。
同學們一起來讀一讀,感受一下。
請你從1х12=12;2х6=12這兩道算式中任選一題,用上面的話說一說。
2、再擺圖形,感受“順序”
學生獨立練習后,組織匯報。
根據(jù)學生的回答,投影出示相應的拼法,并相機板書:16÷1=16
16÷2=8 16÷4=4
你能結(jié)合這道算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)嗎?
你能連起來說說16的因數(shù)有哪些嗎?相機板書:16的因數(shù)有:1、16、2、8、4 3是不是16的因數(shù),為什么?5呢?明確因倍關系的依據(jù)。
3、數(shù)形結(jié)合,掌握方法
將你找出的36的因數(shù)寫在練習紙上。
展示學生的作品。36的因數(shù)有:1、36、2、18、3、12、4、9、6.將方法優(yōu)化:根據(jù)數(shù)形結(jié)合的思想,運用除法算式一對一對地找一個數(shù)的因數(shù)更為簡便,并且能夠做到不重復、不遺漏。
4、觀察思考,發(fā)現(xiàn)規(guī)律
引導學生觀察12的因數(shù)、16的因數(shù)和36的因數(shù)。
提問:觀察上面的三個例子,你又有什么發(fā)現(xiàn)?在小組內(nèi)討論。
明確:1是所有非零自然數(shù)的因數(shù)。
既然1是所有非零自然數(shù)的因數(shù),那么換句話說,也就是所有非零自然數(shù)都是1的?(讓學生接上說倍數(shù))
四、綜合練習,加深理解
2、你猜、我猜、大家猜
1)、茶杯每只4元,我去超市買了一些茶杯,猜猜我可能用了多少元? 讓學生盡可能說出不同答案,師適時追問:可能嗎?如有錯誤,要求學生說出錯在哪里,明確用去的錢數(shù)是4的倍數(shù)。
2)、出示邊長3厘米的正方形。
a、長24cm、寬8cm
b、長36cm、寬4cm
根據(jù)12的因數(shù)的個數(shù)比16的因數(shù)的個數(shù)多,引導學生得出并不是數(shù)字越大,因數(shù)的個數(shù)就越多。然后然學學生找出60的所有因數(shù)。
五、總結(jié)延伸
找因數(shù)的教學設計篇十四
這節(jié)課教學倍數(shù)和因數(shù)的認識,學習找一個自然數(shù)的倍數(shù)和因數(shù)。教材安排了三道例題、兩道“試一試”及相應的“想想做做”,例1通過用12個同樣大的正方形拼成不同的長方形的操作,讓學生寫出不同的乘法算式,在此基礎上教學倍數(shù)和因數(shù)的意義。例2教學找一個數(shù)的倍數(shù),并結(jié)合“試一試”引導發(fā)現(xiàn)一個數(shù)倍數(shù)的特征。例3教學找一個數(shù)的因數(shù),再結(jié)合“試一試”引導發(fā)現(xiàn)一個數(shù)因數(shù)的特征。通過本節(jié)課的學習,要達到以下教學目標:
1、通過操作活動得出相應的乘除算式,幫助學生理解倍數(shù)和因數(shù)的意義;探索求一個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。
2、使學生在認識倍數(shù)和因數(shù)以及探索一個數(shù)的倍數(shù)或者因數(shù)的過程中,進一步體會數(shù)學知識之間的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。
教學重點是理解倍數(shù)和因數(shù)的含義,掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。
教學難點是掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。為了順利完成教學目標,有效突出重點,突破難點,在尊重教材的基礎上,我打算根據(jù)學生的認知特點和心理特征,通過激趣、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣,讓學生通過獨立思考、合作交流進行自主探索,教師及時引導學生掌握數(shù)學思考的方法。
基于以上認識我預設了如下幾個教學環(huán)節(jié):
首先和學生交流生活中的各種各樣的關系,“比如你們和老師是什么關系?你和媽媽呢?其次引入數(shù)學中自然數(shù)和自然數(shù)之間也有各種關系,初步體會數(shù)和數(shù)的對應關系,既拉近了數(shù)學和生活的聯(lián)系,又培養(yǎng)了學生的興趣。
第二個環(huán)節(jié):操作發(fā)現(xiàn),理解概念,我準備分三個層次進行教學。
(1)操作體驗,初步感知倍數(shù)和因數(shù)的意義。通過操作我們能發(fā)現(xiàn)許多的知識。請同學們拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著那些不同的乘法算式。再讓學生根據(jù)算式猜一猜“他可能是怎么擺的”,然后電腦演示相應的操作。用12個大小完全相同的小正方形,進行不同的擺法展示,為了避免簡單的操作,引導學生通過算式來想他是怎么擺的。組織交流,引出算式與概念鑒定。學生充分經(jīng)歷了“由形到數(shù)、再由數(shù)到形”的過程,既為倍數(shù)和因數(shù)概念的提出積累了素材,又初步感知倍數(shù)和因數(shù)的關系,為正確理解概念提供了幫助。
(2)在具體的乘法算式中,理解倍數(shù)和因意義。值得注意的是,教材沒有給出抽象的意義,而是結(jié)合乘法算式進行直觀的描述,這樣不僅降低了難度,而且為學生的后續(xù)學習拓展了空間。因此,教師首先根據(jù)算式介紹倍數(shù)和因數(shù)的意義,然后讓學生根據(jù)其余兩道乘法算式模仿的說一說,充分的讀一讀,在通過“能說4是因數(shù),12是倍數(shù)嗎?這一反例的教學,充分感受倍數(shù)和因數(shù)是相互依存的。
(3)及時練習。我把 “想想做做”第1題改為學生自己出題,說說誰是誰的倍數(shù),誰是誰的因數(shù),既達到了鞏固的目的,來自學生自身的材料又更加真實,學生更容易接受。同時考慮到學生受思維定勢的影響,可能所舉例子都是乘法算式,教師就需及時有效“介入”比如,“24除以3=8”,促成學生不僅從乘法的角度去思考而且也可以從除法的角度進行,為后面找一個數(shù)的因數(shù)做好伏筆。第三個環(huán)節(jié)是探索方法,發(fā)現(xiàn)特征,分兩個層次進行,首先教學找一個數(shù)的倍數(shù)。我將教學過程設計成了一個個問題鏈,什么樣的數(shù)是3的倍數(shù)?,怎樣找才能有條理?比一比誰找的倍數(shù)多?能把3的倍數(shù)全找完嗎,應該怎樣表示問題的答案?你有什么竅門找一個數(shù)的倍數(shù)?在學生自主探索的基礎上,小組合作,全班交流,學生之間積極互動,“捕捉”對方的想法,完善自己的認知理解掌握找一個數(shù)倍數(shù)的方法并結(jié)合“試一試”,通過交流比較,發(fā)現(xiàn)“一個數(shù)的倍數(shù)的個數(shù)是無限的,一個數(shù)最小的倍數(shù)是它本身,沒有最大的倍數(shù)”。第二個層次教學找一個數(shù)的因數(shù),相對于找一個數(shù)的倍數(shù)而言,找一個數(shù)的因數(shù)無疑難度增加了,在此環(huán)節(jié)中不必急于告訴學生方法,而是放手讓學生獨立思考,嘗試探索“從學生的角度看問題是教學取得實效的關鍵”對學生出現(xiàn)的情況我作了充分的預設:有的可能是用乘法想(乘積是36的兩個數(shù)是36的因數(shù))有的可能是用除法想(除數(shù)和商都是36的因數(shù))這兩種方法都出現(xiàn)一個問題:無序。從而導致重復、遺漏現(xiàn)象。為了解決問題,我再次放手,小組交流,,并在此基礎上讓學生自主探求”怎樣找才會有序,找到什么時候為止”?用自己的語言總結(jié),最后師生達成共識:按一定的順序一對對的找,找到兩個數(shù)接近為止。從而在互相評價、充分比較、集體交流中感悟有序思考的必要性和科學性。由于一個數(shù)倍數(shù)特征的借鑒,一個數(shù)因數(shù)的特征放手讓學生自己總結(jié)。
找因數(shù)的教學設計篇十五
教學目標:
1.通過解決實際問題,初步了解兩個數(shù)的公因數(shù)和最大公因數(shù)在現(xiàn)實生活中的應用。
2.在探索新知的過程中,培養(yǎng)學好數(shù)學的信心以及小組成員之間互相合作的精神。
重點難點:
初步了解兩個數(shù)的公因數(shù)和最大公因數(shù)在現(xiàn)實生活中的應用。初步了解兩個數(shù)的公因數(shù)和最大公因數(shù)在現(xiàn)實生活中的應用。
教學方法:
自主學習、合作探究
教學過程:
一、激趣導入
(約5分鐘)
課件展示教材62頁例3,今天我們要給這個房子鋪磚大家感興趣嗎?要求要用整數(shù)塊。
二、自主學習
(約5分鐘)
1.幾個數(shù)()叫做這幾個數(shù)的公因數(shù),其中最大的一個叫做()
2.16的因數(shù)有(),24的因數(shù)有(),16和24的公因數(shù)是(),最小公因數(shù)是(),最大公因數(shù)是()。
3.a=225,b=235,那么a和b的最大公因數(shù)是()。
4.用短除法求出99和36的最大公因數(shù)。
三、合作交流
(約13分鐘)
小組合作學習教材第62頁例3。
1.學具操作。
用按一定比例縮小的方格紙表示地面,用不同邊長的正方形紙表示地磚,我們發(fā)現(xiàn)邊長是厘米的正方形的紙可以正好鋪滿,沒有剩余,其它的都不行。
2.仔細觀察,你們發(fā)現(xiàn)能鋪滿的地磚邊長有什么特點?把你的發(fā)現(xiàn)在小組里交流。
3.總結(jié)。
解決這類問題的關鍵,是把鋪磚問題轉(zhuǎn)化成求公因數(shù)的問題來求。
四、精講點撥
(約8分鐘)
根據(jù)自主學習、合作探究的情況明確展示任務,進行展示。教師引導講解。
五、測評總結(jié)(約9分鐘)
1.達標練習
2.全課總結(jié)
這節(jié)課你都學到了什么知識?有什么收獲?
3.作業(yè)布置
練習十五5,6題。
板書設計:
最大公因數(shù)(2)
鋪磚問題:求公因數(shù)
找因數(shù)的教學設計篇十六
教學內(nèi)容:青島版教材小學數(shù)學五年級上冊88—91頁。
教學目標:
1、使學生初步認識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
2、使學生在認識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學知識之間的內(nèi)在聯(lián)系,提高數(shù)學思考的水平,對數(shù)學產(chǎn)生好奇心,培養(yǎng)學習興趣。
教學重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。
教學難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。
教具準備:多媒體課件、學生練習題
教學過程:
一、談話導入。
師:同學們看這是什么?
生:小正方形。
師:想不想知道王老師給大家?guī)砹硕嗌賯€這樣的小正方形?
生:想。
師:多少個?
生:12個。
師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?
生:能。
【設計意圖】:以學生熟悉情景引入,激發(fā)學生的好奇心。
二、教學因數(shù)和倍數(shù)的意義
師:增加一點難度,用一道算式說明你的想法,讓其他同學猜一猜你是怎么擺的,好嗎?
生:好!
學生匯報:
生1:1×12=12
師:他是怎么擺的?
生:一行擺1個,擺了12行;也可以一行擺12個,擺1行。
課件出示擺法。
師:把第一種擺法豎起來就和第二種擺法一樣了,我們把這兩種擺法算作一種擺法。(用課件舍去一種)
生2:2×6=12
師:猜一猜他是在怎么擺的?
生:一行擺2個,擺了6行;也可以一行擺6個,擺2行。
師:這兩種情況,我們也算一種。
生3:3×4=12
師:他又是怎么擺的?
生:一行擺3個,擺了4行;也可以一行擺4個,擺3行。
師:還有其他擺法嗎?
生:沒有了。
師:對,如果把12個同樣大小的正方形拼成一個長方形,就只有這三種擺法,大家千萬不要小看了這三種擺法,更不要小看了這三種擺法下面的三道乘法算式,今天我們的新課就藏在這三道乘法算式里面。因數(shù)和倍數(shù)(板書課題)
2.教學“因數(shù)和倍數(shù)”的意義。
師:我們以3×4=12為例,在數(shù)學上可以說3是12的因數(shù),4也是12的因數(shù),12是3的倍數(shù),12也是4的倍數(shù)。這里還有兩道算式,同桌兩個同學先互相說一說誰是誰的因數(shù),誰是誰的倍數(shù)。
學生匯報:任選一道回答。
生1:12是12的因數(shù),1是12的因數(shù),12是2的倍數(shù),12是1的倍數(shù)。
師:說的多好?。‰m然有點像繞口令,但數(shù)學上確實是這樣的。我們再一起說一遍。
師:還有一道算式,誰來說一說?
生:2是12的因數(shù),6是12的因數(shù),12是2的倍數(shù),12也是6的倍數(shù)。
師明確:為了研究方便,我們所說的因數(shù)和倍數(shù)都是指自然數(shù),(0除外)。
師:通過剛才的練習,你有沒有發(fā)現(xiàn)12的因數(shù)一共有哪些?(生邊說老師邊有序的用課件出示12的所有的因數(shù)。)
師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。
3、5、18、20、36
【設計意圖】讓學生經(jīng)歷知識的形成過程。通過實際例子,讓學生進一步理解,因數(shù)和倍數(shù)之間存在著相互依存的關系。
三、教學尋找因數(shù)的方法。
1、找一個數(shù)的因數(shù)。
師:說出幾個36的因數(shù)并不難,關鍵是怎樣找的既有序又全面,有沒有信心挑戰(zhàn)一下?
生:有。
師:老師提個要求:
1)、可以獨立完成,也可以同桌交流。
2)、把這個數(shù)的因數(shù)找全以后,把你的方法記錄在下面。并總結(jié)你是怎樣找的。
2、探索交流找一個數(shù)的因數(shù)的方法。
找一名有代表性的作業(yè)板書在黑板上。
師:他找對了嗎?
生:沒有,漏下了一對。
師:為什么會漏掉?僅僅是因為粗心嗎?
生:不是,他沒有按照一定的順序找!
師:那么要找到36所有的因數(shù)關鍵是什么?
生:有序。
師生共同邊說邊有序的把36的所有的因數(shù)板書出來。師:還有問題嗎?
生:沒有了。
生:你們沒有,老師有一個問題,你們?yōu)槭裁凑业?就不再接著往下找了?
生:再接著找就重復了。
師:那么找到什么時候就不找了?
生:找到重復了,就不在往下找了。
師、生共同總結(jié)找因數(shù)的方法。(一對一對有序的找,一直找到重復為止)。
師:有失誤的學生對自己的錯誤進行調(diào)整。
3、鞏固練習。
找出下面各數(shù)的因數(shù)。
4、尋找一個數(shù)的因數(shù)的特點。
【設計意圖】放手讓學生自主找一個數(shù)的因數(shù),并總結(jié)找一個數(shù)因數(shù)的方法。學生非常喜歡,而且也能夠讓學生在活動中提升。
四、教學尋找倍數(shù)的方法。
1、找一個數(shù)的倍數(shù)。
生:能!
師:試試看,找個小的可以嗎?
生:行!
師:找一下3的倍數(shù)。30秒時間,把答案寫在練習紙上。??
師:有什么問題嗎?
生:老師,寫不完。
師:為什么寫不完?
生:有很多個!
師:那怎么才能全都表示出來呢?
生:可以加省略號。
師:你太厲害了!你把語文上的知識都用上了,太真聰明了!難道不該再來點掌聲嗎?
師:誰能總結(jié)一下你是怎樣找到的?
生:從小到大依次乘自然數(shù)。
師:你真會思考!
課件出示3的倍數(shù)。
2、找5、7的倍數(shù)。
師:我們再來練習找一下5的倍數(shù)。
生:5的倍數(shù)有:5、10、15、20、25??
生:7的倍數(shù)有:7、14、21、28、35??
師:你能像總結(jié)一個數(shù)因數(shù)的特點一樣,來總結(jié)一下一個數(shù)的倍數(shù)有什么特征嗎?
生:能!
學生總結(jié):一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
【設計意圖】在探索求一個數(shù)的倍數(shù)和因數(shù)的方法時,創(chuàng)設具體的情境讓學生去合作交流,并結(jié)合具體事例,讓學生自己觀察并發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征,豐富了教學方式,讓學生在觀察中發(fā)現(xiàn),在合作中體驗成功的喜悅,在主動參與、樂于探究中發(fā)展自我。
四、知識拓展
認識“完美數(shù)”。
師:(課件出示6的因數(shù))在6的因數(shù)中還藏著另外一個秘密,(這是孩子們都瞪大眼睛在看,在聽!)我們把6的因數(shù)中最大的一個去掉,剩下1、2、3,然后把它們再加起來又回到6本身,數(shù)學家給這樣的數(shù)起了一個名字,叫“完美數(shù)”。依次出示第二個、第三個一直到第六個完美數(shù)。
小結(jié):其實有關因數(shù)和倍數(shù)的秘密還有很多,它們在等待著同學們在以后的學習中去研究、去探索。
【設計意圖】豐富學生的知識,陶冶學生的情操。
教學反思:
找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下三分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時如果再給予有效的指導和總結(jié)就更好了。
找因數(shù)的教學設計篇十七
教學目標:
1.使學生理解和認識公因數(shù)和最大公因數(shù),能用列舉的方法求100以內(nèi)兩個數(shù)的公因數(shù)和最大公因數(shù),能通過直觀圖理解兩個數(shù)的因數(shù)及公因數(shù)之間的關系。
2.使學生借助直觀認識公因數(shù),理解公因數(shù)的特征;通過列舉探索求公因數(shù)和最大公因數(shù)的方法,體會方法的合理和多樣;感受數(shù)形結(jié)合的思想,能有條理地進行思考,發(fā)展分析、推理等能力。
3.使學生主動參加思考和探索活動,感受學習的收獲,獲得成功的體驗,樹立學好數(shù)學的信心。
教學重點:
求兩個數(shù)的公因數(shù)和最大公因數(shù)。
教學難點:
理解求公因數(shù)和最大公因數(shù)的方法。
教學準備:
小黑板
教學過程:
一、鋪墊準備
1.直觀演示,作好鋪墊。
出示邊長6厘米和邊長5厘米的兩個正方形。
提問:觀察這兩個正方形,哪一個能正好分成邊長都是2厘米的小正方形?
2.引入新課。
談話:根據(jù)上面我們看到的,如果一個長度是原來邊長的因數(shù),就能正好全部分割成小正方形?,F(xiàn)在就利用這樣的認識,學習與因數(shù)有密切聯(lián)系的新內(nèi)容,認識新知識,學會新方法。
二、學習新知
1.認識公因數(shù)。
(1)出示例9,了解題意。
啟發(fā):觀察正方形紙片的邊長和長方形的長、寬,哪種紙片能把長方形正好鋪滿,哪種不能正好鋪滿?先在小組討論,說說你的理由。
交流:哪種紙片能把長方形正好鋪滿,哪種不能?你是怎樣想的?
結(jié)合交流進行演示,引導觀察用正方形紙片鋪的結(jié)果,理解邊長6是長方形兩邊12和18的因數(shù),能正好鋪滿;(板書:126=2186=3)邊長4是12的因數(shù),但不是18的因數(shù),就不能正好鋪滿。(板書:124=3184=4......2)
(2)啟發(fā):想一想,還有哪些邊長是整厘米數(shù)的正方形,也能把這個長方形正好鋪滿?為什么?先獨立思考,再和同桌說一說,并說說你的理由。
找因數(shù)的教學設計篇十八
1.教學中幫助學生從已經(jīng)據(jù)有的經(jīng)驗出發(fā),在用小正方形拼長方形的活動中,體會找一個數(shù)的因數(shù)的方法,提高有序思考的能力。
2.在1~100的自然數(shù)中,能找出某個自然數(shù)的所有因數(shù)。
體會找一個數(shù)的因數(shù)的方法
提高有序思考的能力
師:同學們喜歡做拼圖的游戲嗎?
也可以使用自己喜歡的方式拼擺或涂畫的方式獨立操作,邊擺邊做好記錄.
然后,把你拼擺的過程和你的伙伴說說。
1、學生:用12個小正方形自由拼(畫)長方形
(教師巡視,指導個別有問題的學生,搜集學生中出現(xiàn)的問題.)
參與小組活動,指導學生總結(jié)學法.
師:你是怎樣拼的,說說好嗎?
學生代表一邊匯報,一邊將所拼的圖在黑板上進行演示
注意讓學生指圖說明。
2、思考:請同學們在合作交流中總結(jié)出找一個數(shù)的因數(shù)的基本方法。
(或者用乘法思路想:哪兩個數(shù)相乘得12?然后一對一對找出來。)
全班交流
師:我發(fā)現(xiàn)同學們真的很聰明,誰愿意把你的想法說給大家聽?
(每個小組由一名代表在全班匯報思考的過程,再次體會“想乘法算式”找一個數(shù)的因數(shù)的方法。)
學生回答,老師同時板演:
(3種,算式一樣的可選擇其中的一種說出來。)
及時板書:1×12=12 2×6=12 3×4=12
或:12=1×12=2×6=3×4
師:由黑板上整理出的算式可見,12的因數(shù)有哪些呢?
(1、12、2、6、3、4)
引導思考:找一個數(shù)的因數(shù)怎樣做到即不重復又不遺漏呢?
(通過以上的拼、畫、小組交流,學生已經(jīng)有所發(fā)現(xiàn)。)
學生的答案:
(1)我發(fā)現(xiàn)積是12的乘法算式中,它們的因數(shù)都是12的因數(shù)。
(2)我發(fā)現(xiàn)可以利用乘法口訣一對對的找12的因數(shù)。
師:誰能按順序說出來?
(1、2、3、4、6、12)
3、小結(jié):找一個數(shù)的因數(shù),可以用乘法依次一對一對的找。這樣有順序的給一個倍數(shù)找因數(shù),好處就是不重復、不漏找。
1、獨立完成第8頁“試一試”,注意關注學生是否注意有序思考。
(9的因數(shù):1、3、9 15的因數(shù):1、3、5、15)
2、師:同學們已經(jīng)掌握了找因數(shù)的方法,現(xiàn)在看看誰找得快,請同學們做課本第9頁的練一練的第1、2題。
第1題學生獨立完成,同桌交流。
(教師巡視,發(fā)現(xiàn)問題及時解決。)
第2小題小競賽:看誰找的快
3、師:同學們已經(jīng)學會了拼長方形找因數(shù),現(xiàn)在能不能在小方格中畫出長方形找因數(shù)呢?請做第9頁的第3題。
(1×16=16 2×8=16 4×4=16)
(16=1×16=2×8=4×4)
(16的因數(shù):1、2、4、16)
4、下面的數(shù),各有幾個因數(shù)
1 19 4 32 11
總結(jié):同學們說得很好,我們利用找因數(shù)的方法可以解決很多實際問題。
師:這節(jié)課你學會了什么呢?用學到的方法我們都可以做些什么?
找因數(shù)的教學設計篇十九
最大公因數(shù)(二)
教材第82、83頁練習十五的第2一9題。
1.培養(yǎng)學生獨立思考及合作交流的能力,能用不同方法找兩個數(shù)的最大公因數(shù)。
2.培養(yǎng)學生抽象、概括的能力。
掌握找兩個數(shù)最大公因數(shù)的方法。
投影。
1.完成教材第82頁練習十五的第2題。
學生先獨立完成,然后集體交流找最大公因數(shù)的經(jīng)驗,并將這8組數(shù)分為三類。
2.完成教材第82頁練習十五的第3一5題。
學生獨立填在課本上,集體交流。
3.完成教材第83頁練習十五的第6題。
學生獨立填寫,集體交流,體會兩個數(shù)的最大公因數(shù)是1的幾種情況。
4.完成教材第83頁練習十五的第7一11題。
學生獨立審題,理解題意,然后試著解答,集體交流。
5.指導學生閱讀教材第83頁的“你知道嗎”。
請學生試著舉例。提問:互質(zhì)的兩個數(shù)必須都是質(zhì)數(shù)嗎?你能舉出兩個合數(shù)互質(zhì)的例子嗎?
通過本節(jié)課的學習,主要掌握了找兩個數(shù)的最大公因數(shù)的方法。找兩個數(shù)的最大公因數(shù),可以先分別寫出這兩個數(shù)的因數(shù),再圈出相同的因數(shù),從中找到最大公因數(shù);也可以先找到一個數(shù)的因數(shù),再從大到小,看看哪個數(shù)是另一個數(shù)的因數(shù),從而找到最大公因數(shù)。
找因數(shù)的教學設計篇二十
教學過程:
一、認識倍數(shù)和因數(shù)
生:1×12
師:猜猜看,他每排擺了幾個,擺了幾排?
生:12個,擺了一排。
生:三四十二
生齊:2×6
師:張老師來猜測一下同學們腦子里怎么想的,有同學可能想每排擺6個,擺2排。也有同學可能想每排擺2個,擺6排。(屏幕顯示擺法)同樣第二種擺法也可以省。
師:還有不同的想法嗎?每排能擺5個嗎?12個同樣大小的正方形能擺3種不同的乘法算式,千萬別小看這些乘法算式,今天我們研究的內(nèi)容就在這里。咱們就以第一道乘法算式為例,3×4=12,數(shù)學上把3是12的因數(shù),以往我們把他叫約數(shù),現(xiàn)在叫因數(shù),3是12的因數(shù),那4(也是12的因數(shù),)倒過來12是3的倍數(shù),12(也是4的倍數(shù))。同學們很有遷移的能力,這就是我們今天所要研究的因數(shù)和倍數(shù)。
師板書:因數(shù)和倍數(shù)
師:這兒還有兩道乘法算式,先自己說一說誰是誰的因數(shù)?誰是誰的倍數(shù)?行不行?
師:誰先來?
生說略
師:剛才在聽的時候發(fā)現(xiàn)1×12說因數(shù)和倍數(shù)時有兩句特別拗口,是哪兩句?。?/p>
生:12是12的因數(shù),12是12的倍數(shù)。
生:自然數(shù)
師:而且誰得除外。
生:0
師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。
3、5、18、20、36
生說略。
二、探索找因數(shù)倍數(shù)的方法
生1:3、18
師:還有誰?
生2:36
師:3、18、36都是36的因數(shù),只有這3個嗎?
生1:1
生2:4
生3:6
師:其實要找出36的一個因數(shù)并不難,難就難在你有沒有能力把36的所有因數(shù)全部找出來?能不能?張老師作一下詳細說明,因為這個問題有點難度,你可以獨立完成也可以同桌完成,下面你選擇你喜歡的方式,可以合作,也可以單干,想一想怎么不遺漏,注意了,當你找出了36的所有因數(shù),別忘了填在作業(yè)紙上,如果能把怎么找到的方法寫在下面更好。
學生填寫時師巡視搜集作業(yè)。
師:張老師找到了3份不同的作業(yè),大家仔細觀察這三份作業(yè),可有意思了。我把他命名為a、b、c師板書。
a:2、4、13、12、18、36
b:1、2、4、3、6、9、12、18、36
c:1、36、2、18、3、12、4、9、6
師:關于a這種方法你有什么話要說?(學生紛紛舉手)能不能從正面的角度說一說,這個同學找出的因數(shù)有沒有值得肯定的地方?(學生沉默)一點都沒有我們值得肯定的地方嗎?你先來。
生1:都對的
師:有沒有道理?看來要找一個人的優(yōu)點挺困難的。
生2:寫全了
生大聲說:沒有!
生:沒有寫全,少了3、6、9。
生:36÷4,只寫了4,沒寫9
師:他的意思是說用除法來做的話,找一個數(shù)的因數(shù),一個個找,還是兩個兩個找?
生齊:兩個兩個找。
生2:先把1寫在頭,36寫在尾,然后再把2寫中間,這樣依次寫下去,這樣比較美觀。
師:張老師提煉出兩個字:“順序”,好象還不僅僅是因為粗心的問題,沒有按照一定的順序。
師:第二個同學有沒有找全,有沒有更好的建議送給他。
生:他應該把4、3調(diào)換一下。
師:你想提出抗議嗎?你們覺得有順序嗎?(有)你自己來說?
生:他們那樣還要頭對尾頭對尾的,像這樣直接就可以寫了。
師:有沒有聽明白,也是同樣一對一對出現(xiàn)的。
生:大小沒有排,b大小排完后從小到大很舒服。
師:你看你那個舒服嗎?
生:舒服
師:正是因為你的質(zhì)疑,他把方法說了出來。他用了什么?
生:乘法口訣
師:非常感謝同學們給出的發(fā)言,正是你們的發(fā)言讓我們感受到了如何尋找一個數(shù)的因數(shù),有沒有問題。
生1:找到開始重復就不找了
生2:我認為應該找到比較接近如5、6,7、8找到比較接近就可以了。
師:體會體會1、學生:36、2、學生:18、3、12、4、9、6這兩個因數(shù)在不斷接近,接近到相差無幾。
生:
生:直接找更大數(shù)的所有的因數(shù),這個同學很厲害,已經(jīng)在用分解質(zhì)因數(shù)的方法在找一個因數(shù)的個數(shù)了。
師:通過剛才的交流,有辦法了嗎?有沒有方法不遺漏。試一個。20
生齊:1、2、4、5、10、20
再試一個:15,寫在練習紙上。學生匯報
師:尋找一個數(shù)掌握的不錯,這節(jié)課還要研究倍數(shù)呢。會找一書的倍數(shù)嗎?找一個小一點的,3的倍數(shù),誰來找一個。
生:21、300
師:你能把3的倍數(shù)全部寫下來嗎?
生:不能。太多太多了。
師:那怎么辦?寫不完可以用省略號表示。試試看。
學生練習紙上完成,匯報。
師:同學們雖然找的答案差不多,但腦子里的方法各不相同。我想聽聽你是怎樣找的?
生1:3×1、3×2
【本文地址:http://mlvmservice.com/zuowen/4175790.html】