二倍角公式教案(優(yōu)秀18篇)

格式:DOC 上傳日期:2023-11-19 05:56:13
二倍角公式教案(優(yōu)秀18篇)
時間:2023-11-19 05:56:13     小編:字海

教案應(yīng)該遵循教學(xué)大綱和教育教學(xué)法的要求。教案的編寫需要與其他教學(xué)資源結(jié)合,提高教學(xué)效果。教師要具備良好的教案編寫習(xí)慣,提高教案的整體質(zhì)量和實用性。

二倍角公式教案篇一

1.使學(xué)生認(rèn)識倍數(shù)和因數(shù),能判斷兩個自然數(shù)間的因數(shù)和倍數(shù)關(guān)系;學(xué)會找一個數(shù)的因數(shù)和倍數(shù)的方法,能按順序找出100以內(nèi)自然數(shù)的所有因數(shù),10以內(nèi)自然數(shù)的所有倍數(shù);了解一個數(shù)的因數(shù)、倍數(shù)的特點。

2.使學(xué)生經(jīng)歷探索求一個數(shù)的因數(shù)或倍數(shù)的方法、一個數(shù)的因數(shù)和倍數(shù)特點的過程,體會數(shù)學(xué)知識、方法的內(nèi)在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數(shù)感。

3.使學(xué)生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學(xué)好數(shù)學(xué)的信心,養(yǎng)成樂于思考、勇于探究等良好品質(zhì)。

二倍角公式教案篇二

教學(xué)目標(biāo):

一、知識與技能。

1、參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力2、會運用公式進(jìn)行簡單的乘法運算。

二、過程與方法。

1、經(jīng)歷探索過程,學(xué)會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的。

數(shù)學(xué)式子表達(dá)出,即給出公式。

2、在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符。

號感和語言描述能力。

三、情感與態(tài)度。

以探索、歸納公式和簡單運用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗,增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學(xué)方法的逐步形成.

教學(xué)重點:公式的簡單運用。

教學(xué)難點:公式的推導(dǎo)。

教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合。

課前準(zhǔn)備:投影儀、幻燈片。

二倍角公式教案篇三

情景設(shè)置:

同學(xué)們,現(xiàn)在我們家里都有電視機,大家都知道電視機的橫切面是個長方形,下面我們一起來研究這樣一個問題:將幾臺型號相同的電視機疊放在一起組成電視墻,計算圖中這些電視墻的面積。

(每一個小長方形的長為a,寬為b)。

我們可以看到,電視墻是一個長方形,由9個小長方形組成。

從整體上看,電視墻的面積為長方形的長與寬的積:3a3b;

從局部看,電視墻中的每個小長方形的.面積都是ab,電視墻的面積是這些小長方形的面積和:9ab。

于是,我們有:3a3b=9ab.

新課講解:

1.探索研究。

請學(xué)生回答,教師加以總結(jié)歸納:

兩個單項式3a與3b相乘,只要把兩個單項式的系數(shù)3與3相乘,再把這兩個單項式的字母a與b相乘,即3a3b=(33)(ab)=9ab.

4ab5b這兩個單項式的積是20ab。

同學(xué)們回答的太棒了,兩個單項式相乘,實際上是運用了乘法交換律與結(jié)合律。由此,我們可以得到單項式乘單項式法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里含有的字母,則連同它們的指數(shù)作為積的一個因式。

2.例題。

計算:(1)a(6ab);

(2)(2x)(-3xy).

解:(1)a(6ab)。

=(6)(aa)b。

=2ab;(教師規(guī)范格式)。

(2)(2x)(-3xy).

=8x(-3xy)。

=【8(-3)】(xx)y。

=-24xy.

二倍角公式教案篇四

一、談話導(dǎo)入,揭示課題。

我們能不能通過觀察個位上的數(shù)來確定是不是3的倍數(shù),那么3的倍數(shù)到底有什么特征呢?今天我們共同來研究。

板書課題:3的倍數(shù)的特征。

二、探索交流、獲取新知。

(一)活動一:復(fù)習(xí)鞏固。

1、前面我們研究了2和5的倍數(shù)的特征,能用你的話說一說他們的特征呢?

2、請你舉例說明。(請學(xué)生說,教師把學(xué)生的舉例板書在黑板上。)。

3、說說能同時被2和5整除的數(shù)有什么特征?(觀察特征。用自己的話說一說。)。

(二)活動二:探索研究3的倍數(shù)的特征。

1、在書上第6頁的表中,找出3的倍數(shù),并做上記號。

(先獨立完成,看誰找的快?)。

2、觀察3的倍數(shù),你發(fā)現(xiàn)了什么?

教師參與到討論學(xué)習(xí)中。

先獨立思考,想出自己的想法。

然后與四人小組的同學(xué)說說你的發(fā)現(xiàn)。

生1:3的倍數(shù)個位上的數(shù)有0、1、2、3、4、5、6、7、8、9沒什么規(guī)律。

生2:十位上的數(shù)也沒有什么規(guī)律。

生3:將每個數(shù)的各個數(shù)字加起來試試看。

3、你發(fā)現(xiàn)的規(guī)律對三位數(shù)成立嗎?找?guī)讉€數(shù)來檢驗一下。

(1)自己先找?guī)讉€數(shù)試一試。

(2)然后在小組內(nèi)說說你驗證的結(jié)論。

(三)活動三:試一試。

在下面數(shù)中圈出3的倍數(shù)。

284553873665。

(先自己圈,然后說說你是怎樣判斷的?)。

(四)活動四:練一練。

1、請將編號是3的倍數(shù)的氣球涂上顏色。

361754714548。

(自己獨立完成,在小組內(nèi)說說自己的想法。)。

2、選出兩個數(shù)字組成一個兩位數(shù),分別滿足下面的條件。

3045。

(1)是3的倍數(shù)。

(2)同時是2和3的倍數(shù)。

(3)同時是3和5的倍數(shù)。

(4)同時是2,3和5的倍數(shù)。

(獨立完成,說說你的竅門和方法。)。

(五)活動五:實踐活動。

在下表中找出9的倍數(shù),并涂上顏色。

(可以在自主實踐以后再交流。)。

三、總結(jié)。

通過這節(jié)課的學(xué)習(xí),你有什么收獲?

二倍角公式教案篇五

1.讓學(xué)生探索3.的倍數(shù)的特征,會判斷一個數(shù)是不是3的倍數(shù)。

2.讓學(xué)生在學(xué)習(xí)過程中學(xué)會運用分析、比較、歸納或猜想、檢驗等方法,并進(jìn)一步學(xué)會與同學(xué)交流。

教學(xué)重難點。

判斷一個數(shù)是不是3的倍數(shù)。

課前準(zhǔn)備。

小黑板、學(xué)具卡片。

教學(xué)活動。

一、引入新課,激發(fā)興趣。

教師在黑板上寫出一組數(shù):5、6、14、18、25、27、36、41、90,問學(xué)生:誰能判斷出哪些數(shù)是3的倍數(shù)?(這些都是一些簡單的數(shù),估計學(xué)生通過口算很快就能判斷出來)。

教師再寫出幾個數(shù):1540、2856、3075,再問:誰能很快判斷出哪些數(shù)是3的倍數(shù)?當(dāng)學(xué)生出現(xiàn)畏難情緒時,教師說:我能很快地說出這幾個數(shù)當(dāng)中,2856和3075都是3的倍數(shù)。

學(xué)生報數(shù),教師很快地回答,并把是3的倍數(shù)的數(shù)板書在黑板上,再讓學(xué)生用計算器進(jìn)行驗證。

談話:你們一定在想:老師你有什么竅門嗎?有啊!你們想知道嗎?讓我們一起來探索3的倍數(shù)的特征。(板書課題:3的倍數(shù)的特征)。

二、自主探索。合作學(xué)習(xí)。

1.先讓學(xué)生猜一猜:3的倍數(shù)有什么特征?舉例說明。

2.根據(jù)學(xué)生猜測的結(jié)果,討論:個位上是3、6、9的數(shù)是3的倍數(shù)嗎?

如:84、51、27、90、123、2856、3075,它們用的算珠顆數(shù)分別是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。

4.引導(dǎo)學(xué)生觀察、分析、討論:用的算珠的顆數(shù)有什么共同點?

:每個數(shù)所用算珠的顆數(shù)都是3的倍數(shù)。

5.提問:這些數(shù)所用算珠的顆數(shù)跟什么有關(guān)系?小組討論,交流討論結(jié)果。

:一個數(shù)是3的倍數(shù),這個數(shù)各位上的數(shù)的和一定是3的倍數(shù)。

6.進(jìn)一步驗證。(1)同桌之間互相報數(shù),驗證剛才的結(jié)論是否正確。(2)用1、2、6可以寫成126,還可以組成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?小組討論后得出結(jié)論:3的倍數(shù),跟數(shù)字的位置沒有關(guān)系,只跟各位數(shù)上的數(shù)的和有關(guān)系。

7.試一試:如果一個數(shù)不是3的倍數(shù),這個數(shù)各位上數(shù)的和是3的倍數(shù)嗎?

在小組里舉例驗證、討論交流。得出:一個數(shù)不是3的倍數(shù),這個數(shù)各位上數(shù)的和不是3的倍數(shù)。歸納:一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。

三、運用結(jié)論。鞏固拓展。

1.做“想想做做”第1題。

指名口答。提問:你是怎么判斷出67不是3的倍數(shù),84是3的倍數(shù)的?

2.做“想想做做”第2題。

提問:每一題有沒有余數(shù)與什么有關(guān)?有什么關(guān)系?談話:在沒有余數(shù)的算式下邊畫橫線,看誰做得快。指名報結(jié)果,共同評議。

3.做“想想做做”第3題。

讓學(xué)生獨立填寫,再在小組里交流:你能找到幾種不同的填法?

4.做“想想做做”第4題。

學(xué)生涂完后,指名回答:9的倍數(shù)都是3的倍數(shù)嗎?

5.做“想想做做”第5題。

各自組數(shù),并把組成的數(shù)記下來。

指名報答案,全班學(xué)生評議。

6.補充題。

提問:你今年幾歲?再過幾年你的歲數(shù)是3的倍數(shù)?

四、

二倍角公式教案篇六

1.回顧知識。

提問:上節(jié)課,我們已經(jīng)復(fù)習(xí)了整數(shù)和小數(shù)的有關(guān)知識。

結(jié)合學(xué)生交流,板書。

2.揭示課題。

引入:這節(jié)課,我們復(fù)習(xí)因數(shù)和倍數(shù)的相關(guān)知識。

通過復(fù)習(xí),能進(jìn)一步了解關(guān)于因數(shù)和倍數(shù)的知識,理解它們之間的聯(lián)系和區(qū)別,并能應(yīng)用這些知識。

二、基本練習(xí)。

1.知識梳理。

提高:回想一下,在學(xué)習(xí)因數(shù)和倍數(shù)時,我們還學(xué)習(xí)了哪些相關(guān)的知識?

學(xué)生回顧,交流,教師適當(dāng)引導(dǎo)回顧。

根據(jù)學(xué)生回答,板書整理。

2.做練習(xí)與實踐第10題。

學(xué)生獨立完成,指名板演。

集體交流,讓學(xué)生說說找一個數(shù)的因數(shù)和倍數(shù)的方法。

3.做練習(xí)與實踐第11題。

出示題目,學(xué)生直接口答。

提問:怎樣判斷一個數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?

追問:這里哪些是偶數(shù),哪些是奇數(shù)?說說你是怎樣想的。

4.做練習(xí)與實踐第12題。

學(xué)生先獨立寫出質(zhì)數(shù)和合數(shù),再指名口答。

追問:最小質(zhì)數(shù)是幾?最小的合數(shù)呢?

二倍角公式教案篇七

基本運算不但應(yīng)當(dāng)“會”,而且要熟、要快。這樣的要求不但是為了目前的質(zhì)量,而且更重要的是保證進(jìn)一步學(xué)習(xí)的進(jìn)度與質(zhì)量,是為了運用自如。應(yīng)當(dāng)與“會了就可以,習(xí)題可以少做”的思想斗爭。

應(yīng)當(dāng)盡可能地多做些習(xí)題,以達(dá)到熟能生巧的境地。不要以為多做習(xí)題搞得熟些是浪費時間,少做幾個習(xí)題,煮成夾生飯那才是浪費時間呢!算術(shù)不熟練,做代數(shù)題時處處用到算術(shù),每一個基本運算都比旁人慢,因而做代數(shù)習(xí)題所花的時間自然比那算術(shù)熟練的人所花的時間多了。

不僅如此,如果一個人運算熟,在聽老師進(jìn)一步講課的時候,對于一些與以往知識有關(guān)的推導(dǎo)部分很快地接受了,只要專聽這一節(jié)課的主要的關(guān)鍵性的幾點就可以了。

而不熟練的人卻必須枝枝節(jié)節(jié)地每步必細(xì)聽,每步必細(xì)想,這樣雖然把自己的神經(jīng)搞得十分緊張而疲乏,但結(jié)果還不能抓住要點。換言之,基本訓(xùn)練熟練的人,他僅僅在已有的知識上添上一點或兩點新東西,而不熟練的則勢必處處被動,添上一大堆東西,當(dāng)然也就串不起來了。

客觀事物的發(fā)展愈來越復(fù)雜了,要求愈精密了。如果要求運算一百次的計算中,我們錯了一次,那我們的成績不是99分而是0分,因為答錯了!如果是“人造衛(wèi)星”,它就硬是不肯上天。

怎樣來對付“煩”的計算?最好先有一些準(zhǔn)備,其中包括思想上的和熟練運算技巧上的。一切應(yīng)當(dāng)根據(jù)客觀需要,客觀煩,就不怕煩。如果我們主觀上的就怕煩,那我們思想上就解除了武裝,在將來深鉆的過程中,就會出現(xiàn)困難。寧可充分準(zhǔn)備,而不要被解除武裝。

應(yīng)當(dāng)培養(yǎng)同學(xué)的不怕煩、深入想的本領(lǐng),在運算方面應(yīng)當(dāng)培養(yǎng)同學(xué)具有喜歡算,不怕煩,經(jīng)常練的習(xí)慣。我所講的算,也把符號運算包括在內(nèi),也就是包括邏輯推理在內(nèi)。

數(shù)形性質(zhì)、基本運算、邏輯推理的熟練還不能僅僅依靠一時的鍛煉,而必須靠經(jīng)常的鍛煉。“拳不離手,曲不離口”,此之謂也。一有機會就練,經(jīng)常地練,練熟了,練到靈活運用的程度,練到推陳出新的程度。不僅要常練,還要苦練、活練。

難題還是有計劃有重點地做些好,這是一種鍛煉。書上的習(xí)題再難些,數(shù)學(xué)書上的習(xí)題一定能用數(shù)學(xué)來解決,數(shù)學(xué)書上第五章的習(xí)題一般是能用第五章的知識來解決的,這就是一個重要的提示,重要的范圍。

因此,適當(dāng)?shù)淖鲂╇y題,練了思路,對將來處理實際問題是有好處的。不然套得上公式的會,套不上的就不會,這樣的人在處理實際問題時,也就能力不大了。對待較難的問題,就要苦練,不達(dá)目的不休的苦練。

二倍角公式教案篇八

1、在下面數(shù)中圈出3的倍數(shù)。

284553873665。

2、選出兩個數(shù)字組成一個兩位數(shù),分別滿足下面的條件。

3045。

(1)是3的倍數(shù)。

(2)同時是2和3的倍數(shù)。

(3)同時是3和5的倍數(shù)。

(4)同時是2,3和5的倍數(shù)。

二倍角公式教案篇九

平方差公式是在學(xué)習(xí)多項式乘法等知識的基礎(chǔ)上,自然過渡到具有特殊形式的多項式的乘法,體現(xiàn)教材從一般到特殊的意圖。教材為學(xué)生在教學(xué)活動中獲得數(shù)學(xué)的思想方法、能力、素質(zhì)提供了良好的契機。對它的學(xué)習(xí)和研究,不僅得到了特殊的多項式乘法的簡便算法,而且為以后的因式分解,分式的化簡、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ),同時也為完全平方公式的學(xué)習(xí)提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個重要的公式。

學(xué)生是在學(xué)習(xí)積的乘方和多項式乘多項式后學(xué)習(xí)平方差公式的,但在進(jìn)行積的乘方的運算時,底數(shù)是數(shù)與幾個字母的積時往往把括號漏掉,在進(jìn)行多項式乘法運算時常常會確定錯某些次符號及漏項等問題。學(xué)生學(xué)習(xí)平方差公式的困難在于對公式的結(jié)構(gòu)特征以及公式中字母的廣泛的理解,當(dāng)公式中a、b是式時,要把它括號在平方。

難點:理解掌握平方差公式的結(jié)構(gòu)特點以及靈活運用平方差公式解決實際問題.。

二倍角公式教案篇十

1、了解完全平方公式的特征,會用完全平方公式進(jìn)行因式分解.

2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學(xué)生逆向思維能力和推理能力.

3、通過猜想、觀察、討論、歸納等活動,培養(yǎng)學(xué)生觀察能力,實踐能力和創(chuàng)新能力.

學(xué)習(xí)建議教學(xué)重點:

二倍角公式教案篇十一

進(jìn)一步使學(xué)生理解掌握平方差公式,并通過小結(jié)使學(xué)生理解公式數(shù)學(xué)表達(dá)式與文字表達(dá)式在應(yīng)用上的差異.

教學(xué)重點和難點:公式的應(yīng)用及推廣.

1.(1)用較簡單的代數(shù)式表示下圖紙片的面積.

(2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個矩形,并用代數(shù)式表示出你新拼圖形的面積.

講評要點:

沿hd、gd裁開均可,但一定要讓學(xué)生在裁開之前知道。

hd=bc=gd=fe=a-b,

這樣裁開后才能重新拼成一個矩形.希望推出公式:

a2-b2=(a+b)(a-b)。

2.(1)敘述平方差公式的數(shù)學(xué)表達(dá)式及文字表達(dá)式;。

(2)試比較公式的兩種表達(dá)式在應(yīng)用上的差異.

說明:平方差公式的數(shù)學(xué)表達(dá)式在使用上有三個優(yōu)點.(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學(xué)的人“套用”;(3)形式簡潔.但數(shù)學(xué)表達(dá)式中的a與b有概括性及抽象性,這樣也就造成對具體問題存在一個判定a、b的`問題,否則容易對公式產(chǎn)生各種主觀上的誤解.

依照公式的文字表達(dá)式可寫出下面兩個正確的式子:

經(jīng)對比,可以讓人們體會到公式的文字表達(dá)式抽象、準(zhǔn)確、概括.因而也就“欠”明確(如結(jié)果不知是誰與誰的平方差).故在使用平方差公式時,要全面理解公式的實質(zhì),靈活運用公式的兩種表達(dá)式,比如用文字公式判斷一個題目能否使用平方差公式,用數(shù)學(xué)公式確定公式中的a與b,這樣才能使自己的計算即準(zhǔn)確又靈活.

3.判斷正誤:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。

(1)102×98;(2)(y+2)(y-2)(y2+4).

解:(1)102×98(2)(y+2)(y-2)(y2+4)。

=(100+2)(100-2)=(y2-4)(y2+4)。

=9996;。

(1)103×97;(2)(x+3)(x-3)(x2+9);。

(3)59.8×60.2;(4)(x-)(x2+)(x+).

3.請每位同學(xué)自編兩道能運用平方差公式計算的題目.

例2填空:

思考題:什么樣的二項式才能逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積?

(某兩數(shù)平方差的二項式可逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積)。

練習(xí)。

填空:

1.x2-25=()();。

2.4m2-49=(2m-7)();。

3.a4-m4=(a2+m2)()=(a2+m2)()();。

例3計算:

(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).

解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。

=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。

=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。

=m4-14m2+49-n2.

1.什么是平方差公式?一般兩個二項式相乘的積應(yīng)是幾項式?

3.怎樣判斷一個多項式的乘法問題是否可以用平方差公式?

(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。

(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

(1)69×71;(2)53×47;(3)503×497;(4)40×39.

二倍角公式教案篇十二

1.學(xué)生通過回憶和整理,進(jìn)一步明確因數(shù)和倍數(shù)的相關(guān)知識,加深認(rèn)識相關(guān)概念之間的聯(lián)系與區(qū)別,能求兩個數(shù)的公因數(shù)和公倍數(shù),并能運用這些知識解決相關(guān)實際問題。

2.學(xué)生在應(yīng)用相關(guān)知識進(jìn)行判斷和推理的過程中,能說明思考過程,進(jìn)一步培養(yǎng)歸納概括和演繹推理等思維能力,進(jìn)一步增強分析問題和解決問題的能力。

3.學(xué)生進(jìn)一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,感受數(shù)學(xué)思考的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的自信心。

二倍角公式教案篇十三

一、學(xué)習(xí)目標(biāo):

1.經(jīng)歷探索平方差公式的過程.

2.會推導(dǎo)平方差公式,并能運用公式進(jìn)行簡單的運算.

二、重點難點。

重點:平方差公式的推導(dǎo)和應(yīng)用。

難點:理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.

三、合作學(xué)習(xí)。

你能用簡便方法計算下列各題嗎?

1×2998×1002。

導(dǎo)入新課:計算下列多項式的積.

1x+1x-12m+2m-2。

32x+12x-14x+5yx-5y。

結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.

即:a+ba-b=a2-b2。

四、精講精練。

二倍角公式教案篇十四

1.弄清完全平方公式的來源及其結(jié)構(gòu)特點,能用自己的。語言說明公式及其特點;

2.會用完全平方公式進(jìn)行運算。教學(xué)難點:會用完全平方公式進(jìn)行運算教學(xué)過程:

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。

用不同的`形式表示實驗田的總面積,并進(jìn)行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?

(2)(a-b)2等于什么?小穎寫出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時應(yīng)該引導(dǎo)觀察完全平方公式的特點,并用自己的言語表達(dá)出來。

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

(1);(2);。

(3);(4).

2.計算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)xxxxxxxxx_;(2);。

1.求的值,其中。

2.若。

對公式的真正理解有待加強。

二倍角公式教案篇十五

一、教學(xué)內(nèi)容:

本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時——完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。

本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗證為學(xué)生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對簡化某些代數(shù)式的運算,培養(yǎng)學(xué)生的求簡意識很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。

重點:掌握完全平方公式,會運用公式進(jìn)行簡單的計算。

難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應(yīng)用。

三、教學(xué)目標(biāo)。

(1)經(jīng)歷探索完全平方公式的推導(dǎo)過程,掌握完全平方公式,并能正確運用公式進(jìn)行簡單計算。

(2)進(jìn)一步發(fā)展學(xué)生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會獨立思考。

(3)通過推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會與他人合作交流,體驗解決問題的多樣性。

(4)體驗完全平方公式可以簡化運算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過程中獲得體驗成功的喜悅,增強學(xué)習(xí)數(shù)學(xué)的自信心。

四、學(xué)情分析與教法學(xué)法。

學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。

學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨立思考、歸納總結(jié)、合作交流。

總結(jié)反思中獲得數(shù)學(xué)知識與技能。

教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動探究的學(xué)習(xí)狀態(tài)。

五、教學(xué)過程(略)。

六、教學(xué)評價。

在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評價學(xué)生在知識技能、數(shù)學(xué)思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導(dǎo)學(xué)生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學(xué)生解決問題要以獨立思考為主,當(dāng)遇到困難時學(xué)會求助交流,教師也要給學(xué)生思考交流的時間,讓學(xué)生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。

在整個學(xué)習(xí)過程中,通過對學(xué)生參與自主探究的程度、合作交流的意識以及獨立思考的習(xí)慣,發(fā)現(xiàn)問題的能力進(jìn)行評價,并對學(xué)生的想法或結(jié)論給予鼓勵評價。

二倍角公式教案篇十六

九九乘法表是小學(xué)生學(xué)習(xí)數(shù)學(xué)時一定要學(xué)習(xí)的內(nèi)容,為小學(xué)生抄寫一份九九乘法表也是不少家長的功課之一。其實用excel作一份乘法表也是一個不錯的選擇。it168曾經(jīng)發(fā)表過一篇利用vba編程實現(xiàn)“九九乘法表”的文章,它就為我們指引了一條很不錯的制作乘法表的道路,令我們很受啟發(fā)。

在excel中,除了用vba編程來制作乘法表以外,我們還可以直接利用公式來寫乘法表,效果也是不錯的。下面我們以excel2007為例來說明。

一、建立乘法表。

首先我們在excel中建立一份空的表格,在b1:j1單元格區(qū)域分別填寫數(shù)字1至9,在a2:a10單元格也分別填寫數(shù)字1至9,得到如圖1所示表格。

圖1excel2007填寫基本數(shù)字。

圖2excel2007填充單元格。

在此公式中其實只用到了一個if函數(shù)。所寫乘法表中被乘數(shù)是b1:j1中的數(shù)據(jù),而乘數(shù)則是a2:a10單元格中的數(shù)據(jù)。我們所用公式的意思可以這樣理解:首先判斷被乘數(shù)是否小于或等于乘數(shù),如果是,那么就輸出結(jié)果,如果不是,那么在此單元格中就輸出空值。

二、為乘法表格添加表格線。

感覺那乘法表有些簡陋?不要緊,我們?yōu)楸砀窦由媳砀窬€就好了,

當(dāng)然,只為那些有內(nèi)容的單元格添加表格線。辦法嗎?首先隱藏不必要的輔助數(shù)據(jù),然后再用條件格式的方法為乘法表添加表格線。

先點擊a列列標(biāo)選中a列全部單元格,點擊右鍵,在彈出菜單中點擊“隱藏”命令,然后再點擊第一行的行號,選中全部第一行的單元格,再點擊右鍵,在彈出菜單中點擊“隱藏”命令,這樣,輔助數(shù)據(jù)就不見了。

現(xiàn)在,我們再選中b2單元格,然后點擊功能區(qū)“開始”選項卡“樣式”功能組“條件格式”按鈕,在彈出的菜單中點擊“新建規(guī)則”命令,打開“新建格式規(guī)則”對話框。然后在“選擇規(guī)則類型”列表中選擇“使用公式確定要設(shè)置格式的單元格”命令,然后在“為符合此公式的值設(shè)置格式”下方的輸入框中輸入公式“=b2“””,如圖3所示。

圖3excel2007編輯格式規(guī)則。

再點擊下方的“格式”按鈕,打開“設(shè)置單元格格式”對話框,在“邊框”選項卡中設(shè)置單元格的邊框格式,如圖4所示。當(dāng)然,我們還可以做出其它的設(shè)置。確定后,b2單元格就會添加有邊框了。

圖4excel2007設(shè)置單元格格式。

再選中b2單元格,然后點擊功能區(qū)“開始”選項卡“剪貼板”功能組中“格式刷”按鈕,然后“刷取”b2:j10單元格區(qū)域復(fù)制格式,那么,在乘法表中非空的那些單元格就會自動添加邊框線,而沒有內(nèi)容的那些單元格則不會有任何變化。如圖5所示。

圖5excel2007添加邊框線。

好了,不多說了,有興趣自己試試吧。

將本文的word文檔下載到電腦,方便收藏和打印。

二倍角公式教案篇十七

教學(xué)目的:

1、由”公式“引發(fā)聯(lián)想,培養(yǎng)學(xué)生發(fā)散思維能力。

2、學(xué)會多角度思考問題,提高學(xué)生口頭表達(dá)能力。

教學(xué)重、難點:

引導(dǎo)學(xué)生多角度思考問題。

教學(xué)過程:

一、課前三分鐘:

[生]按照號數(shù)輪流《我看abc-------》。

(話題訓(xùn)練:就26個英文字母之一展開合理想象)。

[生]點評。

二、活動過程:

(一)導(dǎo)入:打出課件:

數(shù)字笑話:

b、0對5說:”你該把肚皮收收了!

c、0碰到9,(大吃一驚):“哎,兄弟,怎么截肢了?”“。

d、學(xué)生猜:

0碰到(),很同情地說:”哎,怎么拄上雙拐了!“。

師:瞧,”0“多有意思?。▌?chuàng)見)。

這節(jié)課我們也好好表現(xiàn)一下,怎么樣?

打出課件:

二倍角公式教案篇十八

理解兩個完全平方公式的結(jié)構(gòu),靈活運用完全平方公式進(jìn)行運算。

在運用完全平方公式的過程中,進(jìn)一步發(fā)展學(xué)生的符號演算的能力,提高運算能力。

培養(yǎng)學(xué)生在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的見解。

一、復(fù)習(xí)導(dǎo)入。

2.計算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計算,結(jié)果是一樣的。

教師歸納:當(dāng)我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準(zhǔn)確;另一方面,當(dāng)我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結(jié)構(gòu)上來看就是一致的了,其結(jié)構(gòu)都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍。”注意到它們的統(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。

我們學(xué)習(xí)運算,除了要重視結(jié)果,還要重視過程,平時注意訓(xùn)練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。

二、新課講解。

溫故知新。

與,與相等嗎?為什么?

學(xué)生討論交流,鼓勵學(xué)生從不同的。角度進(jìn)行說理,共同歸納總結(jié)出兩條判斷的思路:

1.對原式進(jìn)行運算,利用運算的結(jié)果來判斷;

2.不對原式進(jìn)行運算,只做適當(dāng)變形后利用整體的方法來判斷。

思考:與,與相等嗎?為什么?

利用整體的方法判斷,把看成一個數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

總結(jié)歸納得到:;

三、典例剖析。

【本文地址:http://mlvmservice.com/zuowen/13193979.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔