二倍角公式教案(匯總16篇)

格式:DOC 上傳日期:2023-11-19 07:46:09
二倍角公式教案(匯總16篇)
時(shí)間:2023-11-19 07:46:09     小編:FS文字使者

教案是一種針對(duì)教學(xué)內(nèi)容和教學(xué)活動(dòng)的詳細(xì)設(shè)計(jì)和安排,它是教師進(jìn)行課堂教學(xué)的重要工具。教案的編寫應(yīng)該注重培養(yǎng)學(xué)生的學(xué)習(xí)興趣和動(dòng)手能力。在這里分享一些經(jīng)典的教案案例,供大家學(xué)習(xí)參考。

二倍角公式教案篇一

情景設(shè)置:

同學(xué)們,現(xiàn)在我們家里都有電視機(jī),大家都知道電視機(jī)的橫切面是個(gè)長(zhǎng)方形,下面我們一起來(lái)研究這樣一個(gè)問(wèn)題:將幾臺(tái)型號(hào)相同的電視機(jī)疊放在一起組成電視墻,計(jì)算圖中這些電視墻的面積。

(每一個(gè)小長(zhǎng)方形的長(zhǎng)為a,寬為b)。

我們可以看到,電視墻是一個(gè)長(zhǎng)方形,由9個(gè)小長(zhǎng)方形組成。

從整體上看,電視墻的面積為長(zhǎng)方形的長(zhǎng)與寬的積:3a3b;

從局部看,電視墻中的每個(gè)小長(zhǎng)方形的.面積都是ab,電視墻的面積是這些小長(zhǎng)方形的面積和:9ab。

于是,我們有:3a3b=9ab.

新課講解:

1.探索研究。

請(qǐng)學(xué)生回答,教師加以總結(jié)歸納:

兩個(gè)單項(xiàng)式3a與3b相乘,只要把兩個(gè)單項(xiàng)式的系數(shù)3與3相乘,再把這兩個(gè)單項(xiàng)式的字母a與b相乘,即3a3b=(33)(ab)=9ab.

4ab5b這兩個(gè)單項(xiàng)式的積是20ab。

同學(xué)們回答的太棒了,兩個(gè)單項(xiàng)式相乘,實(shí)際上是運(yùn)用了乘法交換律與結(jié)合律。由此,我們可以得到單項(xiàng)式乘單項(xiàng)式法則:?jiǎn)雾?xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它們的指數(shù)作為積的一個(gè)因式。

2.例題。

計(jì)算:(1)a(6ab);

(2)(2x)(-3xy).

解:(1)a(6ab)。

=(6)(aa)b。

=2ab;(教師規(guī)范格式)。

(2)(2x)(-3xy).

=8x(-3xy)。

=【8(-3)】(xx)y。

=-24xy.

二倍角公式教案篇二

1、在下面數(shù)中圈出3的倍數(shù)。

284553873665。

2、選出兩個(gè)數(shù)字組成一個(gè)兩位數(shù),分別滿足下面的條件。

3045。

(1)是3的倍數(shù)。

(2)同時(shí)是2和3的倍數(shù)。

(3)同時(shí)是3和5的倍數(shù)。

(4)同時(shí)是2,3和5的倍數(shù)。

二倍角公式教案篇三

一、談話導(dǎo)入,揭示課題。

我們能不能通過(guò)觀察個(gè)位上的數(shù)來(lái)確定是不是3的倍數(shù),那么3的倍數(shù)到底有什么特征呢?今天我們共同來(lái)研究。

板書課題:3的倍數(shù)的特征。

二、探索交流、獲取新知。

(一)活動(dòng)一:復(fù)習(xí)鞏固。

1、前面我們研究了2和5的倍數(shù)的特征,能用你的話說(shuō)一說(shuō)他們的特征呢?

2、請(qǐng)你舉例說(shuō)明。(請(qǐng)學(xué)生說(shuō),教師把學(xué)生的舉例板書在黑板上。)。

3、說(shuō)說(shuō)能同時(shí)被2和5整除的數(shù)有什么特征?(觀察特征。用自己的話說(shuō)一說(shuō)。)。

(二)活動(dòng)二:探索研究3的倍數(shù)的特征。

1、在書上第6頁(yè)的表中,找出3的倍數(shù),并做上記號(hào)。

(先獨(dú)立完成,看誰(shuí)找的快?)。

2、觀察3的倍數(shù),你發(fā)現(xiàn)了什么?

教師參與到討論學(xué)習(xí)中。

先獨(dú)立思考,想出自己的想法。

然后與四人小組的同學(xué)說(shuō)說(shuō)你的發(fā)現(xiàn)。

生1:3的倍數(shù)個(gè)位上的數(shù)有0、1、2、3、4、5、6、7、8、9沒什么規(guī)律。

生2:十位上的數(shù)也沒有什么規(guī)律。

生3:將每個(gè)數(shù)的各個(gè)數(shù)字加起來(lái)試試看。

3、你發(fā)現(xiàn)的規(guī)律對(duì)三位數(shù)成立嗎?找?guī)讉€(gè)數(shù)來(lái)檢驗(yàn)一下。

(1)自己先找?guī)讉€(gè)數(shù)試一試。

(2)然后在小組內(nèi)說(shuō)說(shuō)你驗(yàn)證的結(jié)論。

(三)活動(dòng)三:試一試。

在下面數(shù)中圈出3的倍數(shù)。

284553873665。

(先自己圈,然后說(shuō)說(shuō)你是怎樣判斷的?)。

(四)活動(dòng)四:練一練。

1、請(qǐng)將編號(hào)是3的倍數(shù)的氣球涂上顏色。

361754714548。

(自己獨(dú)立完成,在小組內(nèi)說(shuō)說(shuō)自己的想法。)。

2、選出兩個(gè)數(shù)字組成一個(gè)兩位數(shù),分別滿足下面的條件。

3045。

(1)是3的倍數(shù)。

(2)同時(shí)是2和3的倍數(shù)。

(3)同時(shí)是3和5的倍數(shù)。

(4)同時(shí)是2,3和5的倍數(shù)。

(獨(dú)立完成,說(shuō)說(shuō)你的竅門和方法。)。

(五)活動(dòng)五:實(shí)踐活動(dòng)。

在下表中找出9的倍數(shù),并涂上顏色。

(可以在自主實(shí)踐以后再交流。)。

三、總結(jié)。

通過(guò)這節(jié)課的學(xué)習(xí),你有什么收獲?

二倍角公式教案篇四

1.讓學(xué)生探索3.的倍數(shù)的特征,會(huì)判斷一個(gè)數(shù)是不是3的倍數(shù)。

2.讓學(xué)生在學(xué)習(xí)過(guò)程中學(xué)會(huì)運(yùn)用分析、比較、歸納或猜想、檢驗(yàn)等方法,并進(jìn)一步學(xué)會(huì)與同學(xué)交流。

教學(xué)重難點(diǎn)。

判斷一個(gè)數(shù)是不是3的倍數(shù)。

課前準(zhǔn)備。

小黑板、學(xué)具卡片。

教學(xué)活動(dòng)。

一、引入新課,激發(fā)興趣。

教師在黑板上寫出一組數(shù):5、6、14、18、25、27、36、41、90,問(wèn)學(xué)生:誰(shuí)能判斷出哪些數(shù)是3的倍數(shù)?(這些都是一些簡(jiǎn)單的數(shù),估計(jì)學(xué)生通過(guò)口算很快就能判斷出來(lái))。

教師再寫出幾個(gè)數(shù):1540、2856、3075,再問(wèn):誰(shuí)能很快判斷出哪些數(shù)是3的倍數(shù)?當(dāng)學(xué)生出現(xiàn)畏難情緒時(shí),教師說(shuō):我能很快地說(shuō)出這幾個(gè)數(shù)當(dāng)中,2856和3075都是3的倍數(shù)。

學(xué)生報(bào)數(shù),教師很快地回答,并把是3的倍數(shù)的數(shù)板書在黑板上,再讓學(xué)生用計(jì)算器進(jìn)行驗(yàn)證。

談話:你們一定在想:老師你有什么竅門嗎?有啊!你們想知道嗎?讓我們一起來(lái)探索3的倍數(shù)的特征。(板書課題:3的倍數(shù)的特征)。

二、自主探索。合作學(xué)習(xí)。

1.先讓學(xué)生猜一猜:3的倍數(shù)有什么特征?舉例說(shuō)明。

2.根據(jù)學(xué)生猜測(cè)的結(jié)果,討論:個(gè)位上是3、6、9的數(shù)是3的倍數(shù)嗎?

如:84、51、27、90、123、2856、3075,它們用的算珠顆數(shù)分別是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。

4.引導(dǎo)學(xué)生觀察、分析、討論:用的算珠的顆數(shù)有什么共同點(diǎn)?

:每個(gè)數(shù)所用算珠的顆數(shù)都是3的倍數(shù)。

5.提問(wèn):這些數(shù)所用算珠的顆數(shù)跟什么有關(guān)系?小組討論,交流討論結(jié)果。

:一個(gè)數(shù)是3的倍數(shù),這個(gè)數(shù)各位上的數(shù)的和一定是3的倍數(shù)。

6.進(jìn)一步驗(yàn)證。(1)同桌之間互相報(bào)數(shù),驗(yàn)證剛才的結(jié)論是否正確。(2)用1、2、6可以寫成126,還可以組成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?小組討論后得出結(jié)論:3的倍數(shù),跟數(shù)字的位置沒有關(guān)系,只跟各位數(shù)上的數(shù)的和有關(guān)系。

7.試一試:如果一個(gè)數(shù)不是3的倍數(shù),這個(gè)數(shù)各位上數(shù)的和是3的倍數(shù)嗎?

在小組里舉例驗(yàn)證、討論交流。得出:一個(gè)數(shù)不是3的倍數(shù),這個(gè)數(shù)各位上數(shù)的和不是3的倍數(shù)。歸納:一個(gè)數(shù)各位上的數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。

三、運(yùn)用結(jié)論。鞏固拓展。

1.做“想想做做”第1題。

指名口答。提問(wèn):你是怎么判斷出67不是3的倍數(shù),84是3的倍數(shù)的?

2.做“想想做做”第2題。

提問(wèn):每一題有沒有余數(shù)與什么有關(guān)?有什么關(guān)系?談話:在沒有余數(shù)的算式下邊畫橫線,看誰(shuí)做得快。指名報(bào)結(jié)果,共同評(píng)議。

3.做“想想做做”第3題。

讓學(xué)生獨(dú)立填寫,再在小組里交流:你能找到幾種不同的填法?

4.做“想想做做”第4題。

學(xué)生涂完后,指名回答:9的倍數(shù)都是3的倍數(shù)嗎?

5.做“想想做做”第5題。

各自組數(shù),并把組成的數(shù)記下來(lái)。

指名報(bào)答案,全班學(xué)生評(píng)議。

6.補(bǔ)充題。

提問(wèn):你今年幾歲?再過(guò)幾年你的歲數(shù)是3的倍數(shù)?

四、

二倍角公式教案篇五

1、了解完全平方公式的特征,會(huì)用完全平方公式進(jìn)行因式分解.

2、通過(guò)整式乘法逆向得出因式分解方法的過(guò)程,發(fā)展學(xué)生逆向思維能力和推理能力.

3、通過(guò)猜想、觀察、討論、歸納等活動(dòng),培養(yǎng)學(xué)生觀察能力,實(shí)踐能力和創(chuàng)新能力.

學(xué)習(xí)建議教學(xué)重點(diǎn):

二倍角公式教案篇六

1.學(xué)生通過(guò)回憶和整理,進(jìn)一步明確因數(shù)和倍數(shù)的相關(guān)知識(shí),加深認(rèn)識(shí)相關(guān)概念之間的聯(lián)系與區(qū)別,能求兩個(gè)數(shù)的公因數(shù)和公倍數(shù),并能運(yùn)用這些知識(shí)解決相關(guān)實(shí)際問(wèn)題。

2.學(xué)生在應(yīng)用相關(guān)知識(shí)進(jìn)行判斷和推理的過(guò)程中,能說(shuō)明思考過(guò)程,進(jìn)一步培養(yǎng)歸納概括和演繹推理等思維能力,進(jìn)一步增強(qiáng)分析問(wèn)題和解決問(wèn)題的能力。

3.學(xué)生進(jìn)一步體會(huì)數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,感受數(shù)學(xué)思考的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的自信心。

二倍角公式教案篇七

進(jìn)一步使學(xué)生理解掌握平方差公式,并通過(guò)小結(jié)使學(xué)生理解公式數(shù)學(xué)表達(dá)式與文字表達(dá)式在應(yīng)用上的差異.

教學(xué)重點(diǎn)和難點(diǎn):公式的應(yīng)用及推廣.

1.(1)用較簡(jiǎn)單的代數(shù)式表示下圖紙片的面積.

(2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個(gè)矩形,并用代數(shù)式表示出你新拼圖形的面積.

講評(píng)要點(diǎn):

沿hd、gd裁開均可,但一定要讓學(xué)生在裁開之前知道。

hd=bc=gd=fe=a-b,

這樣裁開后才能重新拼成一個(gè)矩形.希望推出公式:

a2-b2=(a+b)(a-b)。

2.(1)敘述平方差公式的數(shù)學(xué)表達(dá)式及文字表達(dá)式;。

(2)試比較公式的兩種表達(dá)式在應(yīng)用上的差異.

說(shuō)明:平方差公式的數(shù)學(xué)表達(dá)式在使用上有三個(gè)優(yōu)點(diǎn).(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學(xué)的人“套用”;(3)形式簡(jiǎn)潔.但數(shù)學(xué)表達(dá)式中的a與b有概括性及抽象性,這樣也就造成對(duì)具體問(wèn)題存在一個(gè)判定a、b的`問(wèn)題,否則容易對(duì)公式產(chǎn)生各種主觀上的誤解.

依照公式的文字表達(dá)式可寫出下面兩個(gè)正確的式子:

經(jīng)對(duì)比,可以讓人們體會(huì)到公式的文字表達(dá)式抽象、準(zhǔn)確、概括.因而也就“欠”明確(如結(jié)果不知是誰(shuí)與誰(shuí)的平方差).故在使用平方差公式時(shí),要全面理解公式的實(shí)質(zhì),靈活運(yùn)用公式的兩種表達(dá)式,比如用文字公式判斷一個(gè)題目能否使用平方差公式,用數(shù)學(xué)公式確定公式中的a與b,這樣才能使自己的計(jì)算即準(zhǔn)確又靈活.

3.判斷正誤:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。

(1)102×98;(2)(y+2)(y-2)(y2+4).

解:(1)102×98(2)(y+2)(y-2)(y2+4)。

=(100+2)(100-2)=(y2-4)(y2+4)。

=9996;。

(1)103×97;(2)(x+3)(x-3)(x2+9);。

(3)59.8×60.2;(4)(x-)(x2+)(x+).

3.請(qǐng)每位同學(xué)自編兩道能運(yùn)用平方差公式計(jì)算的題目.

例2填空:

思考題:什么樣的二項(xiàng)式才能逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積?

(某兩數(shù)平方差的二項(xiàng)式可逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積)。

練習(xí)。

填空:

1.x2-25=()();。

2.4m2-49=(2m-7)();。

3.a4-m4=(a2+m2)()=(a2+m2)()();。

例3計(jì)算:

(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).

解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。

=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。

=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。

=m4-14m2+49-n2.

1.什么是平方差公式?一般兩個(gè)二項(xiàng)式相乘的積應(yīng)是幾項(xiàng)式?

3.怎樣判斷一個(gè)多項(xiàng)式的乘法問(wèn)題是否可以用平方差公式?

(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。

(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

(1)69×71;(2)53×47;(3)503×497;(4)40×39.

二倍角公式教案篇八

1.回顧知識(shí)。

提問(wèn):上節(jié)課,我們已經(jīng)復(fù)習(xí)了整數(shù)和小數(shù)的有關(guān)知識(shí)。

結(jié)合學(xué)生交流,板書。

2.揭示課題。

引入:這節(jié)課,我們復(fù)習(xí)因數(shù)和倍數(shù)的相關(guān)知識(shí)。

通過(guò)復(fù)習(xí),能進(jìn)一步了解關(guān)于因數(shù)和倍數(shù)的知識(shí),理解它們之間的聯(lián)系和區(qū)別,并能應(yīng)用這些知識(shí)。

二、基本練習(xí)。

1.知識(shí)梳理。

提高:回想一下,在學(xué)習(xí)因數(shù)和倍數(shù)時(shí),我們還學(xué)習(xí)了哪些相關(guān)的知識(shí)?

學(xué)生回顧,交流,教師適當(dāng)引導(dǎo)回顧。

根據(jù)學(xué)生回答,板書整理。

2.做練習(xí)與實(shí)踐第10題。

學(xué)生獨(dú)立完成,指名板演。

集體交流,讓學(xué)生說(shuō)說(shuō)找一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。

3.做練習(xí)與實(shí)踐第11題。

出示題目,學(xué)生直接口答。

提問(wèn):怎樣判斷一個(gè)數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?

追問(wèn):這里哪些是偶數(shù),哪些是奇數(shù)?說(shuō)說(shuō)你是怎樣想的。

4.做練習(xí)與實(shí)踐第12題。

學(xué)生先獨(dú)立寫出質(zhì)數(shù)和合數(shù),再指名口答。

追問(wèn):最小質(zhì)數(shù)是幾?最小的合數(shù)呢?

二倍角公式教案篇九

教學(xué)目標(biāo):

一、知識(shí)與技能。

1、參與探索平方差公式的過(guò)程,發(fā)展學(xué)生的推理能力2、會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的乘法運(yùn)算。

二、過(guò)程與方法。

1、經(jīng)歷探索過(guò)程,學(xué)會(huì)歸納推導(dǎo)出某種特種特定類型乘法并用簡(jiǎn)單的。

數(shù)學(xué)式子表達(dá)出,即給出公式。

2、在探索過(guò)程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符。

號(hào)感和語(yǔ)言描述能力。

三、情感與態(tài)度。

以探索、歸納公式和簡(jiǎn)單運(yùn)用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗(yàn),增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗(yàn)證-使用這一數(shù)學(xué)方法的逐步形成.

教學(xué)重點(diǎn):公式的簡(jiǎn)單運(yùn)用。

教學(xué)難點(diǎn):公式的推導(dǎo)。

教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合。

課前準(zhǔn)備:投影儀、幻燈片。

二倍角公式教案篇十

掌握和運(yùn)用自我暗示的原理,向潛意識(shí)發(fā)出指令,將自己的想法同一個(gè)或多個(gè)積極的情緒聯(lián)系起來(lái),反復(fù)重復(fù)這一過(guò)程。

清空顯意識(shí)中所有的其他想法。經(jīng)過(guò)短暫的訓(xùn)練,你將能夠把自己的注意力完全集中在自己想要集中的主題上。這就是目標(biāo)專注。

帶著想要實(shí)現(xiàn)目標(biāo)的熾熱愿望,在腦海中將專注的目標(biāo)形象化。在這一過(guò)程中,你應(yīng)該完全相信自己可以實(shí)現(xiàn)這一目標(biāo)。

當(dāng)發(fā)現(xiàn)自己不能完全專注于自己的目標(biāo)時(shí),將思緒倒回去,再次重復(fù)將注意力集中在自己的目標(biāo)上,直到你能很好地控制自己的思想,將無(wú)關(guān)的想法完全摒棄在外。在專注時(shí)一定要摻入自己的情感,否則你的心中所想就無(wú)法被記錄在潛意識(shí)當(dāng)中。

當(dāng)你處在一個(gè)安靜、沒有干擾的環(huán)境中時(shí),專注的效果最好。

當(dāng)你懷著極大的熱情專注于某一想法、計(jì)劃或目標(biāo)時(shí),潛意識(shí)最容易受到影響。熱情可以喚起你的創(chuàng)造性想象力,并將之付諸行動(dòng)。

現(xiàn)在,讓我們?cè)倩氐狡瘘c(diǎn)。只要主觀上愿意,你就可以擺脫過(guò)去不良習(xí)慣所造成的影響,按照自己想要的方式來(lái)創(chuàng)造生活。同樣,因?yàn)樽约阂?guī)定了占據(jù)頭腦的主導(dǎo)思想,所以你可以做想做的自己。

一個(gè)想法、計(jì)劃、目的或銷售目標(biāo)如何能被植入到頭腦之中呢?答案是:通過(guò)不斷地在頭腦中將愿望形象化,任何想法、計(jì)劃或目標(biāo)都能被植入到頭腦里。這也是我們希望你將自己的愿望、目的或銷售目標(biāo)寫下來(lái)的原因,把它們寫出來(lái),然后用心記住,不斷地大聲誦讀,日復(fù)一日,直到這些目標(biāo)進(jìn)入到你的潛意識(shí)當(dāng)中。

1.在開始創(chuàng)造性想象之前,先清楚地寫下自己想要賺的錢的數(shù)額。在心中記住這一確切的數(shù)額。僅僅說(shuō)“我要賺很多錢”,這樣是不行的。一定要有確切的數(shù)額(要求這樣準(zhǔn)確是有心理學(xué)原因的)。

2.決定自己愿意付出什么來(lái)?yè)Q取想要賺取的錢(不勞而獲是不現(xiàn)實(shí)的)。

3.為實(shí)現(xiàn)自己的愿望設(shè)定一個(gè)明確的日期。

為此,我將盡最大的努力來(lái)做好自己的工作。作為xx商品的推銷員,我將保質(zhì)保量地為顧客提供最好的服務(wù)。

我相信自己能夠賺到這筆錢。我的自信是如此的強(qiáng)烈,仿佛現(xiàn)在我就能看到錢在我的眼前,甚至可以用手摸到它。它正等著我用勞動(dòng)去換取。我正在等待達(dá)成這一目標(biāo)的計(jì)劃的出現(xiàn),一旦出現(xiàn),我將堅(jiān)定不移地去執(zhí)行它。

每天至少要把這段話念兩遍。找一個(gè)無(wú)人打擾的安靜地方,閉上眼睛,大聲重復(fù)你想賺的錢的數(shù)額(大聲是為了你能聽見自己的話)。晚上睡覺前念一次,早上起床后念一次。

當(dāng)專注于自己的目標(biāo)的時(shí)候,想象自己在1年、3年、5年甚至后會(huì)怎么樣。在想象中,看到自己有了想要賺到的錢;看到自己住在用自己推銷賺來(lái)的錢買的房子里;看到自己在銀行存下的豐厚的養(yǎng)老金;看到自己因?yàn)樯朴谕其N自己,而成為一個(gè)有影響力的人;看到自己從事著一份令人羨慕的職業(yè),再不用擔(dān)心會(huì)失去自己的職位。

用想象力清晰地繪制出這幅圖畫,這將是你的愿望形象的體現(xiàn)。

當(dāng)你開始“在心中記住這一確切的數(shù)額”時(shí),閉上你的眼睛,將注意力集中在錢的數(shù)額上,直到你能真實(shí)地看到這筆錢。每天至少這么做一次。

你也許會(huì)認(rèn)為,在真正得到這筆錢之前,一個(gè)人是不可能看到“自己有了錢”的。這里就需要殷切希望的幫助了。如果你十分強(qiáng)烈地想要實(shí)現(xiàn)自己的愿望,甚至已經(jīng)達(dá)到狂熱的程度,你就可以輕易地說(shuō)服自己會(huì)達(dá)成目標(biāo)的。

讓自己相信你必須賺到這筆錢。讓你的潛意識(shí)相信,這筆錢正等著你去拿呢。這樣,潛意識(shí)就會(huì)為你提供獲取這筆錢的切實(shí)計(jì)劃了。

當(dāng)在腦海中想象這筆錢的同時(shí),想象為換取這筆錢,自己正在提供相應(yīng)的服務(wù)或推銷相應(yīng)的產(chǎn)品。

在第4個(gè)步驟中,提到你要“制訂實(shí)現(xiàn)自己愿望的詳細(xì)計(jì)劃,并立刻開始實(shí)施”、“將這一計(jì)劃付諸行動(dòng)”。在制訂賺錢的計(jì)劃的時(shí)候,不要相信自己的“理性”,只要馬上開始想象自己已經(jīng)有了這筆錢,要求和期待你的潛意識(shí)給你送來(lái)需要的計(jì)劃。當(dāng)計(jì)劃出現(xiàn)時(shí),它們很可能會(huì)以靈感或直覺的形式在大腦中一閃而過(guò)。

在第一次嘗試的時(shí)候,如果你不能控制和引導(dǎo)自己的情緒,請(qǐng)不要?dú)怵H。要知道,沒有人可以不勞而獲。你不能弄虛作假,哪怕你想這么做。要獲得影響潛意識(shí)的能力的代價(jià)就是不斷地練習(xí)以上的方法。你自己要決定你的收獲是否值得你所付出的努力。

使用自我暗示的創(chuàng)造性想象方法的能力,在很大程度上取決于你專注于某一特定愿望并將之清晰化、形象化的能力,甚至將這一愿望變?yōu)橐环N“狂熱”的能力。

摘自《如何在人生中推銷自己》,[美]拿破侖?希爾/著。

二倍角公式教案篇十一

(4)(1-5y)(l+5y)。

例3計(jì)算(-4a-1)(-4a+1)。

讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演。

解法1:(-4a-1)(-4a+1)。

=[-(4a+l)][-(4a-l)]。

=(4a+1)(4a-l)。

=(4a)2-l2。

=16a2-1.

解法2:(-4a-l)(-4a+l)。

=(-4a)2-l。

=16a2-1.

根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問(wèn)題的本質(zhì),運(yùn)算簡(jiǎn)捷。因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡(jiǎn)捷地得到答案。

課堂練習(xí)。

1、口答下列各題:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

2、計(jì)算下列各題:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法。

三、小結(jié)。

1、什么是平方差公式?

(1)要符合公式特征才能運(yùn)用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形。

四、作業(yè)。

1、運(yùn)用平方差公式計(jì)算:

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

二倍角公式教案篇十二

理解兩個(gè)完全平方公式的結(jié)構(gòu),靈活運(yùn)用完全平方公式進(jìn)行運(yùn)算。

在運(yùn)用完全平方公式的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的符號(hào)演算的能力,提高運(yùn)算能力。

培養(yǎng)學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,敢于發(fā)表自己的見解。

一、復(fù)習(xí)導(dǎo)入。

2.計(jì)算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計(jì)算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計(jì)算,結(jié)果是一樣的。

教師歸納:當(dāng)我們對(duì)差與和加以區(qū)分時(shí),兩個(gè)公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項(xiàng)一個(gè)是“減”一個(gè)是“加”,注意到區(qū)別有助于計(jì)算的準(zhǔn)確;另一方面,當(dāng)我們對(duì)差與和不加區(qū)分,全部理解成“加項(xiàng)”時(shí),那么兩個(gè)公式從結(jié)構(gòu)上來(lái)看就是一致的了,其結(jié)構(gòu)都是“兩項(xiàng)和的平方,等于它們的平方和,加上它們的積的兩倍?!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點(diǎn),提高運(yùn)算的靈活性。

我們學(xué)習(xí)運(yùn)算,除了要重視結(jié)果,還要重視過(guò)程,平時(shí)注意訓(xùn)練運(yùn)算方法的多樣性,可以加深對(duì)算理的理解和運(yùn)用,提高運(yùn)算過(guò)程的合理性和靈活性,從而真正的提高運(yùn)算能力。

二、新課講解。

溫故知新。

與,與相等嗎?為什么?

學(xué)生討論交流,鼓勵(lì)學(xué)生從不同的。角度進(jìn)行說(shuō)理,共同歸納總結(jié)出兩條判斷的思路:

1.對(duì)原式進(jìn)行運(yùn)算,利用運(yùn)算的結(jié)果來(lái)判斷;

2.不對(duì)原式進(jìn)行運(yùn)算,只做適當(dāng)變形后利用整體的方法來(lái)判斷。

思考:與,與相等嗎?為什么?

利用整體的方法判斷,把看成一個(gè)數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

總結(jié)歸納得到:;

三、典例剖析。

二倍角公式教案篇十三

2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力。

教學(xué)重點(diǎn)和難點(diǎn)。

重點(diǎn):平方差公式的應(yīng)用。

難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式。

教學(xué)過(guò)程設(shè)計(jì)。

一、師生共同研究平方差公式。

我們已經(jīng)學(xué)過(guò)了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子。

讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:

(當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于乘式中這兩個(gè)數(shù)的平方差)。

繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。

在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式。

二、運(yùn)用舉例變式練習(xí)。

例1計(jì)算(1+2x)(1-2x)。

解:(1+2x)(1-2x)。

=12-(2x)2。

=1-4x2.

教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說(shuō)出本題中a,b分別表示什么。

例2計(jì)算(b2+2a3)(2a3-b2)。

解:(b2+2a3)(2a3-b2)。

=(2a3+b2)(2a3-b2)。

=(2a3)2-(b2)2。

=4a6-b4.

教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用平方差公式進(jìn)行計(jì)算。

課堂練習(xí)。

二倍角公式教案篇十四

一、教學(xué)內(nèi)容:

本節(jié)內(nèi)容是人教版教材八年級(jí)上冊(cè),第十四章第2節(jié)乘法公式的第二課時(shí)——完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要組成部分,也是乘法運(yùn)算知識(shí)的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對(duì)多項(xiàng)式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運(yùn)算的必備知識(shí),它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識(shí)奠定了基礎(chǔ),所以說(shuō)完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。

本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗(yàn)證為學(xué)生體驗(yàn)規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些代數(shù)式的運(yùn)算,培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。

重點(diǎn):掌握完全平方公式,會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

難點(diǎn):理解公式中的字母含義,即對(duì)公式中字母a、b的理解與正確應(yīng)用。

三、教學(xué)目標(biāo)。

(1)經(jīng)歷探索完全平方公式的推導(dǎo)過(guò)程,掌握完全平方公式,并能正確運(yùn)用公式進(jìn)行簡(jiǎn)單計(jì)算。

(2)進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會(huì)獨(dú)立思考。

(3)通過(guò)推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會(huì)與他人合作交流,體驗(yàn)解決問(wèn)題的多樣性。

(4)體驗(yàn)完全平方公式可以簡(jiǎn)化運(yùn)算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過(guò)程中獲得體驗(yàn)成功的喜悅,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。

四、學(xué)情分析與教法學(xué)法。

學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運(yùn)算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強(qiáng)的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級(jí)學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問(wèn)題。

學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨(dú)立思考、歸納總結(jié)、合作交流。

總結(jié)反思中獲得數(shù)學(xué)知識(shí)與技能。

教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過(guò)程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動(dòng)探究的學(xué)習(xí)狀態(tài)。

五、教學(xué)過(guò)程(略)。

六、教學(xué)評(píng)價(jià)。

在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評(píng)價(jià)學(xué)生在知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決和情感態(tài)度等方面的表現(xiàn)。教師通過(guò)情境引入、提供問(wèn)題引導(dǎo)學(xué)生從已有的知識(shí)為出發(fā)點(diǎn),自主探究,發(fā)現(xiàn)問(wèn)題,深入思考。學(xué)生解決問(wèn)題要以獨(dú)立思考為主,當(dāng)遇到困難時(shí)學(xué)會(huì)求助交流,教師也要給學(xué)生思考交流的時(shí)間,讓學(xué)生經(jīng)歷得出結(jié)論的過(guò)程,培養(yǎng)發(fā)現(xiàn)問(wèn)題解決問(wèn)題的能力。

在整個(gè)學(xué)習(xí)過(guò)程中,通過(guò)對(duì)學(xué)生參與自主探究的程度、合作交流的意識(shí)以及獨(dú)立思考的習(xí)慣,發(fā)現(xiàn)問(wèn)題的能力進(jìn)行評(píng)價(jià),并對(duì)學(xué)生的想法或結(jié)論給予鼓勵(lì)評(píng)價(jià)。

二倍角公式教案篇十五

1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過(guò)來(lái)就可以得到相應(yīng)的因式分解。

2、掌握運(yùn)用完全平方公式分解因式的`方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)。

教學(xué)方法:對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀。

教師活動(dòng):學(xué)生活動(dòng)。

新課講解:

(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2。

a2-8a+16=a2-2×4a+42=(a-4)2。

(要強(qiáng)調(diào)注意符號(hào))。

首先我們來(lái)試一試:(投影:牛刀小試)。

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1。

(3)(m+n)2-4(m+n)+4。

(教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)。

2.把81x4-72x2y2+16y4分解因式。

(本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)。

將乘法公式反過(guò)來(lái)就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個(gè)多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。

練習(xí):第88頁(yè)練一練第1、2題。

二倍角公式教案篇十六

一、學(xué)習(xí)目標(biāo):

1.經(jīng)歷探索平方差公式的過(guò)程.

2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算.

二、重點(diǎn)難點(diǎn)。

重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用。

難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.

三、合作學(xué)習(xí)。

你能用簡(jiǎn)便方法計(jì)算下列各題嗎?

1×2998×1002。

導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.

1x+1x-12m+2m-2。

32x+12x-14x+5yx-5y。

結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.

即:a+ba-b=a2-b2。

四、精講精練。

【本文地址:http://mlvmservice.com/zuowen/13230791.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔