教案應(yīng)該包括教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法和評估方式等要素。教案的編寫還需要考慮到學(xué)生的興趣點和實際需求,增強他們對知識的主動探究和應(yīng)用能力。接下來是一些經(jīng)典的教學(xué)案例,希望對大家的教學(xué)工作有所幫助。
二倍角公式教案篇一
1.讓學(xué)生探索3.的倍數(shù)的特征,會判斷一個數(shù)是不是3的倍數(shù)。
2.讓學(xué)生在學(xué)習(xí)過程中學(xué)會運用分析、比較、歸納或猜想、檢驗等方法,并進(jìn)一步學(xué)會與同學(xué)交流。
教學(xué)重難點。
判斷一個數(shù)是不是3的倍數(shù)。
課前準(zhǔn)備。
小黑板、學(xué)具卡片。
教學(xué)活動。
一、引入新課,激發(fā)興趣。
教師在黑板上寫出一組數(shù):5、6、14、18、25、27、36、41、90,問學(xué)生:誰能判斷出哪些數(shù)是3的倍數(shù)?(這些都是一些簡單的數(shù),估計學(xué)生通過口算很快就能判斷出來)。
教師再寫出幾個數(shù):1540、2856、3075,再問:誰能很快判斷出哪些數(shù)是3的倍數(shù)?當(dāng)學(xué)生出現(xiàn)畏難情緒時,教師說:我能很快地說出這幾個數(shù)當(dāng)中,2856和3075都是3的倍數(shù)。
學(xué)生報數(shù),教師很快地回答,并把是3的倍數(shù)的數(shù)板書在黑板上,再讓學(xué)生用計算器進(jìn)行驗證。
談話:你們一定在想:老師你有什么竅門嗎?有啊!你們想知道嗎?讓我們一起來探索3的倍數(shù)的特征。(板書課題:3的倍數(shù)的特征)。
二、自主探索。合作學(xué)習(xí)。
1.先讓學(xué)生猜一猜:3的倍數(shù)有什么特征?舉例說明。
2.根據(jù)學(xué)生猜測的結(jié)果,討論:個位上是3、6、9的數(shù)是3的倍數(shù)嗎?
如:84、51、27、90、123、2856、3075,它們用的算珠顆數(shù)分別是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。
4.引導(dǎo)學(xué)生觀察、分析、討論:用的算珠的顆數(shù)有什么共同點?
:每個數(shù)所用算珠的顆數(shù)都是3的倍數(shù)。
5.提問:這些數(shù)所用算珠的顆數(shù)跟什么有關(guān)系?小組討論,交流討論結(jié)果。
:一個數(shù)是3的倍數(shù),這個數(shù)各位上的數(shù)的和一定是3的倍數(shù)。
6.進(jìn)一步驗證。(1)同桌之間互相報數(shù),驗證剛才的結(jié)論是否正確。(2)用1、2、6可以寫成126,還可以組成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?小組討論后得出結(jié)論:3的倍數(shù),跟數(shù)字的位置沒有關(guān)系,只跟各位數(shù)上的數(shù)的和有關(guān)系。
7.試一試:如果一個數(shù)不是3的倍數(shù),這個數(shù)各位上數(shù)的和是3的倍數(shù)嗎?
在小組里舉例驗證、討論交流。得出:一個數(shù)不是3的倍數(shù),這個數(shù)各位上數(shù)的和不是3的倍數(shù)。歸納:一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
三、運用結(jié)論。鞏固拓展。
1.做“想想做做”第1題。
指名口答。提問:你是怎么判斷出67不是3的倍數(shù),84是3的倍數(shù)的?
2.做“想想做做”第2題。
提問:每一題有沒有余數(shù)與什么有關(guān)?有什么關(guān)系?談話:在沒有余數(shù)的算式下邊畫橫線,看誰做得快。指名報結(jié)果,共同評議。
3.做“想想做做”第3題。
讓學(xué)生獨立填寫,再在小組里交流:你能找到幾種不同的填法?
4.做“想想做做”第4題。
學(xué)生涂完后,指名回答:9的倍數(shù)都是3的倍數(shù)嗎?
5.做“想想做做”第5題。
各自組數(shù),并把組成的數(shù)記下來。
指名報答案,全班學(xué)生評議。
6.補充題。
提問:你今年幾歲?再過幾年你的歲數(shù)是3的倍數(shù)?
四、
二倍角公式教案篇二
1、了解完全平方公式的特征,會用完全平方公式進(jìn)行因式分解.
2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學(xué)生逆向思維能力和推理能力.
3、通過猜想、觀察、討論、歸納等活動,培養(yǎng)學(xué)生觀察能力,實踐能力和創(chuàng)新能力.
學(xué)習(xí)建議教學(xué)重點:
二倍角公式教案篇三
1.回顧知識。
提問:上節(jié)課,我們已經(jīng)復(fù)習(xí)了整數(shù)和小數(shù)的有關(guān)知識。
結(jié)合學(xué)生交流,板書。
2.揭示課題。
引入:這節(jié)課,我們復(fù)習(xí)因數(shù)和倍數(shù)的相關(guān)知識。
通過復(fù)習(xí),能進(jìn)一步了解關(guān)于因數(shù)和倍數(shù)的知識,理解它們之間的聯(lián)系和區(qū)別,并能應(yīng)用這些知識。
二、基本練習(xí)。
1.知識梳理。
提高:回想一下,在學(xué)習(xí)因數(shù)和倍數(shù)時,我們還學(xué)習(xí)了哪些相關(guān)的知識?
學(xué)生回顧,交流,教師適當(dāng)引導(dǎo)回顧。
根據(jù)學(xué)生回答,板書整理。
2.做練習(xí)與實踐第10題。
學(xué)生獨立完成,指名板演。
集體交流,讓學(xué)生說說找一個數(shù)的因數(shù)和倍數(shù)的方法。
3.做練習(xí)與實踐第11題。
出示題目,學(xué)生直接口答。
提問:怎樣判斷一個數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?
追問:這里哪些是偶數(shù),哪些是奇數(shù)?說說你是怎樣想的。
4.做練習(xí)與實踐第12題。
學(xué)生先獨立寫出質(zhì)數(shù)和合數(shù),再指名口答。
追問:最小質(zhì)數(shù)是幾?最小的合數(shù)呢?
二倍角公式教案篇四
1.使學(xué)生認(rèn)識倍數(shù)和因數(shù),能判斷兩個自然數(shù)間的因數(shù)和倍數(shù)關(guān)系;學(xué)會找一個數(shù)的因數(shù)和倍數(shù)的方法,能按順序找出100以內(nèi)自然數(shù)的所有因數(shù),10以內(nèi)自然數(shù)的所有倍數(shù);了解一個數(shù)的因數(shù)、倍數(shù)的特點。
2.使學(xué)生經(jīng)歷探索求一個數(shù)的因數(shù)或倍數(shù)的方法、一個數(shù)的因數(shù)和倍數(shù)特點的過程,體會數(shù)學(xué)知識、方法的內(nèi)在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數(shù)感。
3.使學(xué)生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學(xué)好數(shù)學(xué)的信心,養(yǎng)成樂于思考、勇于探究等良好品質(zhì)。
二倍角公式教案篇五
一、談話導(dǎo)入,揭示課題。
我們能不能通過觀察個位上的數(shù)來確定是不是3的倍數(shù),那么3的倍數(shù)到底有什么特征呢?今天我們共同來研究。
板書課題:3的倍數(shù)的特征。
二、探索交流、獲取新知。
(一)活動一:復(fù)習(xí)鞏固。
1、前面我們研究了2和5的倍數(shù)的特征,能用你的話說一說他們的特征呢?
2、請你舉例說明。(請學(xué)生說,教師把學(xué)生的舉例板書在黑板上。)。
3、說說能同時被2和5整除的數(shù)有什么特征?(觀察特征。用自己的話說一說。)。
(二)活動二:探索研究3的倍數(shù)的特征。
1、在書上第6頁的表中,找出3的倍數(shù),并做上記號。
(先獨立完成,看誰找的快?)。
2、觀察3的倍數(shù),你發(fā)現(xiàn)了什么?
教師參與到討論學(xué)習(xí)中。
先獨立思考,想出自己的想法。
然后與四人小組的同學(xué)說說你的發(fā)現(xiàn)。
生1:3的倍數(shù)個位上的數(shù)有0、1、2、3、4、5、6、7、8、9沒什么規(guī)律。
生2:十位上的數(shù)也沒有什么規(guī)律。
生3:將每個數(shù)的各個數(shù)字加起來試試看。
3、你發(fā)現(xiàn)的規(guī)律對三位數(shù)成立嗎?找?guī)讉€數(shù)來檢驗一下。
(1)自己先找?guī)讉€數(shù)試一試。
(2)然后在小組內(nèi)說說你驗證的結(jié)論。
(三)活動三:試一試。
在下面數(shù)中圈出3的倍數(shù)。
284553873665。
(先自己圈,然后說說你是怎樣判斷的?)。
(四)活動四:練一練。
1、請將編號是3的倍數(shù)的氣球涂上顏色。
361754714548。
(自己獨立完成,在小組內(nèi)說說自己的想法。)。
2、選出兩個數(shù)字組成一個兩位數(shù),分別滿足下面的條件。
3045。
(1)是3的倍數(shù)。
(2)同時是2和3的倍數(shù)。
(3)同時是3和5的倍數(shù)。
(4)同時是2,3和5的倍數(shù)。
(獨立完成,說說你的竅門和方法。)。
(五)活動五:實踐活動。
在下表中找出9的倍數(shù),并涂上顏色。
(可以在自主實踐以后再交流。)。
三、總結(jié)。
通過這節(jié)課的學(xué)習(xí),你有什么收獲?
二倍角公式教案篇六
1、在下面數(shù)中圈出3的倍數(shù)。
284553873665。
2、選出兩個數(shù)字組成一個兩位數(shù),分別滿足下面的條件。
3045。
(1)是3的倍數(shù)。
(2)同時是2和3的倍數(shù)。
(3)同時是3和5的倍數(shù)。
(4)同時是2,3和5的倍數(shù)。
二倍角公式教案篇七
掌握和運用自我暗示的原理,向潛意識發(fā)出指令,將自己的想法同一個或多個積極的情緒聯(lián)系起來,反復(fù)重復(fù)這一過程。
清空顯意識中所有的其他想法。經(jīng)過短暫的訓(xùn)練,你將能夠把自己的注意力完全集中在自己想要集中的主題上。這就是目標(biāo)專注。
帶著想要實現(xiàn)目標(biāo)的熾熱愿望,在腦海中將專注的目標(biāo)形象化。在這一過程中,你應(yīng)該完全相信自己可以實現(xiàn)這一目標(biāo)。
當(dāng)發(fā)現(xiàn)自己不能完全專注于自己的目標(biāo)時,將思緒倒回去,再次重復(fù)將注意力集中在自己的目標(biāo)上,直到你能很好地控制自己的思想,將無關(guān)的想法完全摒棄在外。在專注時一定要摻入自己的情感,否則你的心中所想就無法被記錄在潛意識當(dāng)中。
當(dāng)你處在一個安靜、沒有干擾的環(huán)境中時,專注的效果最好。
當(dāng)你懷著極大的熱情專注于某一想法、計劃或目標(biāo)時,潛意識最容易受到影響。熱情可以喚起你的創(chuàng)造性想象力,并將之付諸行動。
現(xiàn)在,讓我們再回到起點。只要主觀上愿意,你就可以擺脫過去不良習(xí)慣所造成的影響,按照自己想要的方式來創(chuàng)造生活。同樣,因為自己規(guī)定了占據(jù)頭腦的主導(dǎo)思想,所以你可以做想做的自己。
一個想法、計劃、目的或銷售目標(biāo)如何能被植入到頭腦之中呢?答案是:通過不斷地在頭腦中將愿望形象化,任何想法、計劃或目標(biāo)都能被植入到頭腦里。這也是我們希望你將自己的愿望、目的或銷售目標(biāo)寫下來的原因,把它們寫出來,然后用心記住,不斷地大聲誦讀,日復(fù)一日,直到這些目標(biāo)進(jìn)入到你的潛意識當(dāng)中。
1.在開始創(chuàng)造性想象之前,先清楚地寫下自己想要賺的錢的數(shù)額。在心中記住這一確切的數(shù)額。僅僅說“我要賺很多錢”,這樣是不行的。一定要有確切的數(shù)額(要求這樣準(zhǔn)確是有心理學(xué)原因的)。
2.決定自己愿意付出什么來換取想要賺取的錢(不勞而獲是不現(xiàn)實的)。
3.為實現(xiàn)自己的愿望設(shè)定一個明確的日期。
為此,我將盡最大的努力來做好自己的工作。作為xx商品的推銷員,我將保質(zhì)保量地為顧客提供最好的服務(wù)。
我相信自己能夠賺到這筆錢。我的自信是如此的強烈,仿佛現(xiàn)在我就能看到錢在我的眼前,甚至可以用手摸到它。它正等著我用勞動去換取。我正在等待達(dá)成這一目標(biāo)的計劃的出現(xiàn),一旦出現(xiàn),我將堅定不移地去執(zhí)行它。
每天至少要把這段話念兩遍。找一個無人打擾的安靜地方,閉上眼睛,大聲重復(fù)你想賺的錢的數(shù)額(大聲是為了你能聽見自己的話)。晚上睡覺前念一次,早上起床后念一次。
當(dāng)專注于自己的目標(biāo)的時候,想象自己在1年、3年、5年甚至后會怎么樣。在想象中,看到自己有了想要賺到的錢;看到自己住在用自己推銷賺來的錢買的房子里;看到自己在銀行存下的豐厚的養(yǎng)老金;看到自己因為善于推銷自己,而成為一個有影響力的人;看到自己從事著一份令人羨慕的職業(yè),再不用擔(dān)心會失去自己的職位。
用想象力清晰地繪制出這幅圖畫,這將是你的愿望形象的體現(xiàn)。
當(dāng)你開始“在心中記住這一確切的數(shù)額”時,閉上你的眼睛,將注意力集中在錢的數(shù)額上,直到你能真實地看到這筆錢。每天至少這么做一次。
你也許會認(rèn)為,在真正得到這筆錢之前,一個人是不可能看到“自己有了錢”的。這里就需要殷切希望的幫助了。如果你十分強烈地想要實現(xiàn)自己的愿望,甚至已經(jīng)達(dá)到狂熱的程度,你就可以輕易地說服自己會達(dá)成目標(biāo)的。
讓自己相信你必須賺到這筆錢。讓你的潛意識相信,這筆錢正等著你去拿呢。這樣,潛意識就會為你提供獲取這筆錢的切實計劃了。
當(dāng)在腦海中想象這筆錢的同時,想象為換取這筆錢,自己正在提供相應(yīng)的服務(wù)或推銷相應(yīng)的產(chǎn)品。
在第4個步驟中,提到你要“制訂實現(xiàn)自己愿望的詳細(xì)計劃,并立刻開始實施”、“將這一計劃付諸行動”。在制訂賺錢的計劃的時候,不要相信自己的“理性”,只要馬上開始想象自己已經(jīng)有了這筆錢,要求和期待你的潛意識給你送來需要的計劃。當(dāng)計劃出現(xiàn)時,它們很可能會以靈感或直覺的形式在大腦中一閃而過。
在第一次嘗試的時候,如果你不能控制和引導(dǎo)自己的情緒,請不要氣餒。要知道,沒有人可以不勞而獲。你不能弄虛作假,哪怕你想這么做。要獲得影響潛意識的能力的代價就是不斷地練習(xí)以上的方法。你自己要決定你的收獲是否值得你所付出的努力。
使用自我暗示的創(chuàng)造性想象方法的能力,在很大程度上取決于你專注于某一特定愿望并將之清晰化、形象化的能力,甚至將這一愿望變?yōu)橐环N“狂熱”的能力。
摘自《如何在人生中推銷自己》,[美]拿破侖?希爾/著。
二倍角公式教案篇八
2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力。
教學(xué)重點和難點。
重點:平方差公式的應(yīng)用。
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式。
教學(xué)過程設(shè)計。
一、師生共同研究平方差公式。
我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
讓學(xué)生動腦、動筆進(jìn)行探討,并發(fā)表自己的見解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:
(當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數(shù)的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進(jìn)行計算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
在此基礎(chǔ)上,讓學(xué)生用語言敘述公式。
二、運用舉例變式練習(xí)。
例1計算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。
例2計算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進(jìn)行計算。
課堂練習(xí)。
二倍角公式教案篇九
一、教學(xué)內(nèi)容:
本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時——完全平方公式。
二、教材分析:
完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。
本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗證為學(xué)生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對簡化某些代數(shù)式的運算,培養(yǎng)學(xué)生的求簡意識很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。
重點:掌握完全平方公式,會運用公式進(jìn)行簡單的計算。
難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應(yīng)用。
三、教學(xué)目標(biāo)。
(1)經(jīng)歷探索完全平方公式的推導(dǎo)過程,掌握完全平方公式,并能正確運用公式進(jìn)行簡單計算。
(2)進(jìn)一步發(fā)展學(xué)生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會獨立思考。
(3)通過推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會與他人合作交流,體驗解決問題的多樣性。
(4)體驗完全平方公式可以簡化運算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過程中獲得體驗成功的喜悅,增強學(xué)習(xí)數(shù)學(xué)的自信心。
四、學(xué)情分析與教法學(xué)法。
學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。
學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨立思考、歸納總結(jié)、合作交流。
總結(jié)反思中獲得數(shù)學(xué)知識與技能。
教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動探究的學(xué)習(xí)狀態(tài)。
五、教學(xué)過程(略)。
六、教學(xué)評價。
在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評價學(xué)生在知識技能、數(shù)學(xué)思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導(dǎo)學(xué)生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學(xué)生解決問題要以獨立思考為主,當(dāng)遇到困難時學(xué)會求助交流,教師也要給學(xué)生思考交流的時間,讓學(xué)生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。
在整個學(xué)習(xí)過程中,通過對學(xué)生參與自主探究的程度、合作交流的意識以及獨立思考的習(xí)慣,發(fā)現(xiàn)問題的能力進(jìn)行評價,并對學(xué)生的想法或結(jié)論給予鼓勵評價。
二倍角公式教案篇十
教學(xué)目標(biāo):
一、知識與技能。
1、參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力2、會運用公式進(jìn)行簡單的乘法運算。
二、過程與方法。
1、經(jīng)歷探索過程,學(xué)會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的。
數(shù)學(xué)式子表達(dá)出,即給出公式。
2、在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符。
號感和語言描述能力。
三、情感與態(tài)度。
以探索、歸納公式和簡單運用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗,增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學(xué)方法的逐步形成.
教學(xué)重點:公式的簡單運用。
教學(xué)難點:公式的推導(dǎo)。
教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合。
課前準(zhǔn)備:投影儀、幻燈片。
二倍角公式教案篇十一
引例講解:將下列各式分解因式。
1、x2+6x+92、4x2-20x+25。
問題:這兩題首先怎么分析?
生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學(xué)生回答,教師板書)。
生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5。
x2+6x+9=x2+2×x×3+32=(x+3)2。
4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2。
(聯(lián)系字母表達(dá)式用箭頭對應(yīng)表示,加深學(xué)生印象。)。
生16:由符號來決定。
師:能不能具體點。
生16:由中間一項的符號決定,就是兩個數(shù)乘積2倍這項的符號決定,是正,就是兩個數(shù)的和;是負(fù),就是兩個數(shù)的差。
師:總之,在分解完全平方式時,要根據(jù)第二項的符號來選擇運用哪一個完全平方公式。
例題1:把25x4+10x2+1分解因式。
師:這道題目能否運用以前所學(xué)的方法分解?就題目本身有什么特點?可以怎么分解?
生17:題目符合完全平方式的特點,可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學(xué)生板演,過程略)。
例題2:把-x2-4y2+4xy分解因式。
師:按照常規(guī)我們首先怎么辦?
生齊答:提取負(fù)號?!步處煱鍟?(x2+4y2-4xy)〕以下過程學(xué)生板演。
師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)。
提示:從項的特征進(jìn)行考慮,怎樣轉(zhuǎn)化比較合理?四人小組討論。
生18:同樣還是將負(fù)號提取改變成完全平方式的形式。
師:從這里我們可以發(fā)現(xiàn),只要三項式中能改寫成平方的兩項是同號,且另一項為兩底數(shù)積的2倍,我們都能利用這個公式分解,若這兩項同為正則可直接分解,若同為負(fù)則先提取負(fù)號再分解。
練習(xí)題:課本p21練習(xí):第1題,學(xué)生板演,教師講解,學(xué)生板演的同時,教師提示注意點、多項式的特征;第2題,學(xué)生口答。
例題3:把3ax2+6axy+3ay2分解因式。
師:先觀察,再選擇適當(dāng)?shù)姆椒ā?學(xué)生板演,教師點評)。
練習(xí):課本p22第3題分兩組學(xué)生板演,教師評講、適當(dāng)提示注意點。
師:這一堂課我們一起研究了完全平方式的有關(guān)知識,同學(xué)們先自查一下自己的收獲,然后請同學(xué)發(fā)表自己的見解。(學(xué)生小聲討論)。
生甲:我學(xué)到了如何將完全平方式分解因式,遇到三項式中有兩項符號相同且能化成平方的形式,另一項為這兩個數(shù)的積的2倍的形式,如果能化成平方項是負(fù)的,首先將負(fù)號提取再分解。第二項是正的就是兩數(shù)的和的平方,第二項是負(fù)的就是兩數(shù)差的平方。
生乙:有公因式可提取的先提取公因式,然后再分解,同時根據(jù)第二項的符號來選用合適的公式。
教師布置課堂作業(yè):課本p23習(xí)題8.2a組4~5偶數(shù)題。
課外作業(yè):課本p23習(xí)題8.2a組4~5奇數(shù)題。
下課!
二倍角公式教案篇十二
理解兩個完全平方公式的結(jié)構(gòu),靈活運用完全平方公式進(jìn)行運算。
在運用完全平方公式的過程中,進(jìn)一步發(fā)展學(xué)生的符號演算的能力,提高運算能力。
培養(yǎng)學(xué)生在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的見解。
一、復(fù)習(xí)導(dǎo)入。
2.計算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?
學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計算,結(jié)果是一樣的。
教師歸納:當(dāng)我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準(zhǔn)確;另一方面,當(dāng)我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結(jié)構(gòu)上來看就是一致的了,其結(jié)構(gòu)都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍?!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。
我們學(xué)習(xí)運算,除了要重視結(jié)果,還要重視過程,平時注意訓(xùn)練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。
二、新課講解。
溫故知新。
與,與相等嗎?為什么?
學(xué)生討論交流,鼓勵學(xué)生從不同的。角度進(jìn)行說理,共同歸納總結(jié)出兩條判斷的思路:
1.對原式進(jìn)行運算,利用運算的結(jié)果來判斷;
2.不對原式進(jìn)行運算,只做適當(dāng)變形后利用整體的方法來判斷。
思考:與,與相等嗎?為什么?
利用整體的方法判斷,把看成一個數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。
總結(jié)歸納得到:;
三、典例剖析。
二倍角公式教案篇十三
授課班級:三明四中初三(5)。
11。
教學(xué)目的:
1、由”公式“引發(fā)聯(lián)想,培養(yǎng)學(xué)生發(fā)散思維能力。
2、學(xué)會多角度思考問題,提高學(xué)生口頭表達(dá)能力。
教學(xué)重、難點:
引導(dǎo)學(xué)生多角度思考問題。
教學(xué)過程:
一、課前三分鐘:
[生]按照號數(shù)輪流《我看abc-------》。
(話題訓(xùn)練:就26個英文字母之一展開合理想象)。
[生]點評。
二、活動過程:
(一)導(dǎo)入:打出課件:
數(shù)字笑話:
b、0對5說:”你該把肚皮收收了!
c、0碰到9,(大吃一驚):“哎,兄弟,怎么截肢了?”“。
d、學(xué)生猜:
0碰到(),很同情地說:”哎,怎么拄上雙拐了!“。
師:瞧,”0“多有意思!(創(chuàng)見)。
這節(jié)課我們也好好表現(xiàn)一下,怎么樣?
打出課件:
--------作文活動課。
(二)、準(zhǔn)備階段:
師:我們先做一個小小的練習(xí),造一個句子。
”我由_____想起了_________“。
下面請同學(xué)們把造好的句子念出來給大家聽聽,好嗎?
[生]發(fā)言。
師:贊評。
(二)醞釀階段:
打出課件:
w=x+y+z。
師:知道這是什么?
[生]:一個公式。
師:數(shù)、理、化有關(guān)這方面的公式多嗎?請舉例一下。
[生]:多------。
師:大家思考一下,看看你能否對這個公式有個認(rèn)識。
[生]:思索。
w代表成功。
x代表勤奮y代表方法z代表惜時。
課件顯示:
成功=勤奮+方法+惜時。
讓我們齊讀一遍,共同感受一下它深刻的內(nèi)涵。
[生]:齊讀。
(三)、成熟階段:
師:一個簡單的公式能夠表達(dá)出如此深刻的含義,這多么有趣??!
下面我們來試試進(jìn)行公式演化的訓(xùn)練,并由此進(jìn)行聯(lián)想。
打出課件:
1+1=1。
師:這個公式從數(shù)學(xué)上講能成立么?
[生]:不能。
[生]:思考討論。
提問回答:
師:評議。
備份課件打出:
a、一個南半球加上一個北半球就是我們的整個地球。
b、兩根筷子合力能夾起一個雞蛋。
c、一對夫妻只生一個孩子。
d、兩個人的力量加在一起就是集體的強大力量。
師歸納:這說明只要我們轉(zhuǎn)換思維方式,展開豐富聯(lián)想,一定能賦予一個簡單的公式許多生動有趣的含義。
那么就請大家展開豐富聯(lián)想,列出你們感悟最深的公式來吧。
[生]:思考。
[生]:發(fā)言交流。
師:對學(xué)生的發(fā)言作點評。
插入課件一:
中考有7門,我語文成績不好,若再不努力追趕,即使其他成績再好,也是白搭,這叫”前功盡棄,一切趨于零?!彼晕冶仨氁颖杜W(xué)好語文迎頭趕上。
師問:這位同學(xué)的公式好不好?好在哪?
[生]評:這位同學(xué)聯(lián)系自己的'實際情況,為自己所列的公式賦予了很實在的內(nèi)容,可謂恰如其分。
課件二:
13。
一個和尚有水吃,三個和尚沒水吃。啟示我們要團結(jié)和作,齊心協(xié)力。
師問[生]評:的確很不錯。聯(lián)想十分巧妙又有意義。
師:好,我們再來聽聽同學(xué)們的發(fā)言。
[生]:交流。
師:評。
(四)、歸納小結(jié):
打出課件:
想象是作文的翅膀。
讀書是作文的向?qū)А?/p>
生活是作文的源泉。
聽了同學(xué)們的發(fā)言,真令我感嘆不已。本來枯燥無味的公式卻能讓大家賦予豐富的內(nèi)涵,同學(xué)們的想法很了不起??!
作文就是表現(xiàn)生活的,要表現(xiàn)生活,就必須要認(rèn)識生活,而認(rèn)識生活,靠的是我們對生活的感悟。善于感悟的人,聯(lián)想、想象力一定是很強的,那么他寫作能力也就不言而喻了。
四、布置作業(yè):
寫作:以本節(jié)課的內(nèi)容或你所列的公式為題,寫一篇不少于500字的文章。
[教后記]:
*學(xué)生是課堂的真主人,留給學(xué)生充足的活動空間。
*重視學(xué)生思維能力的發(fā)展,尤其是要重視培養(yǎng)學(xué)生創(chuàng)造性思維。
*有序循進(jìn)地開展教學(xué),捕捉帶規(guī)律性的思維激發(fā)點,吸引學(xué)生主動參與的積極性。
*注重鍛煉學(xué)生口頭表達(dá)能力和歸納總結(jié)能力,提高學(xué)生深刻思想內(nèi)涵的賦予,既教作文又育作人。
*重視培養(yǎng)學(xué)生良好的思維習(xí)性,自主聯(lián)想自主表述、思維訓(xùn)練的科學(xué)性。
作者郵箱:zhangqin@。
二倍角公式教案篇十四
(2)切勿把“乘積項”2ab中的2丟掉.
今后在教學(xué)中?,要注意以下幾點:
1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征.
2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.
二倍角公式教案篇十五
學(xué)習(xí)目標(biāo):
1、能說出有序數(shù)對的定義。
2、能用有序數(shù)對表示實際生活中物體的位置。
學(xué)習(xí)重點:用有序數(shù)對表示位置。
學(xué)習(xí)難點:用有序數(shù)對表示位置。
學(xué)習(xí)過程:
自學(xué)過程:(一)、自學(xué)知識清單。
1、教材64頁,在圖7.1—1中找出參加數(shù)學(xué)問題討論的同學(xué)。
小組內(nèi)交流一下,看一看你們找的'位置相同嗎?
思考:(2,4)和(4,2)在同一位置嗎?為什么?
2、請回答教材65頁:思考題。
3、我們把這種有順序的______個數(shù)a與b組成的_______叫做_______,記作(,)。
(二)、自學(xué)反饋。
練習(xí)1、利用________________,可以準(zhǔn)確地表示出一個位置,
如電影院的座號,“3排2號”、表示為(3,2),則“2排3號”可以表示為。
練習(xí)2、如圖(1)所示,一方隊正沿箭頭所指的方向前進(jìn),a的位置為三列四行,表示為a(3,4),則b,c,d表示為b(,),c(,)。
d(,)。
練習(xí)3、完成課本第65頁的練習(xí)。
練習(xí)4、用有序數(shù)對表示物體位置時,(3,2)與(2,3)表示的位置相同嗎?請結(jié)合下面圖形加以說明.
練習(xí)5、如圖所示,a的位置為(2,6),小明從a出發(fā),經(jīng)。
二倍角公式教案篇十六
1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。
2、掌握運用完全平方公式分解因式的`方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。
教學(xué)方法:對比發(fā)現(xiàn)法課型新授課教具投影儀。
教師活動:學(xué)生活動。
新課講解:
(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2。
a2-8a+16=a2-2×4a+42=(a-4)2。
(要強調(diào)注意符號)。
首先我們來試一試:(投影:牛刀小試)。
1.把下列各式分解因式:
(1)x2+8x+16;;(2)25a4+10a2+1。
(3)(m+n)2-4(m+n)+4。
(教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯點,及時糾正)。
2.把81x4-72x2y2+16y4分解因式。
(本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)。
將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。
練習(xí):第88頁練一練第1、2題。
二倍角公式教案篇十七
一、學(xué)習(xí)目標(biāo):
1.經(jīng)歷探索平方差公式的過程.
2.會推導(dǎo)平方差公式,并能運用公式進(jìn)行簡單的運算.
二、重點難點。
重點:平方差公式的推導(dǎo)和應(yīng)用。
難點:理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.
三、合作學(xué)習(xí)。
你能用簡便方法計算下列各題嗎?
1×2998×1002。
導(dǎo)入新課:計算下列多項式的積.
1x+1x-12m+2m-2。
32x+12x-14x+5yx-5y。
結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.
即:a+ba-b=a2-b2。
四、精講精練。
【本文地址:http://mlvmservice.com/zuowen/13447391.html】