2023年公式法因式分解教案(9篇)

格式:DOC 上傳日期:2022-12-24 18:11:28
2023年公式法因式分解教案(9篇)
時(shí)間:2022-12-24 18:11:28     小編:zdfb

作為一位無(wú)私奉獻(xiàn)的人民教師,總歸要編寫(xiě)教案,借助教案可以有效提升自己的教學(xué)能力。那么教案應(yīng)該怎么制定才合適呢?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。

公式法因式分解教案篇一

學(xué)習(xí)重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.

學(xué)習(xí)過(guò)程:

一、創(chuàng)設(shè)情境引入新課

復(fù)習(xí)乘方an的意義:an表示個(gè)相乘,即an=.

乘方的結(jié)果叫a叫做,n是

問(wèn)題:一種電子計(jì)算機(jī)每秒可進(jìn)行1012次運(yùn)算,它工作103秒可進(jìn)行多少次運(yùn)算?

列式為,你能利用乘方的意義進(jìn)行計(jì)算嗎?

二、探究新知:

探一探:

1根據(jù)乘方的意義填空

(1)23×24=(2×2×2)×(2×2×2×2)=2();

(2)55×54=_________=5();

(3)(-3)3×(-3)2=_________________=(-3)();

(4)a6a7=________________=a().

(5)5m5n

猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?

說(shuō)一說(shuō):你能用語(yǔ)言敘述同底數(shù)冪的乘法法則嗎?

同理可得:amanap=(m、n、p都是正整數(shù))

三、范例學(xué)習(xí):

【例1】計(jì)算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

2.計(jì)算:

(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

【例2】:把下列各式化成(x+y)n或(x-y)n的形式.

(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

四、學(xué)以致用:

1.計(jì)算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

⑷-4444=⑸22n22n+1=⑹y5y2y4y=

2.判斷題:判斷下列計(jì)算是否正確?并說(shuō)明理由

⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

3.計(jì)算:

(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

4.解答題:

(1)已知xm+nxm-n=x9,求m的值.

(2)據(jù)不完全統(tǒng)計(jì),每個(gè)人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個(gè)水分子,那么,每個(gè)人每年要用去多少個(gè)水分子?

公式法因式分解教案篇二

本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運(yùn)用公式進(jìn)行多項(xiàng)式的因式分解。第一課時(shí)的內(nèi)容是用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解,首先提出新問(wèn)題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過(guò)整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨(dú)立去做例題、練習(xí)中的題目,并對(duì)結(jié)果通過(guò)展示、解釋、相互點(diǎn)評(píng),達(dá)到能較好的運(yùn)用平方差公式進(jìn)行因式分解的目的。第二課時(shí)利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問(wèn)題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

會(huì)用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解;

會(huì)用完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

能夠綜合運(yùn)用提公因式法、平方差公式、完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

提高全面地觀察問(wèn)題、分析問(wèn)題和逆向思維的能力。

經(jīng)歷用公式法分解因式的探索過(guò)程,進(jìn)一步體會(huì)這兩個(gè)公式在因式分解和整式乘法中的不同方向,加深對(duì)整式乘法和因式分解這兩個(gè)相反變形的認(rèn)識(shí),體會(huì)從正逆兩方面認(rèn)識(shí)和研究事物的方法。

通過(guò)學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識(shí)間有著密切的聯(lián)系。

重點(diǎn):①運(yùn)用平方差公式分解因式;②運(yùn)用完全平方式分解因式。

難點(diǎn):①靈活運(yùn)用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運(yùn)用完全平方公式分解因式

關(guān)鍵:把握住因式分解的基本思路,觀察多項(xiàng)式的特征,靈活地運(yùn)用換元和劃歸思想。

公式法因式分解教案篇三

教學(xué)目標(biāo):

1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實(shí)際問(wèn)題。

2、經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因式之間的聯(lián)系。

3、通過(guò)對(duì)公式的探究,深刻理解公式的應(yīng)用,并會(huì)熟練應(yīng)用公式解決問(wèn)題。

4、通過(guò)探究平方差公式特點(diǎn),學(xué)生根據(jù)公式自己取值設(shè)計(jì)問(wèn)題,并根據(jù)公式自己解決問(wèn)題的過(guò)程,讓學(xué)生獲得成功的體驗(yàn),培養(yǎng)合作交流意識(shí)。

教學(xué)重點(diǎn):

應(yīng)用平方差公式分解因式.

教學(xué)難點(diǎn):

靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.

教學(xué)過(guò)程:

一、復(fù)習(xí)準(zhǔn)備 導(dǎo)入新課

1、什么是因式分解?判斷下列變形過(guò)程,哪個(gè)是因式分解?

①(x+2)(x-2)= ②

2、我們已經(jīng)學(xué)過(guò)的因式分解的方法有什么?將下列多項(xiàng)式分解因式。

x2+2x

a2b-ab

3、根據(jù)乘法公式進(jìn)行計(jì)算:

(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

二、合作探究 學(xué)習(xí)新知

(一) 猜一猜:你能將下面的多項(xiàng)式分解因式嗎?

(1)= (2)= (3)=

(二)想一想,議一議: 觀察下面的公式:

=(a+b)(a—b)(

這個(gè)公式左邊的多項(xiàng)式有什么特征:_____________________________________

公式右邊是__________________________________________________________

這個(gè)公式你能用語(yǔ)言來(lái)描述嗎? _______________________________________

(三)練一練:

1、下列多項(xiàng)式能否用平方差公式來(lái)分解因式?為什么?

① ② ③ ④

2、你能把下列的數(shù)或式寫(xiě)成冪的形式嗎?

(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

(四)做一做:

例3 分解因式:

(1) 4x2- 9 (2) (x+p)2- (x+q)2

(五)試一試:

例4 下面的式子你能用什么方法來(lái)分解因式呢?請(qǐng)你試一試。

(1) x4- y4 (2) a3b- ab

(六)想一想:

某學(xué)校有一個(gè)邊長(zhǎng)為85米的正方形場(chǎng)地,現(xiàn)在場(chǎng)地的四個(gè)角分別建一個(gè)邊長(zhǎng)為5米的正方形花壇,問(wèn)場(chǎng)地還剩余多大面積供學(xué)生課間活動(dòng)使用?

公式法因式分解教案篇四

課型 復(fù)習(xí)課 教法 講練結(jié)合

(知識(shí)、能力、教育)

1.了解分解因式的意義,會(huì)用提公因式法、 平方差公式和完全平方公式(直接用公式不超過(guò)兩次)分解因式(指數(shù)是正整數(shù)).

2.通過(guò)乘法公式 , 的逆向變形,進(jìn)一步發(fā)展學(xué)生觀察、歸納、類(lèi)比、概括等能力,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力

掌握用提取公因式法、公式法分解因式

根據(jù)題目的形式和特征 恰當(dāng)選擇方法進(jìn)行分解,以提高綜合解題能力。

學(xué)案

一:【 課前預(yù)習(xí)】

(一):【知識(shí)梳理】

1.分解因式:把一個(gè)多項(xiàng)式化成 的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

2.分解困式的方法:

⑴提公團(tuán)式法:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提公因式法.

⑵運(yùn)用公式法:平方差公式: ;

完全平方公式: ;

3.分解因式的步驟:

(1)分解 因式時(shí),首先考慮是否有公因式,如果有公因式,一定先提取公團(tuán)式,然后再考慮是否能用公式法 分解.

(2)在用公式時(shí),若是兩項(xiàng),可考慮用平方差公式;若是三項(xiàng),可考慮用完全平方公式;若是三項(xiàng)以上,可先進(jìn)行適當(dāng)?shù)姆纸M,然后分解因式。

4.分解因式時(shí)常見(jiàn)的思維誤區(qū):

提公因式時(shí),其公因式應(yīng)找字母指數(shù)最低的,而不是以首項(xiàng)為準(zhǔn).若有一項(xiàng)被全部提出,括號(hào)內(nèi)的項(xiàng) 1易漏掉.分解不徹底,如保留中括號(hào)形式,還能繼續(xù)分解等

(二):【課前練習(xí)】

1.下列各組多項(xiàng)式中沒(méi)有公因式的是( )

a.3x-2與 6x2-4x b.3(a-b)2與11(b-a)3

與 nynx c與 abbc

2. 下列各題中,分解因式錯(cuò)誤的是( )

3. 列多項(xiàng)式能用平方差公式分解因式的是()

4. 分解因式:x2+2xy+y2-4 =_____

5. 分解因式:(1) ;

(2) ;(3) ;

(4) ;(5)以上三題用了 公式

二:【經(jīng)典考題剖析】

1. 分解因式:

(1) ;(2) ;(3) ;(4)

分析:①因式分解時(shí),無(wú)論有幾項(xiàng),首先考慮提取公因式。提公因式時(shí),不僅注意數(shù),也要 注意字母,字母可能是單項(xiàng)式也可能是多項(xiàng)式,一次提盡。

②當(dāng)某項(xiàng)完全提出后,該項(xiàng)應(yīng)為1

③注意 ,

④分解結(jié)果(1)不帶中括號(hào);(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項(xiàng)式在前,多項(xiàng)式在后;(3)相同因式寫(xiě)成冪的形式;(4 )分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;若無(wú)指定范圍,一般在有理數(shù)范圍內(nèi)分解。

2. 分解因式:(1) ;(2) ;(3)

分析:對(duì)于二次三項(xiàng)齊次式,將其中一個(gè)字母看作末知數(shù),另一個(gè)字母視為常數(shù)。首先考慮提公因式后,由余下因式的項(xiàng)數(shù)為3項(xiàng),可考慮完全平方式或十字相乘法繼續(xù)分解;如果項(xiàng)數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無(wú)公因式,項(xiàng)數(shù)為2項(xiàng),可考慮平方差公式先分解開(kāi),再由項(xiàng)數(shù)考慮選擇方法繼續(xù)分解。

3. 計(jì)算:(1)

(2)

分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。

(2)分解后,便有規(guī)可循,再求1到20xx的和。

4. 分解因式:(1) ;(2)

分析:對(duì)于四項(xiàng)或四項(xiàng)以上的多項(xiàng)式的因式分解,一般采用分組分解法,

5. (1)在實(shí)數(shù)范圍內(nèi)分解因式: ;

(2)已知 、 、 是△abc的三邊,且滿足 ,

求證:△abc為等邊三角形。

分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證 ,

從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個(gè)完全平方式 ,

即可得證,將原式兩邊同乘以2即可。略證:

即△abc為等邊三角形。

三:【課后訓(xùn)練】

1. 若 是一個(gè)完全平方式,那么 的值是( )

a.24 b.12 c.12 d.24

2. 把多項(xiàng)式 因式分解的結(jié)果是( )

a. b. c. d.

3. 如果二次三項(xiàng)式 可分解為 ,則 的 值為( )

a .-1 b.1 c. -2 d.2

4. 已知 可以被在60~70之間的兩個(gè)整數(shù)整除,則這兩個(gè)數(shù)是( )

a.61、63 b.61、65 c.61、67 d.63、65

5. 計(jì)算:19982002= , = 。

6. 若 ,那么 = 。

7. 、 滿足 ,分解因式 = 。

8. 因式分解:

(1) ;(2)

(3) ;(4)

9. 觀察下列等式:

想一想,等式左邊各項(xiàng)冪的底數(shù)與右邊冪的底數(shù)有何關(guān) 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來(lái): 。

10. 已知 是△abc的三邊,且滿足 ,試判斷△abc的形狀。閱讀下面解題過(guò)程:

解:由 得:

即 ③

△abc為rt△。 ④

試問(wèn):以上解題過(guò)程是否正確: ;若不正確,請(qǐng)指出錯(cuò)在哪一步?(填代號(hào)) ;錯(cuò)誤原因是 ;本題結(jié)論應(yīng)為 。

四:【課后小結(jié)】

布置作業(yè) 地綱

公式法因式分解教案篇五

1、了解因式分解的意義以及它與正式乘法的關(guān)系。

2、能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法分解因式。

:能用提公因式法分解因式。

:確定因式的公因式。

,在確定多項(xiàng)式各項(xiàng)公因式時(shí),應(yīng)抓住各項(xiàng)的公因式來(lái)提公因式。

1、計(jì)算

(1)、n(n+1)(n-1)(2)、(a+1)(a-2)

(3)、m(a+b)(4)、2ab(x-2y+1)

1、閱讀課文p72-73的內(nèi)容,并回答問(wèn)題:

(1)知識(shí)點(diǎn)一:把一個(gè)多項(xiàng)式化為幾個(gè)整式的__________的形式叫做____________,也叫做把這個(gè)多項(xiàng)式__________。

(2)、知識(shí)點(diǎn)二:由m(a+b+c)=ma+mb+mc可得

ma+mb+mc=m(a+b+c)

我們來(lái)分析一下多項(xiàng)式ma+mb+mc的特點(diǎn);它的每一項(xiàng)都含有一個(gè)相同的因式m,m叫做各項(xiàng)的_________。如果把這個(gè)_________提到括號(hào)外面,這樣

ma+mb+mc就分解成兩個(gè)因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

2、練一練。p73練習(xí)第1題。

1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個(gè)整式乘積形式,右邊是一個(gè)多項(xiàng)式。、

2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

4、準(zhǔn)確地確定公因式時(shí)提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:

(1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

(2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

1、填空(1)a2b-ab2=ab(________)

(2)-4a2b+8ab-4b分解因式為_(kāi)_________________

(3)分解因式4x2+12x3+4x=__________________

(4)__________________=-2a(a-2b+3c)

2、p73練習(xí)第2題和第3題

1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

2.課本p77習(xí)題8.5第1題

公式法因式分解教案篇六

1、 會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。

2、 會(huì)運(yùn)用因式分解解簡(jiǎn)單的方程。

因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。

應(yīng)用因式分解解方程涉及較多的推理過(guò)程。

1、 知識(shí)回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y

1、運(yùn)用因式分解進(jìn)行多項(xiàng)式除法例1 計(jì)算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

一個(gè)小問(wèn)題 :這里的x能等于3/2嗎 ?為什么?

想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本p162課內(nèi)練習(xí)

想一想:如果已知 ( )( )=0 ,那么這兩個(gè)括號(hào)內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學(xué)生自己思考、相互之間討論?。┦聦?shí)上,若ab=0 ,則有下面的結(jié)論:(1)a和b同時(shí)都為零,即a=0,且b=0(2)a和b中有一個(gè)為零,即a=0,或b=0

試一試:你能運(yùn)用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運(yùn)用因式分解解簡(jiǎn)單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個(gè)未知數(shù)的方程的解也叫做根,當(dāng)方程的根多于一個(gè)時(shí),常用帶足標(biāo)的字母表示,比如:x1 ,x2

做一做!對(duì)于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時(shí)除以(x+2)嗎?為什么?

教師總結(jié):運(yùn)用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個(gè)一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項(xiàng),把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項(xiàng)使右邊化為零,切忌兩邊同時(shí)除以公因式!4、知識(shí)延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

(1)運(yùn)用因式分解進(jìn)行多項(xiàng)式除法

(2)運(yùn)用因式分解解簡(jiǎn)單的方程

作業(yè)本6、42、課本p163作業(yè)題(選做)

公式法因式分解教案篇七

因式分解

教材分析

因式分解是進(jìn)行代數(shù)式恒等變形的重要手段之一,因式分解是在學(xué)習(xí)整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,它不僅僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中等有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的好處。由于本節(jié)課后學(xué)習(xí)提取公因式法,運(yùn)用公式法,分組分解法來(lái)進(jìn)行因式分解,務(wù)必以理解因式分解的概念為前提,所以本節(jié)資料的重點(diǎn)是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過(guò)程,而逆向思維對(duì)初一學(xué)生還比較生疏,理解起來(lái)有必須難度,再者本節(jié)還沒(méi)涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法是教學(xué)中的難點(diǎn)。

認(rèn)知目標(biāo):(1)理解因式分解的概念和好處

(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

潛力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維潛力和綜合運(yùn)用潛力。

情感目標(biāo):培養(yǎng)學(xué)生理解矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。

1.目標(biāo)具體化、明確化,從學(xué)生實(shí)際出發(fā),具有針對(duì)性和可行性,同時(shí)便于上課操作,便于檢測(cè)和及時(shí)反饋。

2.課堂教學(xué)體現(xiàn)潛力立意。

3.寓德育教育于教學(xué)之中。

1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)用心性。

2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運(yùn)用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高潛力。

3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程,堅(jiān)持啟發(fā)式,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,用心參與到教學(xué)中來(lái),充分體現(xiàn)了學(xué)生的主動(dòng)性原則。

4.在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過(guò)程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。

5.改變傳統(tǒng)言傳身教的方式,利用計(jì)算機(jī)輔助教學(xué)手段進(jìn)行教學(xué),增大教學(xué)的容量和直觀性,提高教學(xué)效率和教學(xué)質(zhì)量。

問(wèn)題:看誰(shuí)算得快?(計(jì)算機(jī)出示問(wèn)題)

(1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

(2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000

(3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

(1)請(qǐng)每題想得最快的同學(xué)談思路,得出最佳解題方法(同時(shí)計(jì)算機(jī)出示答案)

(2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個(gè)什么式子?右邊又是什么形式?

a2—2ab+b2=(a—b)2②

20x2+60x=20x(x+3)③

(3)類(lèi)比小學(xué)學(xué)過(guò)的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。

板書(shū)課題:§7。1因式分解

1.因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

練習(xí)

1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計(jì)算機(jī)演示)

①(x+2)(x—2)=x2—4

②x2—4=(x+2)(x—2)

③a2—2ab+b2=(a—b)2

④3a(a+2)=3a2+6a

⑤3a2+6a=3a(a+2)

⑥x2—4+3x=(x—2)(x+2)+3x

⑦k2++2=(k+)2

⑧x—2—1=(x—1+1)(x—1—1)

⑨18a3bc=3a2b·6ac

2.因式分解與整式乘法的關(guān)系:

因式分解

結(jié)合:a2—b2=========(a+b)(a—b)

整式乘法

說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

結(jié)論:因式分解與整式乘法正好相反。

問(wèn)題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個(gè)因式分解的例子嗎?

(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

例:把下列各式分解因式:(計(jì)算機(jī)演示)

(1)am+bm(2)a2—9(3)a2+2ab+b2

(4)2ab—a2—b2(5)8a3+b6

練習(xí)2:填空:(計(jì)算機(jī)演示)

(1)∵2xy=2x2y—6xy2

∴2x2y—6xy2=2xy

(2)∵xy=2x2y—6xy2

∴2x2y—6xy2=xy

(3)∵2x=2x2y—6xy2

∴2x2y—6xy2=2x

練習(xí)3:把下列各式分解因式:(計(jì)算機(jī)演示)

(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

(4)x2+—x(5)x2—0。01(6)a3—1

(讓學(xué)生上來(lái)板演)

1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=

2.機(jī)動(dòng)題:(填空)x2—8x+m=(x—4),且m=

1.因式分解的概念因式分解是整式中的一種恒等變形

2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過(guò)程實(shí)際也是整式乘法的逆向思維的過(guò)程。

3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。

4.教學(xué)中滲透對(duì)立統(tǒng)一,以不變應(yīng)萬(wàn)變的辯證唯物主義的思想方法。

1.作業(yè)本(一)中§7。1節(jié)

2.選做題:①x2+x—m=(x+3),且m=。

②x2—3x+k=(x—5),且k=。

1.透過(guò)由學(xué)生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學(xué)生觀察、分析問(wèn)題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問(wèn)題,及時(shí)反饋。

2.透過(guò)例題及練習(xí),了解學(xué)生對(duì)概念的理解程度和實(shí)際運(yùn)用潛力,最大限度地讓學(xué)生暴露問(wèn)題和認(rèn)知誤差,及時(shí)發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中的遺漏和不足,從而及時(shí)調(diào)控教與學(xué)。

3.透過(guò)機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時(shí)評(píng)價(jià),及時(shí)矯正。

4.透過(guò)課后作業(yè),了解學(xué)生對(duì)知識(shí)的掌握狀況與綜合運(yùn)用知識(shí)及靈活運(yùn)用知識(shí)的潛力,教師及時(shí)批閱,及時(shí)反饋講評(píng),同時(shí)對(duì)個(gè)別學(xué)生面批作業(yè),能夠更及時(shí)、更準(zhǔn)確地了解學(xué)生思維發(fā)展的狀況,矯正的針對(duì)性更強(qiáng)。

5.透過(guò)課堂小結(jié),了解學(xué)生對(duì)概念的熟悉程度和歸納概括潛力、語(yǔ)言表達(dá)潛力、知識(shí)運(yùn)用潛力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。

6.課堂上反饋信息除了語(yǔ)言和練習(xí)外,學(xué)生神情也是信息來(lái)源,而且這些信息更真實(shí)。學(xué)生神態(tài)、表情、坐姿都反映出學(xué)生對(duì)教師教學(xué)資料的理解和理解程度。教師應(yīng)用心捕捉學(xué)生在知識(shí)掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時(shí)評(píng)價(jià),及時(shí)矯正,隨時(shí)調(diào)節(jié)教學(xué)。

公式法因式分解教案篇八

1、進(jìn)一步鞏固因式分解的概念;

2、鞏固因式分解常用的三種方法

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題

5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣

教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問(wèn)題

教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

(7)、2πr+2πr=2π(r+r)因式分解

分解因式要注意以下幾點(diǎn):

(1)。分解的對(duì)象必須是多項(xiàng)式。

(2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。

(3)。要分解到不能分解為止。

提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形。現(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫(huà)所示進(jìn)行折疊處理。

場(chǎng)景一:正方形折疊演示

師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

[學(xué)生活動(dòng):各自測(cè)量。]

鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

講授新課

找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。

動(dòng)畫(huà)演示:

場(chǎng)景二:正方形的性質(zhì)

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學(xué)生活動(dòng):尋找矩形性質(zhì)。]

動(dòng)畫(huà)演示:

場(chǎng)景三:矩形的性質(zhì)

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學(xué)生活動(dòng);尋找菱形性質(zhì)。]

動(dòng)畫(huà)演示:

場(chǎng)景四:菱形的性質(zhì)

師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類(lèi)似的給出正方形的定義。

學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書(shū):

“有一組鄰邊相等的矩形叫做正方形。”

“有一個(gè)角是直角的菱形叫做正方形。”

“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

試一試把下列各式因式分解:

(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

例1、分解因式

(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

(3)(4)y2+y+

例2、分解因式

1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

例3、分解因式

1、72—2(13x—7)22、8a2b2—2a4b—8b3

1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?

1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。

今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

公式法因式分解教案篇九

1.單項(xiàng)式、單項(xiàng)式的定義.

2.多項(xiàng)式、多項(xiàng)式的次數(shù).

3、理解整式概念.

單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

?。岢鰡?wèn)題,創(chuàng)設(shè)情境

在七年級(jí),我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問(wèn)題

1.要表示△abc的周長(zhǎng)需要什么條件?要表示它的面積呢?

2.小王用七小時(shí)行駛了skm的路程,請(qǐng)問(wèn)他的平均速度是多少?

結(jié)論:

1、要表示△abc的周長(zhǎng),需要知道它的各邊邊長(zhǎng).要表示△abc的面積需要知道一條邊長(zhǎng)和這條邊上的高.如果設(shè)bc=a,ac=b,ab=c.a(chǎn)b邊上的高為h,那么△abc的周長(zhǎng)可以表示為a+b+c;△abc的面積可以表示為 ?c?h.

2.小王的平均速度是 .

問(wèn)題:這些式子有什么特征呢?

(1)有數(shù)字、有表示數(shù)字的字母.

(2)數(shù)字與字母、字母與字母之間還有運(yùn)算符號(hào)連接.

歸納:用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開(kāi)方)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫做代數(shù)式.

判斷上面得到的三個(gè)式子:a+b+c、 ch、 是不是代數(shù)式?(是)

代數(shù)式可以簡(jiǎn)明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來(lái)學(xué)習(xí)和代數(shù)式有關(guān)的整式.

ⅱ.明確和鞏固整式有關(guān)概念

(出示投影)

結(jié)論:(1)正方形的周長(zhǎng):4x.

(2)汽車(chē)走過(guò)的路程:vt.

(3)正方體有六個(gè)面,每個(gè)面都是正方形,這六個(gè)正方形全等,所以它的表面積為6a2;正方體的體積為長(zhǎng)×寬×高,即a3.

(4)n的相反數(shù)是-n.

分析這四個(gè)數(shù)的特征.

它們符合代數(shù)式的定義.這五個(gè)式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運(yùn)算符號(hào).還可以發(fā)現(xiàn)這五個(gè)代數(shù)式中字母指數(shù)各不相同,字母的個(gè)數(shù)也不盡相同.

請(qǐng)同學(xué)們閱讀課本p160~p161單項(xiàng)式有關(guān)概念.

根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的,寫(xiě)出它的系數(shù)和次數(shù).

結(jié)論:4x、vt、6a2、a3、-n、 ch是單項(xiàng)式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項(xiàng)式;vt、6a2、 ch都是二次單項(xiàng)式;a3是三次單項(xiàng)式.

問(wèn)題:vt中v和t的指數(shù)都是1,它不是一次單項(xiàng)式嗎?

結(jié)論:不是.根據(jù)定義,單項(xiàng)式vt中含有兩個(gè)字母,所以它的次數(shù)應(yīng)該是這兩個(gè)字母的指數(shù)的和,而不是單個(gè)字母的指數(shù),所以vt是二次單項(xiàng)式而不是一次單項(xiàng)式.

生活中不僅僅有單項(xiàng)式,像a+b+c,它不是單項(xiàng)式,和單項(xiàng)式有什么聯(lián)系呢?

寫(xiě)出下列式子(出示投影)

結(jié)論:(1)t-5.(2)3x+5y+2z.

(3)三角尺的面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.

(4)建筑面積等于四個(gè)矩形的面積之和.而右邊兩個(gè)已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.

我們可以觀察下列代數(shù)式:

a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項(xiàng)式的和組成的式子.是多個(gè)單項(xiàng)式的和,能不能叫多項(xiàng)式?

這樣推理合情合理.請(qǐng)看投影,熟悉下列概念.

根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).

a+b+c的項(xiàng)分別是a、b、c.

t-5的項(xiàng)分別是t、-5,其中-5是常數(shù)項(xiàng).

3x+5y+2z的項(xiàng)分別是3x、5y、2z.

ab-3.12r2的項(xiàng)分別是 ab、-3.12r2.

x2+2x+18的項(xiàng)分別是x2、2x、18. 找多項(xiàng)式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個(gè)項(xiàng)的次數(shù),二是取每個(gè)項(xiàng)次數(shù)的最大值.根據(jù)這兩條很容易得到這五個(gè)多項(xiàng)式中前三個(gè)是一次多項(xiàng)式,后兩個(gè)是二次多項(xiàng)式.

這節(jié)課,通過(guò)探究我們得到單項(xiàng)式和多項(xiàng)式的有關(guān)概念,它們可以反映變化的世界.同時(shí),我們也到符號(hào)的魅力所在.我們把單項(xiàng)式與多項(xiàng)式統(tǒng)稱(chēng)為整式.

ⅲ.隨堂練習(xí)

1.課本p162練習(xí)

ⅳ.課時(shí)小結(jié)

通過(guò)探究,我們了解了整式的概念.理解并掌握單項(xiàng)式、多項(xiàng)式的有關(guān)概念是本節(jié)的重點(diǎn),特別是它們的次數(shù).在現(xiàn)實(shí)情景中進(jìn)一步理解了用字母表示數(shù)的意義,發(fā)展符號(hào)感.

ⅴ.課后作業(yè)

1.課本p165~p166習(xí)題15.1─1、5、8、9題.

2.預(yù)習(xí)“整式的加減”.

課后作業(yè):《課堂感悟與探究》

1、解字母表示數(shù)量關(guān)系的過(guò)程,發(fā)展符號(hào)感。

2、會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。

會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理。

正確地去括號(hào)、合并同類(lèi)項(xiàng),及符號(hào)的正確處理。

一、課前練習(xí):

1、填空:整式包括 和

2、單項(xiàng)式 的系數(shù)是 、次數(shù)是

3、多項(xiàng)式 是 次 項(xiàng)式,其中二次項(xiàng)

系數(shù)是 一次項(xiàng)是 ,常數(shù)項(xiàng)是

4、下列各式,是同類(lèi)項(xiàng)的一組是( )

(a) 與 (b) 與 (c) 與

5、去括號(hào)后合并同類(lèi)項(xiàng):

二、探索練習(xí):

1、如果用a 、b分別表示一個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)兩位數(shù)可以表示為 交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字后得到的兩位數(shù)為

這兩個(gè)兩位數(shù)的和為

2、如果用a 、b、c分別表示一個(gè)三位數(shù)的百位數(shù)字、十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)三位數(shù)可以表示為 交換這個(gè)三位數(shù)的百位數(shù)字和個(gè)位數(shù)字后得到的三位數(shù)為

這兩個(gè)三位數(shù)的差為

●議一議:在上面的兩個(gè)問(wèn)題中,分別涉及到了整式的什么運(yùn)算?

說(shuō)說(shuō)你是如何運(yùn)算的?

▲整式的加減運(yùn)算實(shí)質(zhì)就是

運(yùn)算的結(jié)果是一個(gè)多項(xiàng)式或單項(xiàng)式。

三、鞏固練習(xí):

1、填空:(1) 與 的差是

(2)、單項(xiàng)式 、 、 、 的和為

(3)如圖所示,下面為由棋子所組成的三角形,

一個(gè)三角形需六個(gè)棋子,三個(gè)三角形需

( )個(gè)棋子,n個(gè)三角形需 個(gè)棋子

2、計(jì)算:

(1)

(2)

(3)

3、(1)求 與 的和

(2)求 與 的差

4、先化簡(jiǎn),再求值: 其中

四、提高練習(xí):

1、若a是五次多項(xiàng)式,b是三次多項(xiàng)式,則a+b一定是

(a)五次整式 (b)八次多項(xiàng)式

(c)三次多項(xiàng)式 (d)次數(shù)不能確定

2、足球比賽中,如果勝一場(chǎng)記3a分,平一場(chǎng)記a分,負(fù)一場(chǎng)

記0分,那么某隊(duì)在比賽勝5場(chǎng),平3場(chǎng),負(fù)2場(chǎng),共積多

少分?

3、一個(gè)兩位數(shù)與把它的數(shù)字對(duì)調(diào)所成的數(shù)的和,一定能被14

整除,請(qǐng)證明這個(gè)結(jié)論。

4、如果關(guān)于字母x的二次多項(xiàng)式 的值與x的取值無(wú)關(guān),

試求m、n的值。

五、小結(jié):整式的加減運(yùn)算實(shí)質(zhì)就是去括號(hào)和合并同類(lèi)項(xiàng)。

六、作業(yè):第8頁(yè)習(xí)題1、2、3

1.會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理,發(fā)展有條理的思考及其語(yǔ)言表達(dá)能力。

2.通過(guò)探索規(guī)律的問(wèn)題,進(jìn)一步符號(hào)表示的意義,發(fā)展符號(hào)感,發(fā)展推理能力。

整式加減的運(yùn)算。

探索規(guī)律的猜想。

嘗試練習(xí)法,討論法,歸納法。

投影儀

擺第1個(gè)“小屋子”需要5枚棋子,擺第2個(gè)需要 枚棋子,擺第3個(gè)需要 枚棋子。按照這樣的方式繼續(xù)擺下去。

(1)擺第10個(gè)這樣的“小屋子”需要 枚棋子

(2)擺第n個(gè)這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個(gè)問(wèn)題嗎?小組討論。

二、例題講解:

三、鞏固練習(xí):

1、計(jì)算:

(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

2、已知:a=x3-x2-1,b=x2-2,計(jì)算:(1)b-a (2)a-3b

3、列方程解應(yīng)用題:三角形三個(gè)內(nèi)角的.和等于180°,如果三角形中第一個(gè)角等于第二個(gè)角的3倍,而第三個(gè)角比第二個(gè)角大15°,那么

(1)第一個(gè)角是多少度?

(2)其他兩個(gè)角各是多少度?

四、提高練習(xí):

1、已知a=a2+b2-c2,b=-4a2+2b2+3c2,并且a+b+c=0,問(wèn)c是什么樣的多項(xiàng)式?

2、設(shè)a=2x2-3xy+y2-x+2y,b=4x2-6xy+2y2-3x-y,若│x-2a│+

(y+3)2=0,且b-2a=a,求a的值。

3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:

試化簡(jiǎn):│a│-│a+b│+│c-a│+│b+c│

小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。

作 業(yè):課本p14習(xí)題1.3:1(2)、(3)、(6),2。

【本文地址:http://mlvmservice.com/zuowen/752834.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔