公式法因式分解教案(精選18篇)

格式:DOC 上傳日期:2023-11-12 18:03:15
公式法因式分解教案(精選18篇)
時(shí)間:2023-11-12 18:03:15     小編:BW筆俠

教案應(yīng)該包含學(xué)生參與的各種活動(dòng),促進(jìn)他們的主動(dòng)學(xué)習(xí)。編寫教案前,教師需要充分了解學(xué)生的學(xué)習(xí)水平和特點(diǎn)。掌握好教案的編寫方法和要點(diǎn),能夠提高教學(xué)質(zhì)量和教學(xué)效果。

公式法因式分解教案篇一

九九乘法表是小學(xué)生學(xué)習(xí)數(shù)學(xué)時(shí)一定要學(xué)習(xí)的內(nèi)容,為小學(xué)生抄寫一份九九乘法表也是不少家長(zhǎng)的功課之一。其實(shí)用excel作一份乘法表也是一個(gè)不錯(cuò)的選擇。it168曾經(jīng)發(fā)表過(guò)一篇利用vba編程實(shí)現(xiàn)“九九乘法表”的文章,它就為我們指引了一條很不錯(cuò)的制作乘法表的道路,令我們很受啟發(fā)。

在excel中,除了用vba編程來(lái)制作乘法表以外,我們還可以直接利用公式來(lái)寫乘法表,效果也是不錯(cuò)的。下面我們以excel2007為例來(lái)說(shuō)明。

一、建立乘法表。

首先我們?cè)趀xcel中建立一份空的表格,在b1:j1單元格區(qū)域分別填寫數(shù)字1至9,在a2:a10單元格也分別填寫數(shù)字1至9,得到如圖1所示表格。

圖1excel2007填寫基本數(shù)字。

圖2excel2007填充單元格。

在此公式中其實(shí)只用到了一個(gè)if函數(shù)。所寫乘法表中被乘數(shù)是b1:j1中的數(shù)據(jù),而乘數(shù)則是a2:a10單元格中的數(shù)據(jù)。我們所用公式的意思可以這樣理解:首先判斷被乘數(shù)是否小于或等于乘數(shù),如果是,那么就輸出結(jié)果,如果不是,那么在此單元格中就輸出空值。

二、為乘法表格添加表格線。

感覺(jué)那乘法表有些簡(jiǎn)陋?不要緊,我們?yōu)楸砀窦由媳砀窬€就好了,

當(dāng)然,只為那些有內(nèi)容的單元格添加表格線。辦法嗎?首先隱藏不必要的輔助數(shù)據(jù),然后再用條件格式的方法為乘法表添加表格線。

先點(diǎn)擊a列列標(biāo)選中a列全部單元格,點(diǎn)擊右鍵,在彈出菜單中點(diǎn)擊“隱藏”命令,然后再點(diǎn)擊第一行的行號(hào),選中全部第一行的單元格,再點(diǎn)擊右鍵,在彈出菜單中點(diǎn)擊“隱藏”命令,這樣,輔助數(shù)據(jù)就不見了。

現(xiàn)在,我們?cè)龠x中b2單元格,然后點(diǎn)擊功能區(qū)“開始”選項(xiàng)卡“樣式”功能組“條件格式”按鈕,在彈出的菜單中點(diǎn)擊“新建規(guī)則”命令,打開“新建格式規(guī)則”對(duì)話框。然后在“選擇規(guī)則類型”列表中選擇“使用公式確定要設(shè)置格式的單元格”命令,然后在“為符合此公式的值設(shè)置格式”下方的輸入框中輸入公式“=b2“””,如圖3所示。

圖3excel2007編輯格式規(guī)則。

再點(diǎn)擊下方的“格式”按鈕,打開“設(shè)置單元格格式”對(duì)話框,在“邊框”選項(xiàng)卡中設(shè)置單元格的邊框格式,如圖4所示。當(dāng)然,我們還可以做出其它的設(shè)置。確定后,b2單元格就會(huì)添加有邊框了。

圖4excel2007設(shè)置單元格格式。

再選中b2單元格,然后點(diǎn)擊功能區(qū)“開始”選項(xiàng)卡“剪貼板”功能組中“格式刷”按鈕,然后“刷取”b2:j10單元格區(qū)域復(fù)制格式,那么,在乘法表中非空的那些單元格就會(huì)自動(dòng)添加邊框線,而沒(méi)有內(nèi)容的那些單元格則不會(huì)有任何變化。如圖5所示。

圖5excel2007添加邊框線。

好了,不多說(shuō)了,有興趣自己試試吧。

公式法因式分解教案篇二

王老師的《因式分解》這節(jié)課,他上的這節(jié)課每個(gè)環(huán)節(jié)層層遞進(jìn),落實(shí)有效,教學(xué)流程自然流暢,有獨(dú)創(chuàng)性。教學(xué)設(shè)計(jì)張弛有度,實(shí)施過(guò)程中有水到渠成的銜接美。教師教態(tài)大方,親和力強(qiáng),對(duì)學(xué)生啟發(fā)點(diǎn)撥到位,駕馭課堂的能力強(qiáng),整節(jié)課,學(xué)生在愉悅、寬松和諧的學(xué)習(xí)氛圍中,學(xué)得輕松,學(xué)得愉快。收到良好的教學(xué)效果。其中印象最深的環(huán)節(jié)有:

1.新課引入十分好,但沒(méi)把握好進(jìn)一步解讀課題的機(jī)會(huì)。

2.教師結(jié)構(gòu)設(shè)計(jì)的很好,教學(xué)過(guò)程中相當(dāng)自然。

3.課堂小結(jié)很好,把因式分解(平方差公式)的特點(diǎn)進(jìn)行了全面的概括,但略顯課堂時(shí)間較緊。

4.練習(xí)設(shè)計(jì)由易到難,層層遞進(jìn),若教師再講的少一點(diǎn),教學(xué)效果可能較佳。

5.作為一名實(shí)習(xí)教師,在原有的基礎(chǔ)上有很多進(jìn)步,課上得相當(dāng)不錯(cuò)。

6.教師的'語(yǔ)言親和力強(qiáng),學(xué)生和教師配合默契,課堂氣氛高漲,但略顯教師講課過(guò)多。

7.陳老師能根據(jù)我班級(jí)學(xué)生特點(diǎn),設(shè)計(jì)教學(xué)內(nèi)容,教學(xué)效果體現(xiàn)得更佳。

8.教師在教學(xué)過(guò)程中缺少讓學(xué)生“感悟”的過(guò)程。

9.教師教學(xué)語(yǔ)言規(guī)范,教態(tài)自然,對(duì)學(xué)生有親和力,教室互相到位,對(duì)學(xué)生的學(xué)習(xí)有一定的幫助。

10.能為學(xué)生提供大量數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓學(xué)生成為課堂學(xué)習(xí)的主人。

通過(guò)這次評(píng)課,讓我在教材教法、課堂教學(xué)策略等方面受益匪淺,并希望課堂上一些新理念、策略充實(shí)以后教學(xué)實(shí)踐中。

公式法因式分解教案篇三

大家好!今天我說(shuō)課的內(nèi)容是《14.3.2公式法》(第一課時(shí)),主要內(nèi)容是用平方差公式分解因式。我準(zhǔn)備從教材的地位和作用、學(xué)情分析、學(xué)習(xí)目標(biāo)和重難點(diǎn)的確定、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面確定本節(jié)課。

一、教材的地位和作用。

因式分解是解析式的一種恒等變形,因式分解不但在解方程等問(wèn)題中及其重要,在數(shù)學(xué)科學(xué)其他問(wèn)題和一般科學(xué)研究中也具有廣泛應(yīng)用,是重要的數(shù)學(xué)基礎(chǔ)知識(shí)。因式分解的方法一般包括提公因式法、公式法、分組分解法、十字相乘法、待定系數(shù)法等。而在本章只學(xué)習(xí)提公因式法和公式法,這兩種基本知識(shí)和方法。它對(duì)數(shù)感和符號(hào)意識(shí)的形成具有重要作用,是進(jìn)一步學(xué)習(xí)分式和分式方程的基礎(chǔ)。在中考題中分式化簡(jiǎn)求值問(wèn)題,不可避免地用到因式分解。而利用平方差公式進(jìn)行因式分解的基本方法。

二、學(xué)生的學(xué)情分析。

學(xué)生已經(jīng)學(xué)習(xí)了用字母表示數(shù)、整式的概念、整式的加、減、乘、除、乘方,以及用提公因式法分解因式,具備繼續(xù)學(xué)習(xí)知識(shí)的基礎(chǔ)和經(jīng)驗(yàn),但在細(xì)節(jié)方面還處在欠缺。

三、教學(xué)目標(biāo)的確定。

我認(rèn)真鉆研教材,在考慮學(xué)生的實(shí)際水平情況下,我設(shè)計(jì)如下教學(xué)目標(biāo)。

教學(xué)目標(biāo):

1、掌握平方差公式的特點(diǎn),能運(yùn)用平方差公式進(jìn)行因式分解。

2、掌握平方差公式分解因式的方法,掌握提公因式法、公式法分解因式綜合應(yīng)用。

3、經(jīng)歷探究平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性。

4、培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的`應(yīng)用價(jià)值。

教學(xué)重點(diǎn):熟練運(yùn)用平方差公式進(jìn)行因式分解。

教學(xué)難點(diǎn):

1、掌握平方差公式的特點(diǎn)。

四、教學(xué)過(guò)程的設(shè)計(jì)。

本著學(xué)生的認(rèn)知規(guī)律是由淺入深、由易到難。因此在教學(xué)環(huán)節(jié)設(shè)計(jì)時(shí),我特意設(shè)計(jì)如下教學(xué)環(huán)節(jié):

第二環(huán)節(jié)讓學(xué)生帶著問(wèn)題自學(xué)課本p116例題以前部分,嘗試回答下列問(wèn)題:

(1)有什么特點(diǎn)?

(2)你能將它分解因式嗎?讓學(xué)生帶著問(wèn)題去自學(xué),目的明確,針對(duì)性強(qiáng),通過(guò)學(xué)生發(fā)現(xiàn)并描述特點(diǎn),為下面公式剖析做了鋪墊。然后讓學(xué)生口答課本p117頁(yè)第一題用一組練習(xí)進(jìn)行鞏固加深對(duì)公式的認(rèn)識(shí),另外我選擇教材的練習(xí)題的目的是書本是我們學(xué)習(xí)的藍(lán)本,是專家們深思熟慮后的成果。

第三個(gè)環(huán)節(jié)通過(guò)小組互學(xué),探討公式。用3個(gè)問(wèn)題,觀察公式回答下列問(wèn)題:

(1)這個(gè)公式有什么特點(diǎn)?你能用語(yǔ)言敘述這個(gè)公式嗎?

(2)公式中字母a、b可以表示什么?

(3)因式分解平方差公式與我們前面所學(xué)的乘法公式平方差公式有什么區(qū)別?通過(guò)小組合作探究,學(xué)生深入探究,教師加以引導(dǎo),剖析公式,學(xué)習(xí)難點(diǎn)得以突破。

第四個(gè)環(huán)節(jié),在學(xué)生已經(jīng)掌握公式的基礎(chǔ)上,進(jìn)行運(yùn)用平方差公式進(jìn)行因式分解,由一組簡(jiǎn)單基礎(chǔ)題目入手,符合學(xué)生認(rèn)知規(guī)律,同時(shí)有利于增強(qiáng)學(xué)生的自信心。然后解決課前引入的問(wèn)題,提出問(wèn)題,便要解決問(wèn)題,這樣前后呼應(yīng)。)。

第五個(gè)環(huán)節(jié)通過(guò)教師引導(dǎo),例題精講,讓學(xué)生掌握因式分解的方法。

(1)(2)(3)通過(guò)例題第一小題的設(shè)計(jì)目的是讓學(xué)生發(fā)現(xiàn)因式分解應(yīng)分解徹底,第二和第三個(gè)題目目的是讓學(xué)生能夠總結(jié)出因式分解的一般步驟:一提;二用;三查。教師要強(qiáng)調(diào)必須進(jìn)行到每一個(gè)多項(xiàng)式都不能分解為止。題目設(shè)計(jì)層層深入,符合學(xué)生認(rèn)知規(guī)律。然后通過(guò)嘗試練習(xí),學(xué)生進(jìn)行展示,便于發(fā)現(xiàn)學(xué)生的出現(xiàn)的問(wèn)題,及時(shí)進(jìn)行糾正。

第六個(gè)環(huán)節(jié),檢驗(yàn)學(xué)生對(duì)本節(jié)課的掌握情況,我側(cè)重于學(xué)生收獲方面的體驗(yàn)。通過(guò)學(xué)生暢談收獲,有利于培養(yǎng)學(xué)生的自信心。

第七個(gè)環(huán)節(jié),通過(guò)四個(gè)題目,檢測(cè)學(xué)生本節(jié)課對(duì)知識(shí)的掌握情況。通過(guò)四個(gè)題目的設(shè)計(jì),旨在讓學(xué)生掌握公式的特點(diǎn),并會(huì)熟練地利用平方差公式進(jìn)行因式分解。其中第四題是實(shí)際問(wèn)題,設(shè)計(jì)此題是為了讓學(xué)生學(xué)會(huì)用已有的知識(shí)解決實(shí)際問(wèn)題。

以上是我對(duì)本節(jié)課的整體設(shè)計(jì)思路,不當(dāng)之處,敬請(qǐng)專家們批評(píng)指正!

公式法因式分解教案篇四

1、會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。

二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):

教學(xué)重點(diǎn)。

因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。

教學(xué)難點(diǎn):

應(yīng)用因式分解解方程涉及較多的推理過(guò)程。

三、教學(xué)過(guò)程。

(一)引入新課。

(二)師生互動(dòng),講授新課。

一個(gè)小問(wèn)題:這里的x能等于3/2嗎?為什么?

想一想:那么(4x—9)(3—2x)呢?練習(xí):課本p162課內(nèi)練習(xí)。

合作學(xué)習(xí)。

等練習(xí):課本p162課內(nèi)練習(xí)2。

(三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:

(四)布置課后作業(yè)。

作業(yè)本6、42、課本p163作業(yè)題(選做)。

公式法因式分解教案篇五

教學(xué)目標(biāo):

1、進(jìn)一步鞏固因式分解的概念;2、鞏固因式分解常用的三種方法。

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題。

5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣。

教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問(wèn)題。

教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3。

教學(xué)過(guò)程:

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。

二、知識(shí)回顧。

1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程.

分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.

(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.

4、強(qiáng)化訓(xùn)練。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識(shí)應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

公式法因式分解教案篇六

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

因式分解知識(shí)點(diǎn)

多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

(1)提公因式法

如多項(xiàng)式

其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

(2)運(yùn)用公式法,即用

寫出結(jié)果。

(3)十字相乘法

(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

(5)求根公式法:如果有兩個(gè)根x1,x2,那么

2、教學(xué)實(shí)例:學(xué)案示例

3、課堂練習(xí):學(xué)案作業(yè)

4、課堂:

5、板書:

6、課堂作業(yè):學(xué)案作業(yè)

7、教學(xué)反思:

公式法因式分解教案篇七

教學(xué)設(shè)計(jì)示例。

――完全平方公式(1)。

教學(xué)目標(biāo)。

2.理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力.

3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問(wèn)題、分析問(wèn)題和逆向思維的能力.。

4.通過(guò)分解因式的教學(xué),使學(xué)生進(jìn)一步體會(huì)“把一個(gè)代數(shù)式看作一個(gè)字母”的換元思想。

教學(xué)重點(diǎn)和難點(diǎn)。

重點(diǎn):運(yùn)用完全平方式分解因式.

難點(diǎn):靈活運(yùn)用完全平方公式公解因式.

教學(xué)過(guò)程設(shè)計(jì)。

一、復(fù)習(xí)。

1.問(wèn):什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?

答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解.我們學(xué)過(guò)的因式分解的方法有提取公因式法及運(yùn)用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。

(2)16m4-n4=(4m2)2-(n2)2。

=(4m2+n2)(4m2-n2)。

=(4m2+n2)(2m+n)(2m-n).

問(wèn):我們學(xué)過(guò)的乘法公式除了平方差公式之外,還有哪些公式?

答:有完全平方公式.

請(qǐng)寫出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

這節(jié)課我們就來(lái)討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解.

二、新課。

和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過(guò)來(lái),就得到。

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式.運(yùn)用這兩個(gè)式子,可以把形式是完全平方式的多項(xiàng)式分解因式.

問(wèn):具備什么特征的多項(xiàng)是完全平方式?

答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號(hào)都是正號(hào),第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號(hào)可正可負(fù),像這樣的式子就是完全平方式.

問(wèn):下列多項(xiàng)式是否為完全平方式?為什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

答:(1)式是完全平方式.因?yàn)閤2與9分別是x的平方與3的平方,6x=2·x·3,所以。

x2+6x+9=(x+3).

(2)不是完全平方式.因?yàn)榈谌糠直仨毷?xy.

(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。

25x-10x+1=(5x-1).

(4)不是完全平方式.因?yàn)槿钡谌糠?

答:完全平方公式為:

其中a=3x,b=y,2ab=2·(3x)·y.

例1把25x4+10x2+1分解因式.

分析:這個(gè)多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍.所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

例2把1-m+分解因式.

問(wèn):請(qǐng)同學(xué)分析這個(gè)多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?

答:這個(gè)多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“”是的平方,第二項(xiàng)“-m”是1與m/4的積的2倍的相反數(shù),因此這個(gè)多項(xiàng)式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2·1·+()2=(1-)2.

解法2先提出,則。

1-m+=(16-8m+m2)。

=(42-2·4·m+m2)。

=(4-m)2.

第12頁(yè)。

公式法因式分解教案篇八

“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過(guò)程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

2、教學(xué)目標(biāo)。

(1)會(huì)推導(dǎo)乘法公式。

(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

(3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過(guò)程,提高分析問(wèn)題和解決問(wèn)題的能力。

3、重點(diǎn)、難點(diǎn)和關(guān)鍵。

重點(diǎn):乘法公式的意義、分式的由來(lái)和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

二、本單元教學(xué)的方法和策略:

3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).。

三、課時(shí)安排:

2.1平方差公式1課時(shí)。

2.2完全平方公式2課時(shí)。

公式法因式分解教案篇九

因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒(méi)有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來(lái)的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問(wèn)題的能力。

通過(guò)探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

1、在分解因式的過(guò)程中體會(huì)整式乘法與因式分解之間的聯(lián)系。

2、通過(guò)公式a-b=(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。

3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

4、通過(guò)活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

靈活運(yùn)用平方差公式進(jìn)行分解因式。

平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

公式法因式分解教案篇十

本節(jié)課的教學(xué)目標(biāo)是讓學(xué)生理解一元二次方程的根與二次三項(xiàng)式因式分解的關(guān)系,掌握公式法分解二次三項(xiàng)式。在教學(xué)引入中,通過(guò)二次三項(xiàng)式因式分解方法的探究,引導(dǎo)學(xué)生經(jīng)歷:觀察思考?xì)w納猜想論證等一系列探究過(guò)程,從而讓學(xué)生領(lǐng)會(huì)和感悟認(rèn)識(shí)問(wèn)題和解決問(wèn)題的一般規(guī)律:即由特殊到一般,再由一般到特殊,同時(shí)培養(yǎng)了的學(xué)生動(dòng)手能力和觀察思考和歸納小結(jié)的能力。另一方面通過(guò)運(yùn)用一元二次方程根的知識(shí)來(lái)分解因式,讓學(xué)生體會(huì)知識(shí)間普遍聯(lián)系的數(shù)學(xué)美。

總的來(lái)說(shuō),建立在對(duì)所任教的學(xué)生仔細(xì)分析和對(duì)教學(xué)大綱認(rèn)真研究基礎(chǔ)上所作的教材處理和教學(xué)預(yù)設(shè)是貼近學(xué)生實(shí)際的`,經(jīng)過(guò)這節(jié)課的學(xué)習(xí),學(xué)生較好的達(dá)到了教學(xué)目標(biāo)的要求,較好的完成了教學(xué)任務(wù),教學(xué)效果良好。此外,整節(jié)課比較好地體現(xiàn)了多媒體在教學(xué)上的輔助作用,特別是實(shí)物投影儀的運(yùn)用可以直觀快捷地把學(xué)生的練習(xí)情況反映在全班學(xué)生面前,這些都大大提高了教學(xué)效率,增大了教學(xué)容量,取得了良好的教學(xué)效果。

但本節(jié)課也有許多不足之處,如:

2、作業(yè)布置這一教學(xué)環(huán)節(jié)作為重要的一環(huán)應(yīng)放入課堂上;

3、模仿練習(xí)的題目應(yīng)該把分解好的部分乘出來(lái)看是否與左邊相等,做好返回檢驗(yàn)的工作,這樣更便于學(xué)生的理解。

在今后的教學(xué)中應(yīng)該更好更深刻的研究教材、研究教法、研究我們的學(xué)生,備課更充分、更完善些,從而更好的提高課堂教學(xué)的有效性。

上海市梅園中學(xué):傅琳。

公式法因式分解教案篇十一

教學(xué)過(guò)程中滲透類比的數(shù)學(xué)思想,形成新的知識(shí)結(jié)構(gòu)體系;設(shè)置探究式教學(xué),讓學(xué)生經(jīng)歷知識(shí)的形成,從而達(dá)到對(duì)知識(shí)的深刻理解與靈活應(yīng)用。

學(xué)法:自主、合作、探索的學(xué)習(xí)方式。

在教學(xué)活動(dòng)中,既要提高學(xué)生獨(dú)立解決問(wèn)題的能力,又要培養(yǎng)團(tuán)結(jié)協(xié)作精神,拓展學(xué)生探究問(wèn)題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。

公式法因式分解教案篇十二

1.會(huì)求反比例函數(shù)的解析式;2.鞏固反比例函數(shù)圖象和性質(zhì),通過(guò)對(duì)圖象的分析,進(jìn)一步探究反比例函數(shù)的增減性.

【過(guò)程與方法】。

經(jīng)歷觀察、分析、交流的過(guò)程,逐步提高運(yùn)用知識(shí)的能力.

【情感態(tài)度】。

提高學(xué)生的觀察、分析能力和對(duì)圖形的感知水平.

【教學(xué)重點(diǎn)】。

會(huì)求反比例函數(shù)的解析式.

【教學(xué)難點(diǎn)】。

反比例函數(shù)圖象和性質(zhì)的運(yùn)用.

教學(xué)過(guò)程。

一、情景導(dǎo)入,初步認(rèn)知。

【教學(xué)說(shuō)明】復(fù)習(xí)上節(jié)課的內(nèi)容,同時(shí)引入新課.

二、思考探究,獲取新知。

1.思考:已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)p(2,4)。

(1)求k的值,并寫出該函數(shù)的表達(dá)式;。

(2)判斷點(diǎn)a(-2,-4),b(3,5)是否在這個(gè)函數(shù)的圖象上;。

分析:

(1)題中已知圖象經(jīng)過(guò)點(diǎn)p(2,4),即表明把p點(diǎn)坐標(biāo)代入解析式成立,這樣能求出k,解析式也就確定了.

(2)要判斷a、b是否在這條函數(shù)圖象上,就是把a(bǔ)、b的坐標(biāo)代入函數(shù)解析式中,如能使解析式成立,則這個(gè)點(diǎn)就在函數(shù)圖象上.否則不在.

(3)根據(jù)k的正負(fù)性,利用反比例函數(shù)的性質(zhì)來(lái)判定函數(shù)圖象所在的象限、y隨x的值的變化情況.

【歸納結(jié)論】這種求解析式的方法叫做待定系數(shù)法求解析式.

2.下圖是反比例函數(shù)y=的圖象,根據(jù)圖象,回答下列問(wèn)題:

(1)k的取值范圍是k0還是k0?說(shuō)明理由;。

(2)如果點(diǎn)a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點(diǎn),試比較y1,y2的大小.分析:

(1)由圖象可知,反比例函數(shù)y=kx的圖象的兩支曲線分別位于第一、三象限內(nèi),在每個(gè)象限內(nèi),函數(shù)值y隨自變量x的增大而減小,因此,k0.

(2)因?yàn)辄c(diǎn)a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點(diǎn)且-30,-20.所以點(diǎn)a、b都位于第三象限,又因?yàn)?3-2,由反比例函數(shù)的圖像的性質(zhì)可知:y1y2.

【教學(xué)說(shuō)明】通過(guò)觀察圖象,使學(xué)生掌握利用函數(shù)圖象比較函數(shù)值大小的方法.

公式法因式分解教案篇十三

“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過(guò)程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

2、教學(xué)目標(biāo)。

(1)會(huì)推導(dǎo)乘法公式。

(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

(3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

(4)了解因式分解的一般步驟。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過(guò)程,提高分析問(wèn)題和解決問(wèn)題的能力。

3、重點(diǎn)、難點(diǎn)和關(guān)鍵。

重點(diǎn):乘法公式的意義、分式的由來(lái)和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).。

2.1平方差公式1課時(shí)。

2.2完全平方公式2課時(shí)。

初中優(yōu)秀......

初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來(lái)輔助教學(xué),教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。來(lái)參考自己需要的教案吧!下面是小編為......

公式法因式分解教案篇十四

知識(shí)點(diǎn):

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

教學(xué)目標(biāo):

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

考查重難點(diǎn)與常見題型:

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

教學(xué)過(guò)程:

多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

如多項(xiàng)式。

其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

(2)運(yùn)用公式法,即用。

寫出結(jié)果。

(3)十字相乘法。

(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

(5)求根公式法:如果有兩個(gè)根x1,x2,那么。

1、教學(xué)實(shí)例:學(xué)案示例。

2、課堂練習(xí):學(xué)案作業(yè)。

3、課堂:

4、板書:

5、課堂作業(yè):學(xué)案作業(yè)。

6、教學(xué)反思:

公式法因式分解教案篇十五

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。

4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題。

5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣。

靈活運(yùn)用因式分解解決問(wèn)題。

靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。

二、知識(shí)回顧。

1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。

(7)。2πr+2πr=2π(r+r)因式分解。

2、。規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程。

分解因式要注意以下幾點(diǎn):(1)。分解的對(duì)象必須是多項(xiàng)式。

(2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。(3)。要分解到不能分解為止。

4、強(qiáng)化訓(xùn)練。

教學(xué)引入。

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形?,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

動(dòng)畫演示:

場(chǎng)景一:正方形折疊演示。

師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

[學(xué)生活動(dòng):各自測(cè)量。]。

鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

講授新課。

找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。

動(dòng)畫演示:

場(chǎng)景二:正方形的性質(zhì)。

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學(xué)生活動(dòng):尋找矩形性質(zhì)。]。

動(dòng)畫演示:

場(chǎng)景三:矩形的性質(zhì)。

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學(xué)生活動(dòng);尋找菱形性質(zhì)。]。

動(dòng)畫演示:

場(chǎng)景四:菱形的性質(zhì)。

師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]。

師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形。”

“有一個(gè)角是直角的菱形叫做正方形。”

“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

試一試把下列各式因式分解:。

(1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2。

(3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+。

例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識(shí)應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。

五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

公式法因式分解教案篇十六

王老師上課時(shí)通過(guò)學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出用平方差公式進(jìn)行因式分解,這樣得出平方差公式后,并且把乘法公式進(jìn)行對(duì)比,通過(guò)例題、練習(xí)與小結(jié),教會(huì)學(xué)生如何正確應(yīng)用平方差公式.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來(lái)加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練。王老師放手讓學(xué)生探索,促進(jìn)學(xué)生主動(dòng)發(fā)展的教學(xué)方法貫穿于這節(jié)課的始終。

從學(xué)生的練習(xí)情況來(lái)看,許多同學(xué)都掌握了這節(jié)課的知識(shí),整個(gè)課堂中,以學(xué)生練為主,王老師能敢于創(chuàng)新、敢于探索,整節(jié)課的學(xué)習(xí),教師始終是學(xué)生學(xué)習(xí)活動(dòng)的組織者、指導(dǎo)者和合作者,而學(xué)生始終都是一個(gè)發(fā)現(xiàn)者、探索者,充分發(fā)揮他們的學(xué)習(xí)主體作用。這樣大大提高了這節(jié)課的效率。

教師講課語(yǔ)言簡(jiǎn)捷、清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。乘法公式的引入由兩種形式的'引入,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。做到以點(diǎn)撥為主的教學(xué)。對(duì)于公式的牲能嚴(yán)格要求學(xué)生理解,并能讓學(xué)生自己舉例符合公式形狀的例子,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。效果是比較顯著的。

公式法因式分解教案篇十七

各位評(píng)委、各位老師:

大家好!今天我說(shuō)課的題目是:《因式分解復(fù)習(xí)》。我準(zhǔn)備從如下幾個(gè)方面展示:教材分析,教法、學(xué)法分析,教學(xué)程序設(shè)計(jì),評(píng)價(jià)與反思。

一、教材分析。

(一)教材的地位和作用。

本章因式分解的內(nèi)容是多項(xiàng)式因式分解中一部分最基本的知識(shí)和基本的方法,今天所復(fù)習(xí)的內(nèi)容包括因式分解的有關(guān)概念,整式乘法與因式分解的區(qū)別和聯(lián)系,因式分解的四種基本方法(即提公因式法、運(yùn)用公式法、分組分解法、十字相乘法),及因式分解的一般步驟。

多項(xiàng)式因式分解是代數(shù)式中的重要內(nèi)容,它與前面的整式及后一章的分式聯(lián)系極為密切。因式分解的教學(xué)是在整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,因式分解的理論依據(jù)就是多項(xiàng)式乘法的逆變形。這部分內(nèi)容在分式的通分和約分有著直接的應(yīng)用,在解方程、二次根式及將三角函數(shù)式進(jìn)行恒等變形等方面有著廣泛的應(yīng)用,也是中考的一個(gè)重要考點(diǎn),可以說(shuō)因式分解是代數(shù)恒等變形的一個(gè)重要工具,所以這部分知識(shí)掌握的好壞直接影響著學(xué)生今后對(duì)代數(shù)知識(shí)的學(xué)習(xí)和應(yīng)用。

(二)教學(xué)的目標(biāo)和要求。

從教材作用及適應(yīng)中考要求我確定如下教學(xué)目標(biāo):

1、知識(shí)目標(biāo):a、理解因式分解的概念。b、掌握因式分解的方法及一般步驟。c、會(huì)對(duì)多項(xiàng)式進(jìn)行因式分解。

2、能力目標(biāo):a、通過(guò)知識(shí)結(jié)構(gòu)圖的復(fù)習(xí)教學(xué),培養(yǎng)學(xué)生歸納總結(jié)能力。b、通過(guò)因式分解綜合練習(xí),提高學(xué)生觀察、分析能力。

3、德育目標(biāo):a、培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的意識(shí)。b、培養(yǎng)學(xué)生勇于探索、迎難而上的堅(jiān)強(qiáng)品質(zhì)。

(三)教學(xué)的重點(diǎn)和難點(diǎn)。

重點(diǎn):因式分解的四種基本方法的運(yùn)用難點(diǎn):學(xué)生對(duì)分解因式的方法、技巧的掌握。

二、教法與學(xué)法。

因式分解是數(shù)學(xué)教學(xué)的難點(diǎn)之一,本堂課我采用知識(shí)點(diǎn)歸納因式分解的有關(guān)知識(shí),使因式分解教學(xué)條理化、系統(tǒng)化,達(dá)到分散難點(diǎn),最終突破難點(diǎn)的目的;因式分解的理論比較深,分解因式的方法多,變化技巧性較高,為了學(xué)生更好的掌握本節(jié)的內(nèi)容,我采用“提供練習(xí)――引導(dǎo)觀察――發(fā)現(xiàn)歸納”,讓學(xué)生總結(jié)出分解因式的方法的對(duì)應(yīng)關(guān)系,再通過(guò)適當(dāng)?shù)木毩?xí)實(shí)踐,及時(shí)消化鞏固,讓學(xué)生獲取知識(shí)。在引導(dǎo)觀察的過(guò)程中,啟發(fā)學(xué)生發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,調(diào)動(dòng)學(xué)生積極參與討論,肯定成績(jī),使其具有成就感,提高他們學(xué)習(xí)的興趣和學(xué)習(xí)的積極性。

三、教學(xué)過(guò)程分析。

本節(jié)課通過(guò)知識(shí)點(diǎn)復(fù)習(xí),達(dá)到單元回顧,知識(shí)梳理的目的。我采用知識(shí)點(diǎn)歸納分解因式的有關(guān)知識(shí),使學(xué)生能夠條理化、系統(tǒng)化地掌握分解因式。其中知識(shí)點(diǎn)一回顧了因式分解的基本概念。通過(guò)練習(xí)強(qiáng)調(diào)了因式分解與整式乘法之間的關(guān)系,使學(xué)生進(jìn)一步明確因式分解的定義。

知識(shí)點(diǎn)二回顧因式分解的四種方法,為了幫學(xué)生及時(shí)鞏固因式分解幾種常用方法,習(xí)題的篩選主要從以下兩方面考慮:1.鞏固分解因式的概念2.鞏固分解因式的方法的直接應(yīng)用,也進(jìn)一步感知分解因式中“整體”思想的應(yīng)用。通過(guò)每種方法的題組練習(xí),及時(shí)糾正學(xué)生出現(xiàn)的錯(cuò)誤。然后對(duì)如何應(yīng)用各種方法進(jìn)行講評(píng),要使學(xué)生明確學(xué)習(xí)因式分解重在抓住關(guān)鍵,“提公因式法”關(guān)鍵是準(zhǔn)確、徹底、隨時(shí)隨地;“運(yùn)用公式法”關(guān)鍵是善于識(shí)別“平方項(xiàng)”;“分組分解法”關(guān)鍵在于分組。通過(guò)講評(píng),使學(xué)生在進(jìn)行分解因式時(shí),能較快檢索到恰當(dāng)方法。讓學(xué)生在分解因式的時(shí)候,能做到“瞻前顧后”。即一般來(lái)講,我們?cè)诜纸庖蚴綍r(shí),先看式子中有沒(méi)有公因式,再看能否利用公式法(平方差公式和完全平方公式),最后檢查是否分解到不能再分解。學(xué)生對(duì)因式分解方法有了進(jìn)了一步了解之后,讓學(xué)生完成練習(xí),本組練習(xí)題難度加大,學(xué)生有疑問(wèn),可借助小組的智慧,共同解決。

(檢測(cè))通過(guò)這幾道題目檢測(cè)學(xué)生對(duì)知識(shí)的掌握和理解程度。四.評(píng)價(jià)與反思。

新課標(biāo)要求我們合理選用教學(xué)素材,優(yōu)化教學(xué)內(nèi)容。所以我在教學(xué)中,選用具有現(xiàn)實(shí)性和趣味性的素材,并注意學(xué)科間的聯(lián)系。忠實(shí)于教材,但不迷信教材,在研究的基礎(chǔ)上使用教材,對(duì)于課堂和課外練習(xí)一部分取材于課本,而概念的引入?yún)s有別于教材。以激發(fā)學(xué)生的學(xué)習(xí)積極性和主動(dòng)探究數(shù)學(xué)問(wèn)題的熱情。教學(xué)方法合理化,不拘泥于形式。在教學(xué)中,通過(guò)問(wèn)題串與活動(dòng)系列,實(shí)施開放式教學(xué),隨處可見學(xué)生思維間碰撞的火花,發(fā)展了學(xué)生的思維能力,培養(yǎng)了學(xué)生思考的習(xí)慣,增強(qiáng)了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。

無(wú)論是教學(xué)環(huán)節(jié)設(shè)計(jì),還是題目練習(xí)的安排上,我都重視知識(shí)的產(chǎn)生過(guò)程,關(guān)注人的發(fā)展,意到個(gè)體間的差異,注意分層教學(xué),讓每一個(gè)學(xué)生在課堂上都有所感悟,都有著各自的數(shù)學(xué)體驗(yàn),不同的人在數(shù)學(xué)上都得到不同的發(fā)展。

以上是我對(duì)《因式分解復(fù)習(xí)》一課的說(shuō)課,不當(dāng)之處請(qǐng)各位評(píng)委、老師批評(píng)指正,謝謝。

公式法因式分解教案篇十八

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。

5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣。

靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。

二、知識(shí)回顧。

1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程.

分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.

(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.

4、強(qiáng)化訓(xùn)練。

教學(xué)引入。

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形?,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

動(dòng)畫演示:

場(chǎng)景一:正方形折疊演示。

師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

[學(xué)生活動(dòng):各自測(cè)量。]。

鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

講授新課。

找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。

動(dòng)畫演示:

場(chǎng)景二:正方形的性質(zhì)。

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學(xué)生活動(dòng):尋找矩形性質(zhì)。]。

動(dòng)畫演示:

場(chǎng)景三:矩形的性質(zhì)。

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學(xué)生活動(dòng);尋找菱形性質(zhì)。]。

動(dòng)畫演示:

場(chǎng)景四:菱形的性質(zhì)。

師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]。

師:請(qǐng)同學(xué)們回想矩形與菱形的`定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形?!?/p>

“有一個(gè)角是直角的菱形叫做正方形?!?/p>

“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+。

例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識(shí)應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

【本文地址:http://mlvmservice.com/zuowen/11320586.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔