完全平方公式教案范文(17篇)

格式:DOC 上傳日期:2023-11-23 07:22:12
完全平方公式教案范文(17篇)
時間:2023-11-23 07:22:12     小編:翰墨

教案應該充分考慮學生的學習需求和興趣愛好,以便激發(fā)學生的學習主動性。在編寫教案時,要結合課程標準和學習要求,確定適合學生的教學內容和教學策略。這些教案范文可以幫助大家提高教學效果和指導學生的學習。

完全平方公式教案篇一

學生的知識技能基礎:學生通過對本章前幾節(jié)課的學習,已經學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節(jié)課的學習奠定了基礎。

學生活動經驗基礎:在平方差公式一節(jié)的學習中,學生已經經歷了探索和應用的過程,獲得了一些數學活動的經驗,培養(yǎng)了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力。

教科書在學生已經學習了整式的加法、乘法,以及平方差公式的基礎上,提出了本課的具體學習任務:經歷探索完全平方公式的過程,并能運用公式進行簡單的計算。但這僅僅是這堂課外顯的具體教學目標,或者說是一個近期目標。整式是初中數學研究范圍內的一塊重要內容,整式的運算又是整式中的一大主干,乘法公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結。同時,乘法公式的推導是初中數學中運用推理方法進行代數式恒等變形的開端,通過乘法公式的學習對簡化某些整式的運算、培養(yǎng)學生的求簡意識有較大好處。而且乘法公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算的重要基礎,同時也具有培養(yǎng)學生逐漸養(yǎng)成嚴密的邏輯推理能力的作用。為此,本節(jié)課的教學目標是:

1.經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。

2.體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質,從不同的。層次上理解完全平方公式,并會運用公式進行簡單的計算。

3.了解完全平方公式的幾何背景,培養(yǎng)學生的數形結合意識。

4.在學習中使學生體會學習數學的樂趣,培養(yǎng)學習數學的信心,感愛數學的內在美。

本節(jié)課設計了七個教學環(huán)節(jié):回顧與思考、情境引入、初識完全平方公式、再識完全平方公式、又識完全平方公式、課堂小結、布置作業(yè)。

第一環(huán)節(jié)回顧與思考。

活動內容:復習已學過的平方差公式。

1.平方差公式:(a+b)(a-b)=a-b;公式的結構特點:左邊是兩個二項式的乘積,即兩數和與這兩數差的積。右邊是兩數的平方差。

2.應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

活動目的:本堂課的學習方向仍是引導鼓勵學生通過已學習的知識經過個人思考、小1組合作等方式推導出本課新知,進一步發(fā)展學生的符號感和推理能力。而這個過程離不開舊知識的鋪墊,平方差公式的學習有很多教學環(huán)節(jié)和形式與本節(jié)的學習是類似的,其中包含的基本知識與基本能力也仍是本節(jié)的精神主旨,因而復習很有必要。

實際教學效果:在復習過程中,學生能夠順利地回答出平方差公式的內容,而對于其結構特點及應用時的注意事項,通過學生之間的相互補充,絕大多數學生也得以掌握。在復習中既把舊知識得以復習,同時學生也會主動的去回顧平方差公式一節(jié)的學習過程,從而為本節(jié)課的類比學習奠定了基礎。

第二環(huán)節(jié)情境引入。

活動內容:出示幻燈片,提出問題。

一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。

用不同的形式表示實驗田的總面積,并進行比較。

活動目的:數學源自于生活,通過生活當中的一個實際問題,引入本節(jié)課的學習。從而在學生運用舊知計算和比較實驗田的面積當中引出完全平方公式。由于實驗田的總面積有多種表示方式,通過對比這些表示方式可以使學生對于公式有一個直觀的認識。同時在古代人們也是通過類似的圖形認識了這個公式。在列代數式解決問題的過程當中,通過自主探究和交流學到了新的知識,學生的學習積極性和主動性得到大大的激發(fā)。

實際教學效果:問題提出后,學生能夠主動地去尋找解決問題的方法。同時問題要求用不同的形式來表示總面積,這就要求學生從不同的角度來進行考慮,從而對于學生的思維提出了挑戰(zhàn)。不過由于前面列代數式一部分內容的學習,絕大多數學生能夠很順利地想到兩種不同的方法,并從中建立了數形結合的意識。從而在學生的自主探索過程中引出了完全平方公式,使學生有了一個直觀認識。在整個過程中老師只是在提出問題和引導學生解決問題,學生的自主性得到了充分的體現(xiàn),課堂氣氛平等融洽。

活動內容:1.通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數和的完全平方公式推導出兩數差的完全平方公式:(a-b)2=a2-2ab+b2.2.引導學生利用幾何圖形來驗證兩數差的完全平方公式。

3.分析完全平方公式的結構特點,并用語言來描述完全平方公式。

結構特點:左邊是二項式(兩數和(差))的平方;

右邊是兩數的平方和加上(減去)這兩數乘積的兩倍。

語言描述:兩數和(或差)的平方,等于這兩數的平方和加上(或減去)這兩數積的兩倍。

活動目的:第一個活動是讓學生在上面討論的基礎上,從代數運算的角度運用多項式的乘法法則,推導出兩數和的完全平方公式,并且進一步推導出兩數差的完全平方公式。在教學中學生有條理的思考和語言表達能力得以培養(yǎng)。

第二個活動使學生再次從幾何的角度來驗證兩數差的完全平方公式。從而學生經歷了幾何解釋到代數運算,再到幾何解釋的過程,學生的數形結合意識得以培養(yǎng),并且從不同的角度推導出了公式,并且加以鞏固。

第三個活動在前面的基礎上,加以總結,使得學生從形式上初步地認識了完全平方公式。實際教學效果:此環(huán)節(jié)的設計符合學生的認知水平和認知過程。在第一個活動的教學中2應重視學生對于算理的理解,讓學生嘗試說出每一步運算的道理,有意識地培養(yǎng)他們有條理的思考和語言表達能力。在第二個活動中既是對于第二環(huán)節(jié)用幾何解釋驗證兩數和的完全平方公式的鞏固,同時也是對于學生數形結合意識的一種培養(yǎng),絕大多數學生能夠通過交流合作得以掌握。通過幾個活動學生能夠初步地掌握了完全平方公式,并在推導過程中培養(yǎng)了數學的基本能力。

(1)(2x3)2;

(2)(4x+5y)2;。

(3)(mna)22.總結口訣:首平方,尾平方,兩倍乘積放中央。

3.鞏固練習。

(1)計算:

11(2y)。

2;(2xyx)2。

;(n+1)2-n2。

;(4x+0.5)2。

;(2x2-3y2)225(2)糾錯練習:指出下列各式中的錯誤,并加以改正:

(1)(2a1)2=2a22a+1;。

(2)(2a+1)2=4a2+1;

(3)(a1)2=a22a1.活動目的:應用完全平方公式進行簡單的計算。同時例1三個題目的設計上有一定的梯度,從而總結出進行簡單計算的一般口訣,并加以鞏固落實。

實際教學效果:對照公式,進行獨立的簡單計算,體會公式在解題中的應用,進一步熟悉公式。并通過小組交流,自我檢驗,鞏固反饋??疾靷€人的實際運用能力,并及時查漏補缺。在此基礎上由教師總結出口訣,幫助學生進一步認識完全平方公式,并加以鞏固練習。

22(1)(-1-2x);(2)(-2x+1)。

2.進一步完善口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減?;顒幽康模豪?是對課本內容的補充,從而使得學生從更深的一個角度來認識完全平方公式,防止解題時中間項的符號出現(xiàn)問題,并能在解題中通過靈活的變形來運用公式,解決問題。并對上面總結的口訣進行進一步的完善。

實際教學效果:首先放手讓學生獨立來解決第一個題目,學生出錯較多,且都集中在中間項的符號上,由此引出有進一步認識公式的必要,從而教師引導學生再次觀察題目,仔細分析題目當中誰相當于公式當中的a與b,從而運用不同的方法和思路,解決問題。在活動中學生認識到了解決問題之前恰當選擇公式和正確分析題目的必要性,學習的積極性再次被激發(fā),在此基礎上教師把上面總結的口訣再次完善,幫助學生突破難點,教師的主導作用得以體現(xiàn)。

第六環(huán)節(jié)課堂小結。

活動內容:1.完全平方公式和平方差公式不同:

形式不同.。

3不弄錯符號、2ab時不少乘2。

3.口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

活動目的:課堂小結并不只是課堂知識點的回顧,要盡量讓學生暢談自己的切身感受,教師對于發(fā)言進行鼓勵,進一步梳理本節(jié)所學,更要有所思考,達到對所學知識鞏固的目的。

實際教學效果:學生暢所欲言自己的實際收獲,達到了本節(jié)課的教學目標。

第七環(huán)節(jié)布置作業(yè)。

1.基礎訓練:教材習題1.13。

1.本節(jié)課學生的探究活動比較多,教師既要全局把握,又要順其自然,千萬不可拔苗助長,為了后面多做幾道練習而人為的主觀裁斷時間安排,其實公式的探究活動本身既是對學生能力的培養(yǎng),又是對公式的識記過程,而且還可以提高他們的應用公式的本領。因此,不但不可以省,而且還要充分挖掘,以使不同程度的學生都有事情做且樂此不疲,更加充分的參與其中。對于這一點,教師一定要轉變觀念。

2.在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學生只是側重觀察某個單獨的式子,把它孤立地看,而不知道將幾個式子聯(lián)系地看;有些學生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強的觀察力。教師要善于抓住這個契機,適當對學生進行學法指導,培養(yǎng)他們“既見樹木,又見森林”的優(yōu)良觀察品質。

3.對于公式使用的條件既要把握好“度”,又要把握好“方向”。對于公式中的字母取值范圍,不必過分強調(實際上,這個范圍限定的太小了);而對于公式的特點,則應當左右兼顧,特別是公式的左邊,它是正確應用公式的前提,卻往往不被重視,結果造成幾個類似公式的混淆,給正確解題設置了障礙。

4.教無定法,教師應根據本班的實際情況靈活安排教學步驟,切實把關注學生的發(fā)展放在首位來考慮,并依此制定合理而科學的教學計劃。如,對于較好的班級,則可以優(yōu)先發(fā)展,采取居高臨下的教學思路,先整體把握再對比擊破,或是將其納入整體結構系統(tǒng),采取類比的學習方式;而對于基礎較薄弱的班級,則應以提高學習興趣、教會學習、培養(yǎng)成功體驗為主,千萬不可拔苗助長,以防物極必反。

完全平方公式教案篇二

探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab).師生共同分析:此題是做除法運算,可以從兩方面思考:根據除法是乘法的逆運算,將除法問題轉化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy.另外,根據同底數冪的除法法則,由約分也可得=xy.學生動筆:寫出(2)(3)題的結果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數、同底數冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數、同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。

p401學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學完成后,師生共同訂正。

本節(jié)課主要學習了單項式除以單項式的運算。在運用法則計算時應注意以下幾點:

1.系數相除與同底數冪相除的區(qū)別;

2.符號問題;

完全平方公式教案篇三

探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab)。師生共同分析:此題是做除法運算,可以從兩方面思考:根據除法是乘法的逆運算,將除法問題轉化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy。另外,根據同底數冪的除法法則,由約分也可得=xy.學生動筆:寫出(2)(3)題的結果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數、同底數冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數、同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。

p401學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學完成后,師生共同訂正。

本節(jié)課主要學習了單項式除以單項式的運算。在運用法則計算時應注意以下幾點:。

1、系數相除與同底數冪相除的區(qū)別;

2、符號問題;

完全平方公式教案篇四

學習了乘法公式中的完全平方,一個是兩數和的平方,另一個是兩數差的平方,兩者僅一個“符號”不同。相乘的結果是兩數的平方和,加上(或減去)兩數的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意:

(1)切勿把此公式與平方差公式混淆,而隨意寫。

(2)切勿把“乘積項”2ab中的2丟掉。

(3)計算時,要先觀察題目是否符合公式的條件。若不符合,應先變形為符合公式的條件的形式,再利用公式進行計算;若不能變?yōu)榉蠗l件的形式,則應運用乘法法則進行計算。

今后在教學中,要注意以下幾點:

1.讓學生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征。

2.引入完全平方公式,讓學生用文字概括公式的內容,培養(yǎng)抽象的數字思維能力。

完全平方公式教案篇五

(2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[。

(1)(2)(3)(4)。

2、計算:

(1)(2)。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,則k=。

例1計算:1.2.

現(xiàn)在我們從幾何角度去解釋完全平方公式:

從圖(1)中可以看出大正方形的邊長是a+b,

它是由兩個小正方形和兩個矩形組成,所以。

大正方形的面積等于這四個圖形的面積之和。

則s==。

即:

如圖(2)中,大正方形的邊長是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長都是,寬都是,所以它們的面積都是;正方形hcgm的邊長是b,其面積就是;正方形afme的邊長是,所以它的面積是。從圖中可以看出正方形aemf的面積等于正方形abcd的'面積減去兩個矩形dcge和bchf的面積再加上正方形hcgm的面積。也就是:(a-b)2=。這也正好符合完全平方公式。

例2.計算:。

(1)(2)。

變式訓練:

(1)(2)。

(3)(4)(x+5)2–(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,則=。

(2)已知,求________,________。

(3)不論為任意有理數,的值總是()。

a.負數b.零c.正數d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3)。已知,求的值。

1、完全平方公式的使用:在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數、也可以是單項式,還可以是多項式,所以要記得添括號。

2、解題技巧:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優(yōu)化選擇。

完全平方公式教案篇六

1.弄清完全平方公式的來源及其結構特點,能用自己的。語言說明公式及其特點;

2.會用完全平方公式進行運算。教學難點:會用完全平方公式進行運算教學過程:

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。

用不同的形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?

(2)(a-b)2等于什么?小穎寫出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來。

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

1.下列各式中哪些可以運用完全平方公式計算_______________。

(1);(2);。

(3);(4).

2.計算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)_____________;(2);。

1.求的值,其中。

2.若。

對公式的真正理解有待加強。

完全平方公式教案篇七

(l)(2)(3)(4)。

學生活動:學生分組討論,選代表解答.。

練習三。

甲的計算過程是:原式。

乙的計算過程是:原式。

丙的計算過程是:原式。

丁的計算過程是:原式。

(2)想一想,與相等嗎?為什么?

與相等嗎?為什么?

學生活動:觀察、思考后,回答問題.。

練習四。

(l)(2)。

(3)(4)。

(四)總結、擴展。

這節(jié)課我們學習了乘法公式中的完全平方公式.。

引導學生舉例說明公式的結構特征,公式中字母含義和運用公式時應該注意的問題.。

八、布置作業(yè)。

p1331,2.(3)(4).。

參考答案。

略.。

完全平方公式教案篇八

1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的因式分解。

2、掌握運用完全平方公式分解因式的`方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。

教學方法:對比發(fā)現(xiàn)法課型新授課教具投影儀。

教師活動:學生活動。

新課講解:

(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2。

a2-8a+16=a2-2×4a+42=(a-4)2。

(要強調注意符號)。

首先我們來試一試:(投影:牛刀小試)。

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1。

(3)(m+n)2-4(m+n)+4。

(教師強調步驟的重要性,注意發(fā)現(xiàn)學生易錯點,及時糾正)。

2.把81x4-72x2y2+16y4分解因式。

(本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創(chuàng)新)。

將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

練習:第88頁練一練第1、2題。

完全平方公式教案篇九

1、經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。

2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。

3、了解完全平方公式的幾何背景,培養(yǎng)學生的數形結合意識。

4、在學習中使學生體會學習數學的樂趣,培養(yǎng)學習數學的信心,感愛數學的內在美。

1、弄清完全平方公式的來源及其結構特點,用自己的語言說明公式及其特點;

探索討論、歸納總結。

一、回顧與思考。

1、平方差公式:(a+b)(a—b)=a2—b2;

公式的結構特點:左邊是兩個二項式的乘積,即兩數和與這兩數差的積。

右邊是兩數的平方差。

2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

二、情境引入。

活動內容:提出問題:

用不同的形式表示實驗田的總面積,并進行比較。

活動內容:

1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數和的完全平方公式推導出兩數差的完全平方公式:(a—b)2=a2—2ab+b2。

2、引導學生利用幾何圖形來驗證兩數差的完全平方公式。

3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。

結構特點:左邊是二項式(兩數和(差))的平方;

右邊是兩數的平方和加上(減去)這兩數乘積的兩倍。

語言描述:兩數和(或差)的平方,等于這兩數的平方和加上(或減去)這兩數積的兩倍。

2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

五、鞏固練習:

一、學習目標。

1、會推導完全平方公式,并能運用公式進行簡單的計算。

三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。

四、學習設計。

(一)預習準備。

(1)預習書p23—26。

(2)思考:和的平方等于平方的和嗎?

1、已知實數x、y都大于2,試比較這兩個數的積與這兩個數的和的大小,并說明理由。

2、已知(a+b)2=24,(a—b)2=20,求:

(1)ab的值是多少?

(2)a2+b2的值是多少?

3、已知2(x+y)=—6,xy=1,求代數式(x+2)—(3xy—y)的值。

1、(5—x2)2等于;

答案:25—10x2+x4。

解析:解答:(5—x2)2=25—10x2+x4。

2、(x—2y)2等于;

答案:x2—8xy+4y2。

解析:解答:(x—2y)2=x2—8xy+4y2。

3、(3a—4b)2等于;

答案:9a2—24ab+16b2。

解析:解答:(3a—4b)2=9a2—24ab+16b2。

完全平方公式教案篇十

重點、難點根據公式的特征及問題的特征選擇適當的公式計算.

教學過程。

一、議一議。

1.邊長為(a+b)的正方形面積是多少?

2.邊長分別為a、b拍的兩個正方形面積和是多少?

3.你能比較(1)(2)的結果嗎?說明你的理由.師生共同討論:學生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.

二、做一做。

例1.利用完全平方式計算1.102。

三、試一試。

計算:。

1.(a+b+c)。

2.(a+b)師生共同分析:對于1要把多項式完全平方轉化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,并與同伴交流你的做法.學生敘述。

四、隨堂練習。

p381。

五、小結。

本節(jié)課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點.1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據公式的特征及題目的特征靈活選擇適當的公式計算.3.用加法結合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項式的完全平方轉化為二項式的完全平方.

六、作業(yè)。

課本習題1.14p381、2、3.

七、教后反思。

1.9整式的除法第一課時單項式除以單項式教學目標1.經歷探索單項式除法的法則過程,了解單項式除法的意義.

2.理解單項式除法法則,會進行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.

將本文的word文檔下載到電腦,方便收藏和打印。

完全平方公式教案篇十一

二、學習重點。

三、學習難點。

靈活運用平方差和完全平方公式進行整式的簡便運算。

四、學習設計。

(一)預習準備。

(2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[。

(1)(2)(3)(4)。

2.計算:

(1)(2)。

(二)學習過程。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,則k=。

例1計算:1.2.

現(xiàn)在我們從幾何角度去解釋完全平方公式:

從圖(1)中可以看出大正方形的邊長是a+b,

它是由兩個小正方形和兩個矩形組成,所以。

大正方形的面積等于這四個圖形的面積之和.

則s==。

即:

如圖(2)中,大正方形的邊長是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長都是,寬都是,所以它們的面積都是;正方形hcgm的邊長是b,其面積就是;正方形afme的邊長是,所以它的面積是.從圖中可以看出正方形aemf的面積等于正方形abcd的面積減去兩個矩形dcge和bchf的面積再加上正方形hcgm的面積.也就是:(a-b)2=.這也正好符合完全平方公式.

例2.計算:。

(1)(2)。

變式訓練:

(1)(2)。

(3)(4)(x+5)2c(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,則=。

(2)已知,求________,________。

(3)不論為任意有理數,的值總是。

a.負數b.零c.正數d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值。

回顧小結。

1.完全平方公式的使用:在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數、也可以是單項式,還可以是多項式,所以要記得添括號。

2.解題技巧:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優(yōu)化選擇。

完全平方公式教案篇十二

3.4探究實際問題與一元一次方程組。

掌握一元一次方程得解法,了解銷售中的數量關系。

能夠分析實際問題中的數量關系,找相等關系,列出一元一次方程。

基本思想。

基本活動經驗體會解決實際問題的一般步驟及盈虧中的關系。

重點探索并掌握列一元一次方程解決實際問題的方法,

教學。

難點找出已知量與未知量之間的關系及相等關系。

教具資料準備教師準備:課件。

書、本。

教學過程自備。

補充集備。

補充。

探究銷售中的盈虧問題:

1、商品原價200元,九折出售,賣價是元。

2、商品進價是30元,售價是50元,則利潤。

是元。

2、某商品原來每件零售價是a元,現(xiàn)在每件降價10%,降價后每件零售價是元。

3、某種品牌的彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應為元。

4、某商品按定價的八折出售,售價是14.8元,則原定售價是。

(學生總結公式)。

熟悉各個量之間的聯(lián)系有助于熟悉利潤、利潤率售價進價之間聯(lián)系。

分析:售價=進價+利潤。

售價=(1+利潤率)×進價。

(3)某商場把進價為1980元的商品按標價的八折出售,仍獲利10%,則該商品的標價為元。

注:標價×n/10=進(1+率)。

則這種藥品在2005年漲價前價格為元。

通過本節(jié)課的學習你有哪些收獲?你還有哪些疑惑?

虧損還是盈利對比售價與進價的關系才能加以判斷。

小組研究解決提出質疑。

優(yōu)生展示講解質疑。

板書設計一元一次方程的應用-----盈虧問題。

相關的關系式:例題。

課后反思售價、進價、利潤、利潤率、標價、折扣數這幾個量之間的關系一定清楚,之后才能靈活運用,通過變式練習加強記憶提高能力。

完全平方公式教案篇十三

1.本節(jié)課學生的探究活動比較多,教師既要全局把握,又要順其自然,千萬不可拔苗助長,為了后面多做幾道練習而人為的主觀裁斷時間安排,其實公式的探究活動本身既是對學生能力的培養(yǎng),又是對公式的識記過程,而且還可以提高他們的應用公式的本領.因此,不但不可以省,而且還要充分挖掘,以使不同程度的學生都有事情做且樂此不疲,更加充分的參與其中.對于這一點,教師一定要轉變觀念.

2.在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學生只是側重觀察某個單獨的式子,把它孤立地看,而不知道將幾個式子聯(lián)系地看;有些學生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強的觀察力.教師要善于抓住這個契機,適當對學生進行學法指導,培養(yǎng)他們“既見樹木,又見森林”的優(yōu)良觀察品質.

3.對于公式使用的條件既要把握好“度”,又要把握好“方向”.對于公式中的字母取值范圍,不必過分強調(實際上,這個范圍限定的太小了);而對于公式的特點,則應當左右兼顧,特別是公式的左邊,它是正確應用公式的前提,卻往往不被重視,結果造成幾個類似公式的.混淆,給正確解題設置了障礙.

4.教無定法,教師應根據本班的實際情況靈活安排教學步驟,切實把關注學生的發(fā)展放在首位來考慮,并依此制定合理而科學的教學計劃.如,對于較好的班級,則可以優(yōu)先發(fā)展,采取居高臨下的教學思路,先整體把握再對比擊破,或是將其納入整體結構系統(tǒng),采取類比的學習方式;而對于基礎較薄弱的班級,則應以提高學習興趣、教會學習、培養(yǎng)成功體驗為主,千萬不可拔苗助長,以防物極必反.

完全平方公式教案篇十四

理解兩個完全平方公式的結構,靈活運用完全平方公式進行運算。

在運用完全平方公式的過程中,進一步發(fā)展學生的符號演算的能力,提高運算能力。

培養(yǎng)學生在獨立思考的基礎上,積極參與對數學問題的討論,敢于發(fā)表自己的見解。

一、復習導入。

2.計算,除了直接用兩數差的完全平方公式外,還有別的方法嗎?

學生思考后回答:由于兩數差可以轉化成兩數和,所以還可以用兩數和的完全平方公式計算,把“”看成加數,按照兩數和的完全平方公式計算,結果是一樣的。

教師歸納:當我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的,區(qū)別是其結果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準確;另一方面,當我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結構上來看就是一致的了,其結構都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍。”注意到它們的統(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。

我們學習運算,除了要重視結果,還要重視過程,平時注意訓練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。

二、新課講解。

溫故知新。

與,與相等嗎?為什么?

學生討論交流,鼓勵學生從不同的。角度進行說理,共同歸納總結出兩條判斷的思路:

1.對原式進行運算,利用運算的結果來判斷;

2.不對原式進行運算,只做適當變形后利用整體的方法來判斷。

思考:與,與相等嗎?為什么?

利用整體的方法判斷,把看成一個數,則是它的相反數,相反數的奇次方是相反的,所以它們不相等。

總結歸納得到:;

三、典例剖析。

完全平方公式教案篇十五

1.弄清完全平方公式的來源及其結構特點,能用自己的。語言說明公式及其特點;

2.會用完全平方公式進行運算。教學難點:會用完全平方公式進行運算教學過程:

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。

用不同的`形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?

(2)(a-b)2等于什么?小穎寫出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來。

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

(1);(2);。

(3);(4).

2.計算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)xxxxxxxxx_;(2);。

1.求的值,其中。

2.若。

對公式的真正理解有待加強。

完全平方公式教案篇十六

在進入三中這個大家庭里,我感受到了這個大家庭的愛,有來自領導,師傅,辦公室同事的指導,深感欣慰。由于第一次教授初中數學,對于備學生和備教材缺乏全面理解,本節(jié)課的教學沒有很好的完成教學目的標,本課的知識要點是經歷探索完全平方公式的過程,了解公式的幾何背景,會應用公式進行簡單的計算。理解公式的推導過程,了解公式的幾何背景,會應用公式進行簡單的計算。探索完全平方公式的過程,培養(yǎng)學生的發(fā)現(xiàn)能力、求簡意識、應用意識、解決問題的能力和創(chuàng)新能力。培養(yǎng)學生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質。

通過本課,讓學生體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質,并會運用公式進行簡單的計算,理解公式中的字母含義,及公式的應用。

通過本節(jié)課的教學得到如下收獲:。

(1)這節(jié)課倡導了以學生為主,教師為輔的思想,留足了一定的時間讓學生去發(fā)現(xiàn)探索、以及做練習。

(2)采用了多媒體輔助教學,以較清晰的手段呈現(xiàn)了學生整個學習過程,讓課堂更加直觀明了,同時客容量也增大了。

(3)讓學生體會了數形結合及轉化的數學思想,并知道猜想的結論必須要加以驗證。

本節(jié)課采用了以小組自主探究的學習方式,整節(jié)課都在緊張而愉快的氣氛中進行,學生活躍,能積極參與。教學中,比較關注學生的情感態(tài)度,對那些積極動腦,熱情參與的同學,都給予了鼓勵和表揚,促使學生的情感和興趣始終保持最佳狀態(tài),進而提高課堂教學的有效性。

完全平方公式教案篇十七

完全平方和(差)公式是某些特殊形式的多項式相乘,只有掌握完全平方和(差)公式的一些本質地結構特點,才能正確地讓公式更好地幫助我們進行簡單計算。

要學好這部分,首先要注意掌握:

1、公式本身:(a+b)2=a2+2ab+b2。

文字敘述:兩數和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。

2、公式的結構特點:等號左邊是一個二項式的平方,等號右邊是一個二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍?;虻忍栍疫呌涀鳎菏灼椒剑财椒?,2倍之積中間放。

3、公式中字母的廣泛意義:既可以代表任意的數(正數、負數),又可以代表任意代數式。注意代表代數式時,要有“整體思想”的觀念。

其次要注意易錯點:

1、易錯寫:(a+b)2=a2+b2。

許多學生往往認為(a+b)2=a2+b2,甚至認為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說明這個問題,我首先利用分地的`故事引入,第一個農夫分得a2+b2,第二個分得(a+b)2,然后讓同學們對比2個代數式,通過各種方法說明這兩者是不同的,比如計算法,代數字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進行強化訓練。雖然還有極個別學生出現(xiàn)2項的情況,但絕大部分明白了2倍之積中間放的意義。

2、兩個公式中的符號易混:課堂上進行了教學的改進,把2個公式(a+b)2與(a-b)2并作一個公式來處理。為了避免符號上出現(xiàn)混亂,把2個公式的符號特點進行觀察,得出同號得正,異號得負的結論。由此應對兩項式的平方的符號問題,也省去了一些變號的煩惱。

3、兩公式靈活運用。

在一些實際問題中,有些題目不能直接運用公式,需要一步轉化才可以。如計算:

(1)(y-x)(x-y)(2)(x+y)(-x-y)。

【本文地址:http://mlvmservice.com/zuowen/14304343.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔