完全平方公式教案(實(shí)用19篇)

格式:DOC 上傳日期:2023-11-23 09:02:09
完全平方公式教案(實(shí)用19篇)
時(shí)間:2023-11-23 09:02:09     小編:筆硯

教案是教師在備課過(guò)程中所制定的教學(xué)計(jì)劃和指導(dǎo)材料。編寫(xiě)教案前,了解教學(xué)內(nèi)容和學(xué)生的學(xué)習(xí)情況是至關(guān)重要的。下面是一些教學(xué)策略的分享,希望可以給大家提供一些實(shí)用的指導(dǎo)和建議。

完全平方公式教案篇一

探索單項(xiàng)式除以單項(xiàng)式法則(出示投影1)計(jì)算下列各題,并說(shuō)說(shuō)你的理由1.xyx,(8mn)(2mn),(abc)(3ab)。師生共同分析:此題是做除法運(yùn)算,可以從兩方面思考:根據(jù)除法是乘法的逆運(yùn)算,將除法問(wèn)題轉(zhuǎn)化為乘法問(wèn)題去解決,即()x=xy,由單項(xiàng)式乘以單項(xiàng)式法則可得(xy)x=xy,因此,xyx=xy。另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得=xy.學(xué)生動(dòng)筆:寫(xiě)出(2)(3)題的結(jié)果。教師板書(shū):xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運(yùn)算是單項(xiàng)式除以單項(xiàng)式的運(yùn)算,你能說(shuō)說(shuō)如何進(jìn)行單項(xiàng)式除以單項(xiàng)式的運(yùn)算?學(xué)生活動(dòng):小組討論,教師引導(dǎo)學(xué)生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學(xué)敘述,其余同學(xué)補(bǔ)充糾正。出示單項(xiàng)式除法法則(投影顯示)單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。

p401學(xué)生活動(dòng):讓四名同學(xué)到黑板板演,其余同學(xué)在練習(xí)本上計(jì)算,同伴可交流,互相訂正。教師巡回檢查,對(duì)存在問(wèn)題及時(shí)更正。待四名板演同學(xué)完成后,師生共同訂正。

本節(jié)課主要學(xué)習(xí)了單項(xiàng)式除以單項(xiàng)式的運(yùn)算。在運(yùn)用法則計(jì)算時(shí)應(yīng)注意以下幾點(diǎn):。

1、系數(shù)相除與同底數(shù)冪相除的區(qū)別;

2、符號(hào)問(wèn)題;

完全平方公式教案篇二

1、了解完全平方公式的特征,會(huì)用完全平方公式進(jìn)行因式分解.

2、通過(guò)整式乘法逆向得出因式分解方法的過(guò)程,發(fā)展學(xué)生逆向思維能力和推理能力.

3、通過(guò)猜想、觀察、討論、歸納等活動(dòng),培養(yǎng)學(xué)生觀察能力,實(shí)踐能力和創(chuàng)新能力.

學(xué)習(xí)建議教學(xué)重點(diǎn):

完全平方公式教案篇三

引例講解:將下列各式分解因式。

1、x2+6x+92、4x2-20x+25。

問(wèn)題:這兩題首先怎么分析?

生14:將9改寫(xiě)成32,6x正好是x與3的乘積的2倍。(學(xué)生回答,教師板書(shū))。

生15:將4x2寫(xiě)成(2x)2,25寫(xiě)成52,20x寫(xiě)成2×2x×5。

x2+6x+9=x2+2×x×3+32=(x+3)2。

4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2。

(聯(lián)系字母表達(dá)式用箭頭對(duì)應(yīng)表示,加深學(xué)生印象。)。

生16:由符號(hào)來(lái)決定。

師:能不能具體點(diǎn)。

生16:由中間一項(xiàng)的符號(hào)決定,就是兩個(gè)數(shù)乘積2倍這項(xiàng)的符號(hào)決定,是正,就是兩個(gè)數(shù)的和;是負(fù),就是兩個(gè)數(shù)的差。

師:總之,在分解完全平方式時(shí),要根據(jù)第二項(xiàng)的符號(hào)來(lái)選擇運(yùn)用哪一個(gè)完全平方公式。

例題1:把25x4+10x2+1分解因式。

師:這道題目能否運(yùn)用以前所學(xué)的方法分解?就題目本身有什么特點(diǎn)?可以怎么分解?

生17:題目符合完全平方式的特點(diǎn),可以將25x4改寫(xiě)成(5x2)2,1就是12,10x2改寫(xiě)成2×5x2×1。(此學(xué)生板演,過(guò)程略)。

例題2:把-x2-4y2+4xy分解因式。

師:按照常規(guī)我們首先怎么辦?

生齊答:提取負(fù)號(hào)?!步處煱鍟?shū):-(x2+4y2-4xy)〕以下過(guò)程學(xué)生板演。

師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)。

提示:從項(xiàng)的特征進(jìn)行考慮,怎樣轉(zhuǎn)化比較合理?四人小組討論。

生18:同樣還是將負(fù)號(hào)提取改變成完全平方式的形式。

師:從這里我們可以發(fā)現(xiàn),只要三項(xiàng)式中能改寫(xiě)成平方的兩項(xiàng)是同號(hào),且另一項(xiàng)為兩底數(shù)積的2倍,我們都能利用這個(gè)公式分解,若這兩項(xiàng)同為正則可直接分解,若同為負(fù)則先提取負(fù)號(hào)再分解。

練習(xí)題:課本p21練習(xí):第1題,學(xué)生板演,教師講解,學(xué)生板演的同時(shí),教師提示注意點(diǎn)、多項(xiàng)式的特征;第2題,學(xué)生口答。

例題3:把3ax2+6axy+3ay2分解因式。

師:先觀察,再選擇適當(dāng)?shù)姆椒ā?學(xué)生板演,教師點(diǎn)評(píng))。

練習(xí):課本p22第3題分兩組學(xué)生板演,教師評(píng)講、適當(dāng)提示注意點(diǎn)。

師:這一堂課我們一起研究了完全平方式的有關(guān)知識(shí),同學(xué)們先自查一下自己的收獲,然后請(qǐng)同學(xué)發(fā)表自己的見(jiàn)解。(學(xué)生小聲討論)。

生甲:我學(xué)到了如何將完全平方式分解因式,遇到三項(xiàng)式中有兩項(xiàng)符號(hào)相同且能化成平方的形式,另一項(xiàng)為這兩個(gè)數(shù)的積的2倍的形式,如果能化成平方項(xiàng)是負(fù)的,首先將負(fù)號(hào)提取再分解。第二項(xiàng)是正的就是兩數(shù)的和的平方,第二項(xiàng)是負(fù)的就是兩數(shù)差的平方。

生乙:有公因式可提取的先提取公因式,然后再分解,同時(shí)根據(jù)第二項(xiàng)的符號(hào)來(lái)選用合適的公式。

教師布置課堂作業(yè):課本p23習(xí)題8.2a組4~5偶數(shù)題。

課外作業(yè):課本p23習(xí)題8.2a組4~5奇數(shù)題。

下課!

完全平方公式教案篇四

學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生通過(guò)對(duì)本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差公式,這些基礎(chǔ)知識(shí)的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ)。

學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過(guò)程,獲得了一些數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),培養(yǎng)了一定的符號(hào)感和推理能力;同時(shí)在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過(guò)程,具有了一定的獨(dú)立探究意識(shí)以及與同伴合作交流的能力。

教科書(shū)在學(xué)生已經(jīng)學(xué)習(xí)了整式的加法、乘法,以及平方差公式的基礎(chǔ)上,提出了本課的具體學(xué)習(xí)任務(wù):經(jīng)歷探索完全平方公式的過(guò)程,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。但這僅僅是這堂課外顯的具體教學(xué)目標(biāo),或者說(shuō)是一個(gè)近期目標(biāo)。整式是初中數(shù)學(xué)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運(yùn)算又是整式中的一大主干,乘法公式則是對(duì)多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié)。同時(shí),乘法公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開(kāi)端,通過(guò)乘法公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)有較大好處。而且乘法公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對(duì)學(xué)生提高運(yùn)算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運(yùn)算的重要基礎(chǔ),同時(shí)也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用。為此,本節(jié)課的教學(xué)目標(biāo)是:

1.經(jīng)歷探索完全平方公式的過(guò)程,并從完全平方公式的推導(dǎo)過(guò)程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。

2.體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),從不同的。層次上理解完全平方公式,并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

3.了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí)。

4.在學(xué)習(xí)中使學(xué)生體會(huì)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛(ài)數(shù)學(xué)的內(nèi)在美。

本節(jié)課設(shè)計(jì)了七個(gè)教學(xué)環(huán)節(jié):回顧與思考、情境引入、初識(shí)完全平方公式、再識(shí)完全平方公式、又識(shí)完全平方公式、課堂小結(jié)、布置作業(yè)。

第一環(huán)節(jié)回顧與思考。

活動(dòng)內(nèi)容:復(fù)習(xí)已學(xué)過(guò)的平方差公式。

1.平方差公式:(a+b)(a-b)=a-b;公式的結(jié)構(gòu)特點(diǎn):左邊是兩個(gè)二項(xiàng)式的乘積,即兩數(shù)和與這兩數(shù)差的積。右邊是兩數(shù)的平方差。

2.應(yīng)用平方差公式的注意事項(xiàng):弄清在什么情況下才能使用平方差公式。

活動(dòng)目的:本堂課的學(xué)習(xí)方向仍是引導(dǎo)鼓勵(lì)學(xué)生通過(guò)已學(xué)習(xí)的知識(shí)經(jīng)過(guò)個(gè)人思考、小1組合作等方式推導(dǎo)出本課新知,進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力。而這個(gè)過(guò)程離不開(kāi)舊知識(shí)的鋪墊,平方差公式的學(xué)習(xí)有很多教學(xué)環(huán)節(jié)和形式與本節(jié)的學(xué)習(xí)是類(lèi)似的,其中包含的基本知識(shí)與基本能力也仍是本節(jié)的精神主旨,因而復(fù)習(xí)很有必要。

實(shí)際教學(xué)效果:在復(fù)習(xí)過(guò)程中,學(xué)生能夠順利地回答出平方差公式的內(nèi)容,而對(duì)于其結(jié)構(gòu)特點(diǎn)及應(yīng)用時(shí)的注意事項(xiàng),通過(guò)學(xué)生之間的相互補(bǔ)充,絕大多數(shù)學(xué)生也得以掌握。在復(fù)習(xí)中既把舊知識(shí)得以復(fù)習(xí),同時(shí)學(xué)生也會(huì)主動(dòng)的去回顧平方差公式一節(jié)的學(xué)習(xí)過(guò)程,從而為本節(jié)課的類(lèi)比學(xué)習(xí)奠定了基礎(chǔ)。

第二環(huán)節(jié)情境引入。

活動(dòng)內(nèi)容:出示幻燈片,提出問(wèn)題。

一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。

用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。

活動(dòng)目的:數(shù)學(xué)源自于生活,通過(guò)生活當(dāng)中的一個(gè)實(shí)際問(wèn)題,引入本節(jié)課的學(xué)習(xí)。從而在學(xué)生運(yùn)用舊知計(jì)算和比較實(shí)驗(yàn)田的面積當(dāng)中引出完全平方公式。由于實(shí)驗(yàn)田的總面積有多種表示方式,通過(guò)對(duì)比這些表示方式可以使學(xué)生對(duì)于公式有一個(gè)直觀的認(rèn)識(shí)。同時(shí)在古代人們也是通過(guò)類(lèi)似的圖形認(rèn)識(shí)了這個(gè)公式。在列代數(shù)式解決問(wèn)題的過(guò)程當(dāng)中,通過(guò)自主探究和交流學(xué)到了新的知識(shí),學(xué)生的學(xué)習(xí)積極性和主動(dòng)性得到大大的激發(fā)。

實(shí)際教學(xué)效果:?jiǎn)栴}提出后,學(xué)生能夠主動(dòng)地去尋找解決問(wèn)題的方法。同時(shí)問(wèn)題要求用不同的形式來(lái)表示總面積,這就要求學(xué)生從不同的角度來(lái)進(jìn)行考慮,從而對(duì)于學(xué)生的思維提出了挑戰(zhàn)。不過(guò)由于前面列代數(shù)式一部分內(nèi)容的學(xué)習(xí),絕大多數(shù)學(xué)生能夠很順利地想到兩種不同的方法,并從中建立了數(shù)形結(jié)合的意識(shí)。從而在學(xué)生的自主探索過(guò)程中引出了完全平方公式,使學(xué)生有了一個(gè)直觀認(rèn)識(shí)。在整個(gè)過(guò)程中老師只是在提出問(wèn)題和引導(dǎo)學(xué)生解決問(wèn)題,學(xué)生的自主性得到了充分的體現(xiàn),課堂氣氛平等融洽。

活動(dòng)內(nèi)容:1.通過(guò)多項(xiàng)式的乘法法則來(lái)驗(yàn)證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a-b)2=a2-2ab+b2.2.引導(dǎo)學(xué)生利用幾何圖形來(lái)驗(yàn)證兩數(shù)差的完全平方公式。

3.分析完全平方公式的結(jié)構(gòu)特點(diǎn),并用語(yǔ)言來(lái)描述完全平方公式。

結(jié)構(gòu)特點(diǎn):左邊是二項(xiàng)式(兩數(shù)和(差))的平方;

右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

語(yǔ)言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

活動(dòng)目的:第一個(gè)活動(dòng)是讓學(xué)生在上面討論的基礎(chǔ)上,從代數(shù)運(yùn)算的角度運(yùn)用多項(xiàng)式的乘法法則,推導(dǎo)出兩數(shù)和的完全平方公式,并且進(jìn)一步推導(dǎo)出兩數(shù)差的完全平方公式。在教學(xué)中學(xué)生有條理的思考和語(yǔ)言表達(dá)能力得以培養(yǎng)。

第二個(gè)活動(dòng)使學(xué)生再次從幾何的角度來(lái)驗(yàn)證兩數(shù)差的完全平方公式。從而學(xué)生經(jīng)歷了幾何解釋到代數(shù)運(yùn)算,再到幾何解釋的過(guò)程,學(xué)生的數(shù)形結(jié)合意識(shí)得以培養(yǎng),并且從不同的角度推導(dǎo)出了公式,并且加以鞏固。

第三個(gè)活動(dòng)在前面的基礎(chǔ)上,加以總結(jié),使得學(xué)生從形式上初步地認(rèn)識(shí)了完全平方公式。實(shí)際教學(xué)效果:此環(huán)節(jié)的設(shè)計(jì)符合學(xué)生的認(rèn)知水平和認(rèn)知過(guò)程。在第一個(gè)活動(dòng)的教學(xué)中2應(yīng)重視學(xué)生對(duì)于算理的理解,讓學(xué)生嘗試說(shuō)出每一步運(yùn)算的道理,有意識(shí)地培養(yǎng)他們有條理的思考和語(yǔ)言表達(dá)能力。在第二個(gè)活動(dòng)中既是對(duì)于第二環(huán)節(jié)用幾何解釋驗(yàn)證兩數(shù)和的完全平方公式的鞏固,同時(shí)也是對(duì)于學(xué)生數(shù)形結(jié)合意識(shí)的一種培養(yǎng),絕大多數(shù)學(xué)生能夠通過(guò)交流合作得以掌握。通過(guò)幾個(gè)活動(dòng)學(xué)生能夠初步地掌握了完全平方公式,并在推導(dǎo)過(guò)程中培養(yǎng)了數(shù)學(xué)的基本能力。

(1)(2x3)2;

(2)(4x+5y)2;。

(3)(mna)22.總結(jié)口訣:首平方,尾平方,兩倍乘積放中央。

3.鞏固練習(xí)。

(1)計(jì)算:

11(2y)。

2;(2xyx)2。

;(n+1)2-n2。

;(4x+0.5)2。

;(2x2-3y2)225(2)糾錯(cuò)練習(xí):指出下列各式中的錯(cuò)誤,并加以改正:

(1)(2a1)2=2a22a+1;。

(2)(2a+1)2=4a2+1;

(3)(a1)2=a22a1.活動(dòng)目的:應(yīng)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。同時(shí)例1三個(gè)題目的設(shè)計(jì)上有一定的梯度,從而總結(jié)出進(jìn)行簡(jiǎn)單計(jì)算的一般口訣,并加以鞏固落實(shí)。

實(shí)際教學(xué)效果:對(duì)照公式,進(jìn)行獨(dú)立的簡(jiǎn)單計(jì)算,體會(huì)公式在解題中的應(yīng)用,進(jìn)一步熟悉公式。并通過(guò)小組交流,自我檢驗(yàn),鞏固反饋??疾靷€(gè)人的實(shí)際運(yùn)用能力,并及時(shí)查漏補(bǔ)缺。在此基礎(chǔ)上由教師總結(jié)出口訣,幫助學(xué)生進(jìn)一步認(rèn)識(shí)完全平方公式,并加以鞏固練習(xí)。

22(1)(-1-2x);(2)(-2x+1)。

2.進(jìn)一步完善口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。活動(dòng)目的:例2是對(duì)課本內(nèi)容的補(bǔ)充,從而使得學(xué)生從更深的一個(gè)角度來(lái)認(rèn)識(shí)完全平方公式,防止解題時(shí)中間項(xiàng)的符號(hào)出現(xiàn)問(wèn)題,并能在解題中通過(guò)靈活的變形來(lái)運(yùn)用公式,解決問(wèn)題。并對(duì)上面總結(jié)的口訣進(jìn)行進(jìn)一步的完善。

實(shí)際教學(xué)效果:首先放手讓學(xué)生獨(dú)立來(lái)解決第一個(gè)題目,學(xué)生出錯(cuò)較多,且都集中在中間項(xiàng)的符號(hào)上,由此引出有進(jìn)一步認(rèn)識(shí)公式的必要,從而教師引導(dǎo)學(xué)生再次觀察題目,仔細(xì)分析題目當(dāng)中誰(shuí)相當(dāng)于公式當(dāng)中的a與b,從而運(yùn)用不同的方法和思路,解決問(wèn)題。在活動(dòng)中學(xué)生認(rèn)識(shí)到了解決問(wèn)題之前恰當(dāng)選擇公式和正確分析題目的必要性,學(xué)習(xí)的積極性再次被激發(fā),在此基礎(chǔ)上教師把上面總結(jié)的口訣再次完善,幫助學(xué)生突破難點(diǎn),教師的主導(dǎo)作用得以體現(xiàn)。

第六環(huán)節(jié)課堂小結(jié)。

活動(dòng)內(nèi)容:1.完全平方公式和平方差公式不同:

形式不同.。

3不弄錯(cuò)符號(hào)、2ab時(shí)不少乘2。

3.口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

活動(dòng)目的:課堂小結(jié)并不只是課堂知識(shí)點(diǎn)的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對(duì)于發(fā)言進(jìn)行鼓勵(lì),進(jìn)一步梳理本節(jié)所學(xué),更要有所思考,達(dá)到對(duì)所學(xué)知識(shí)鞏固的目的。

實(shí)際教學(xué)效果:學(xué)生暢所欲言自己的實(shí)際收獲,達(dá)到了本節(jié)課的教學(xué)目標(biāo)。

第七環(huán)節(jié)布置作業(yè)。

1.基礎(chǔ)訓(xùn)練:教材習(xí)題1.13。

1.本節(jié)課學(xué)生的探究活動(dòng)比較多,教師既要全局把握,又要順其自然,千萬(wàn)不可拔苗助長(zhǎng),為了后面多做幾道練習(xí)而人為的主觀裁斷時(shí)間安排,其實(shí)公式的探究活動(dòng)本身既是對(duì)學(xué)生能力的培養(yǎng),又是對(duì)公式的識(shí)記過(guò)程,而且還可以提高他們的應(yīng)用公式的本領(lǐng)。因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂(lè)此不疲,更加充分的參與其中。對(duì)于這一點(diǎn),教師一定要轉(zhuǎn)變觀念。

2.在完全平方公式的探求過(guò)程中,學(xué)生表現(xiàn)出觀察角度的差異:有些學(xué)生只是側(cè)重觀察某個(gè)單獨(dú)的式子,把它孤立地看,而不知道將幾個(gè)式子聯(lián)系地看;有些學(xué)生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強(qiáng)的觀察力。教師要善于抓住這個(gè)契機(jī),適當(dāng)對(duì)學(xué)生進(jìn)行學(xué)法指導(dǎo),培養(yǎng)他們“既見(jiàn)樹(shù)木,又見(jiàn)森林”的優(yōu)良觀察品質(zhì)。

3.對(duì)于公式使用的條件既要把握好“度”,又要把握好“方向”。對(duì)于公式中的字母取值范圍,不必過(guò)分強(qiáng)調(diào)(實(shí)際上,這個(gè)范圍限定的太小了);而對(duì)于公式的特點(diǎn),則應(yīng)當(dāng)左右兼顧,特別是公式的左邊,它是正確應(yīng)用公式的前提,卻往往不被重視,結(jié)果造成幾個(gè)類(lèi)似公式的混淆,給正確解題設(shè)置了障礙。

4.教無(wú)定法,教師應(yīng)根據(jù)本班的實(shí)際情況靈活安排教學(xué)步驟,切實(shí)把關(guān)注學(xué)生的發(fā)展放在首位來(lái)考慮,并依此制定合理而科學(xué)的教學(xué)計(jì)劃。如,對(duì)于較好的班級(jí),則可以優(yōu)先發(fā)展,采取居高臨下的教學(xué)思路,先整體把握再對(duì)比擊破,或是將其納入整體結(jié)構(gòu)系統(tǒng),采取類(lèi)比的學(xué)習(xí)方式;而對(duì)于基礎(chǔ)較薄弱的班級(jí),則應(yīng)以提高學(xué)習(xí)興趣、教會(huì)學(xué)習(xí)、培養(yǎng)成功體驗(yàn)為主,千萬(wàn)不可拔苗助長(zhǎng),以防物極必反。

完全平方公式教案篇五

1、經(jīng)歷探索完全平方公式的過(guò)程,發(fā)展學(xué)生觀察、交流、歸納、猜測(cè)、驗(yàn)證等能力。

3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。

會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a、b的廣泛含義。

一、學(xué)習(xí)準(zhǔn)備。

1、利用多項(xiàng)式乘以多項(xiàng)式計(jì)算:(a+b)2(a—b)2。

2、這兩個(gè)特殊形式的多項(xiàng)式乘法結(jié)果稱為完全平方公式。

3、完全平方公式的。幾何意義:閱讀課本64頁(yè),完成填空。

(a+b)2=a2+2ab+b2。

(a—b)2=a2—2ab+b2。

左邊是形式,右邊有三項(xiàng),其中兩項(xiàng)是形式,另一項(xiàng)是()。

www.。

5、兩個(gè)完全平方公式的轉(zhuǎn)化:(a—b)2=2=()2+2()+()2=()。

二、合作探究。

1、利用乘法公式計(jì)算:

(3a+2b)2(2)(—4x2—1)2。

分析:要分清題目中哪個(gè)式子相當(dāng)于公式中的a,哪個(gè)式子相當(dāng)于公式中的b。

2、利用乘法公式計(jì)算:

992(2)()2。

分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化()2,()2可以轉(zhuǎn)化為()2。

(a+b+c)2(2)(a—b)3。

三、學(xué)習(xí)。

對(duì)照學(xué)習(xí)目標(biāo),通過(guò)預(yù)習(xí),你覺(jué)得自己有哪些方面的收獲?又存在哪些方面的疑惑?

四、自我測(cè)試。

1、下列計(jì)算是否正確,若不正確,請(qǐng)訂正;

(1)(—1+3a)2=9a2—6a+1。

(2)(3x2—)2=9x4—。

(3)(xy+4)2=x2y2+16。

(4)(a2b—2)2=a2b2—2a2b+4。

2、利用乘法公式計(jì)算:

(1)(3x+1)2。

(2)(a—3b)2。

(3)(—2x+)2。

(4)(—3m—4n)2。

3、利用乘法公式計(jì)算:

9992。

4、先化簡(jiǎn),再求值;

(m—3n)2—(m+3n)2+2,其中m=2,n=3。

五、思維拓展。

2、多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是()。

3、已知(x+y)2=9,(x—y)2=5,求xy的值。

4、x+y=4,x—y=10,那么xy=()。

5、已知x—=4,則x2+=()。

完全平方公式教案篇六

二、學(xué)習(xí)重點(diǎn)。

三、學(xué)習(xí)難點(diǎn)。

靈活運(yùn)用平方差和完全平方公式進(jìn)行整式的簡(jiǎn)便運(yùn)算。

四、學(xué)習(xí)設(shè)計(jì)。

(一)預(yù)習(xí)準(zhǔn)備。

(2)思考:如何更簡(jiǎn)單迅捷地進(jìn)行各種乘法公式的運(yùn)算?[。

(1)(2)(3)(4)。

2.計(jì)算:

(1)(2)。

(二)學(xué)習(xí)過(guò)程。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,則k=。

例1計(jì)算:1.2.

現(xiàn)在我們從幾何角度去解釋完全平方公式:

從圖(1)中可以看出大正方形的邊長(zhǎng)是a+b,

它是由兩個(gè)小正方形和兩個(gè)矩形組成,所以。

大正方形的面積等于這四個(gè)圖形的面積之和.

則s==。

即:

如圖(2)中,大正方形的邊長(zhǎng)是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長(zhǎng)都是,寬都是,所以它們的面積都是;正方形hcgm的邊長(zhǎng)是b,其面積就是;正方形afme的邊長(zhǎng)是,所以它的面積是.從圖中可以看出正方形aemf的面積等于正方形abcd的面積減去兩個(gè)矩形dcge和bchf的面積再加上正方形hcgm的面積.也就是:(a-b)2=.這也正好符合完全平方公式.

例2.計(jì)算:。

(1)(2)。

變式訓(xùn)練:

(1)(2)。

(3)(4)(x+5)2c(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,則=。

(2)已知,求________,________。

(3)不論為任意有理數(shù),的值總是。

a.負(fù)數(shù)b.零c.正數(shù)d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值。

回顧小結(jié)。

1.完全平方公式的使用:在做題過(guò)程中一定要注意符號(hào)問(wèn)題和正確認(rèn)識(shí)a、b表示的意義,它們可以是數(shù)、也可以是單項(xiàng)式,還可以是多項(xiàng)式,所以要記得添括號(hào)。

2.解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇。

完全平方公式教案篇七

1.弄清完全平方公式的來(lái)源及其結(jié)構(gòu)特點(diǎn),能用自己的。語(yǔ)言說(shuō)明公式及其特點(diǎn);

2.會(huì)用完全平方公式進(jìn)行運(yùn)算。教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)過(guò)程:

一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種。(圖略)。

用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項(xiàng)式乘法法則說(shuō)明理由呢?

(2)(a-b)2等于什么?小穎寫(xiě)出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時(shí)應(yīng)該引導(dǎo)觀察完全平方公式的特點(diǎn),并用自己的言語(yǔ)表達(dá)出來(lái)。

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

1.下列各式中哪些可以運(yùn)用完全平方公式計(jì)算_______________。

(1);(2);。

(3);(4).

2.計(jì)算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)_____________;(2);。

1.求的值,其中。

2.若。

對(duì)公式的真正理解有待加強(qiáng)。

完全平方公式教案篇八

學(xué)習(xí)了乘法公式中的完全平方,一個(gè)是兩數(shù)和的平方,另一個(gè)是兩數(shù)差的平方,兩者僅一個(gè)“符號(hào)”不同。相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個(gè)“符號(hào)”不同,運(yùn)用完全平方公式計(jì)算時(shí),要注意:

(1)切勿把此公式與平方差公式混淆,而隨意寫(xiě)。

(2)切勿把“乘積項(xiàng)”2ab中的2丟掉。

(3)計(jì)算時(shí),要先觀察題目是否符合公式的條件。若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計(jì)算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計(jì)算。

今后在教學(xué)中,要注意以下幾點(diǎn):

1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征。

2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力。

完全平方公式教案篇九

理解兩個(gè)完全平方公式的結(jié)構(gòu),靈活運(yùn)用完全平方公式進(jìn)行運(yùn)算。

在運(yùn)用完全平方公式的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的符號(hào)演算的能力,提高運(yùn)算能力。

培養(yǎng)學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,敢于發(fā)表自己的見(jiàn)解。

一、復(fù)習(xí)導(dǎo)入。

2.計(jì)算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計(jì)算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計(jì)算,結(jié)果是一樣的。

教師歸納:當(dāng)我們對(duì)差與和加以區(qū)分時(shí),兩個(gè)公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項(xiàng)一個(gè)是“減”一個(gè)是“加”,注意到區(qū)別有助于計(jì)算的準(zhǔn)確;另一方面,當(dāng)我們對(duì)差與和不加區(qū)分,全部理解成“加項(xiàng)”時(shí),那么兩個(gè)公式從結(jié)構(gòu)上來(lái)看就是一致的了,其結(jié)構(gòu)都是“兩項(xiàng)和的平方,等于它們的平方和,加上它們的積的兩倍。”注意到它們的統(tǒng)一性,有于我們更深刻地理解公式特點(diǎn),提高運(yùn)算的靈活性。

我們學(xué)習(xí)運(yùn)算,除了要重視結(jié)果,還要重視過(guò)程,平時(shí)注意訓(xùn)練運(yùn)算方法的多樣性,可以加深對(duì)算理的理解和運(yùn)用,提高運(yùn)算過(guò)程的合理性和靈活性,從而真正的提高運(yùn)算能力。

二、新課講解。

溫故知新。

與,與相等嗎?為什么?

學(xué)生討論交流,鼓勵(lì)學(xué)生從不同的。角度進(jìn)行說(shuō)理,共同歸納總結(jié)出兩條判斷的思路:

1.對(duì)原式進(jìn)行運(yùn)算,利用運(yùn)算的結(jié)果來(lái)判斷;

2.不對(duì)原式進(jìn)行運(yùn)算,只做適當(dāng)變形后利用整體的方法來(lái)判斷。

思考:與,與相等嗎?為什么?

利用整體的方法判斷,把看成一個(gè)數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

總結(jié)歸納得到:;

三、典例剖析。

完全平方公式教案篇十

完全平方和(差)公式是某些特殊形式的多項(xiàng)式相乘,只有掌握完全平方和(差)公式的一些本質(zhì)地結(jié)構(gòu)特點(diǎn),才能正確地讓公式更好地幫助我們進(jìn)行簡(jiǎn)單計(jì)算。

要學(xué)好這部分,首先要注意掌握:

1、公式本身:(a+b)2=a2+2ab+b2。

文字?jǐn)⑹觯簝蓴?shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。

2、公式的結(jié)構(gòu)特點(diǎn):等號(hào)左邊是一個(gè)二項(xiàng)式的平方,等號(hào)右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍?;虻忍?hào)右邊記作:首平方,尾平方,2倍之積中間放。

3、公式中字母的廣泛意義:既可以代表任意的數(shù)(正數(shù)、負(fù)數(shù)),又可以代表任意代數(shù)式。注意代表代數(shù)式時(shí),要有“整體思想”的觀念。

其次要注意易錯(cuò)點(diǎn):

1、易錯(cuò)寫(xiě):(a+b)2=a2+b2。

許多學(xué)生往往認(rèn)為(a+b)2=a2+b2,甚至認(rèn)為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說(shuō)明這個(gè)問(wèn)題,我首先利用分地的`故事引入,第一個(gè)農(nóng)夫分得a2+b2,第二個(gè)分得(a+b)2,然后讓同學(xué)們對(duì)比2個(gè)代數(shù)式,通過(guò)各種方法說(shuō)明這兩者是不同的,比如計(jì)算法,代數(shù)字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進(jìn)行強(qiáng)化訓(xùn)練。雖然還有極個(gè)別學(xué)生出現(xiàn)2項(xiàng)的情況,但絕大部分明白了2倍之積中間放的意義。

2、兩個(gè)公式中的符號(hào)易混:課堂上進(jìn)行了教學(xué)的改進(jìn),把2個(gè)公式(a+b)2與(a-b)2并作一個(gè)公式來(lái)處理。為了避免符號(hào)上出現(xiàn)混亂,把2個(gè)公式的符號(hào)特點(diǎn)進(jìn)行觀察,得出同號(hào)得正,異號(hào)得負(fù)的結(jié)論。由此應(yīng)對(duì)兩項(xiàng)式的平方的符號(hào)問(wèn)題,也省去了一些變號(hào)的煩惱。

3、兩公式靈活運(yùn)用。

在一些實(shí)際問(wèn)題中,有些題目不能直接運(yùn)用公式,需要一步轉(zhuǎn)化才可以。如計(jì)算:

(1)(y-x)(x-y)(2)(x+y)(-x-y)。

完全平方公式教案篇十一

1.弄清完全平方公式的來(lái)源及其結(jié)構(gòu)特點(diǎn),能用自己的。語(yǔ)言說(shuō)明公式及其特點(diǎn);

2.會(huì)用完全平方公式進(jìn)行運(yùn)算。教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)過(guò)程:

一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種。(圖略)。

用不同的`形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項(xiàng)式乘法法則說(shuō)明理由呢?

(2)(a-b)2等于什么?小穎寫(xiě)出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時(shí)應(yīng)該引導(dǎo)觀察完全平方公式的特點(diǎn),并用自己的言語(yǔ)表達(dá)出來(lái)。

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

(1);(2);。

(3);(4).

2.計(jì)算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)xxxxxxxxx_;(2);。

1.求的值,其中。

2.若。

對(duì)公式的真正理解有待加強(qiáng)。

完全平方公式教案篇十二

(2)切勿把“乘積項(xiàng)”2ab中的2丟掉.

今后在教學(xué)中?,要注意以下幾點(diǎn):

1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征.

2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.

完全平方公式教案篇十三

3.4探究實(shí)際問(wèn)題與一元一次方程組。

掌握一元一次方程得解法,了解銷(xiāo)售中的數(shù)量關(guān)系。

能夠分析實(shí)際問(wèn)題中的數(shù)量關(guān)系,找相等關(guān)系,列出一元一次方程。

基本思想。

基本活動(dòng)經(jīng)驗(yàn)體會(huì)解決實(shí)際問(wèn)題的一般步驟及盈虧中的關(guān)系。

重點(diǎn)探索并掌握列一元一次方程解決實(shí)際問(wèn)題的方法,

教學(xué)。

難點(diǎn)找出已知量與未知量之間的關(guān)系及相等關(guān)系。

教具資料準(zhǔn)備教師準(zhǔn)備:課件。

書(shū)、本。

教學(xué)過(guò)程自備。

補(bǔ)充集備。

補(bǔ)充。

探究銷(xiāo)售中的盈虧問(wèn)題:

1、商品原價(jià)200元,九折出售,賣(mài)價(jià)是元。

2、商品進(jìn)價(jià)是30元,售價(jià)是50元,則利潤(rùn)。

是元。

2、某商品原來(lái)每件零售價(jià)是a元,現(xiàn)在每件降價(jià)10%,降價(jià)后每件零售價(jià)是元。

3、某種品牌的彩電降價(jià)20%以后,每臺(tái)售價(jià)為a元,則該品牌彩電每臺(tái)原價(jià)應(yīng)為元。

4、某商品按定價(jià)的八折出售,售價(jià)是14.8元,則原定售價(jià)是。

(學(xué)生總結(jié)公式)。

熟悉各個(gè)量之間的聯(lián)系有助于熟悉利潤(rùn)、利潤(rùn)率售價(jià)進(jìn)價(jià)之間聯(lián)系。

分析:售價(jià)=進(jìn)價(jià)+利潤(rùn)。

售價(jià)=(1+利潤(rùn)率)×進(jìn)價(jià)。

(3)某商場(chǎng)把進(jìn)價(jià)為1980元的商品按標(biāo)價(jià)的八折出售,仍獲利10%,則該商品的標(biāo)價(jià)為元。

注:標(biāo)價(jià)×n/10=進(jìn)(1+率)。

則這種藥品在2005年漲價(jià)前價(jià)格為元。

通過(guò)本節(jié)課的學(xué)習(xí)你有哪些收獲?你還有哪些疑惑?

虧損還是盈利對(duì)比售價(jià)與進(jìn)價(jià)的關(guān)系才能加以判斷。

小組研究解決提出質(zhì)疑。

優(yōu)生展示講解質(zhì)疑。

板書(shū)設(shè)計(jì)一元一次方程的應(yīng)用-----盈虧問(wèn)題。

相關(guān)的關(guān)系式:例題。

課后反思售價(jià)、進(jìn)價(jià)、利潤(rùn)、利潤(rùn)率、標(biāo)價(jià)、折扣數(shù)這幾個(gè)量之間的關(guān)系一定清楚,之后才能靈活運(yùn)用,通過(guò)變式練習(xí)加強(qiáng)記憶提高能力。

完全平方公式教案篇十四

在進(jìn)入三中這個(gè)大家庭里,我感受到了這個(gè)大家庭的愛(ài),有來(lái)自領(lǐng)導(dǎo),師傅,辦公室同事的指導(dǎo),深感欣慰。由于第一次教授初中數(shù)學(xué),對(duì)于備學(xué)生和備教材缺乏全面理解,本節(jié)課的教學(xué)沒(méi)有很好的完成教學(xué)目的標(biāo),本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。理解公式的推導(dǎo)過(guò)程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。探索完全平方公式的過(guò)程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡(jiǎn)意識(shí)、應(yīng)用意識(shí)、解決問(wèn)題的能力和創(chuàng)新能力。培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質(zhì)。

通過(guò)本課,讓學(xué)生體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算,理解公式中的字母含義,及公式的應(yīng)用。

通過(guò)本節(jié)課的教學(xué)得到如下收獲:。

(1)這節(jié)課倡導(dǎo)了以學(xué)生為主,教師為輔的思想,留足了一定的時(shí)間讓學(xué)生去發(fā)現(xiàn)探索、以及做練習(xí)。

(2)采用了多媒體輔助教學(xué),以較清晰的手段呈現(xiàn)了學(xué)生整個(gè)學(xué)習(xí)過(guò)程,讓課堂更加直觀明了,同時(shí)客容量也增大了。

(3)讓學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證。

本節(jié)課采用了以小組自主探究的學(xué)習(xí)方式,整節(jié)課都在緊張而愉快的氣氛中進(jìn)行,學(xué)生活躍,能積極參與。教學(xué)中,比較關(guān)注學(xué)生的情感態(tài)度,對(duì)那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵(lì)和表?yè)P(yáng),促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。

完全平方公式教案篇十五

學(xué)習(xí)目標(biāo):

1、能說(shuō)出有序數(shù)對(duì)的定義。

2、能用有序數(shù)對(duì)表示實(shí)際生活中物體的位置。

學(xué)習(xí)重點(diǎn):用有序數(shù)對(duì)表示位置。

學(xué)習(xí)難點(diǎn):用有序數(shù)對(duì)表示位置。

學(xué)習(xí)過(guò)程:

自學(xué)過(guò)程:(一)、自學(xué)知識(shí)清單。

1、教材64頁(yè),在圖7.1—1中找出參加數(shù)學(xué)問(wèn)題討論的同學(xué)。

小組內(nèi)交流一下,看一看你們找的'位置相同嗎?

思考:(2,4)和(4,2)在同一位置嗎?為什么?

2、請(qǐng)回答教材65頁(yè):思考題。

3、我們把這種有順序的______個(gè)數(shù)a與b組成的_______叫做_______,記作(,)。

(二)、自學(xué)反饋。

練習(xí)1、利用________________,可以準(zhǔn)確地表示出一個(gè)位置,

如電影院的座號(hào),“3排2號(hào)”、表示為(3,2),則“2排3號(hào)”可以表示為。

練習(xí)2、如圖(1)所示,一方隊(duì)正沿箭頭所指的方向前進(jìn),a的位置為三列四行,表示為a(3,4),則b,c,d表示為b(,),c(,)。

d(,)。

練習(xí)3、完成課本第65頁(yè)的練習(xí)。

練習(xí)4、用有序數(shù)對(duì)表示物體位置時(shí),(3,2)與(2,3)表示的位置相同嗎?請(qǐng)結(jié)合下面圖形加以說(shuō)明.

練習(xí)5、如圖所示,a的位置為(2,6),小明從a出發(fā),經(jīng)。

完全平方公式教案篇十六

完全平方公式是初中代數(shù)的一個(gè)重要組成部分,是學(xué)生在已經(jīng)掌握單項(xiàng)式乘法、多項(xiàng)式乘法及平方差公式基礎(chǔ)上的拓展,對(duì)以后學(xué)習(xí)因式分解、解一元二次方程、配方法、勾股定理及圖形面積計(jì)算都有舉足輕重的作用。

本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項(xiàng)式乘多項(xiàng)式而得到的,同時(shí)又為下一節(jié)課打下了基礎(chǔ),環(huán)環(huán)相扣,層層遞進(jìn)。通過(guò)這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會(huì)到從簡(jiǎn)單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

多數(shù)學(xué)生的抽象思維能力、邏輯思維能力、數(shù)學(xué)化能力有限,理解完全平方公式的幾何解釋、推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)有一定困難。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動(dòng)手操作,突出完全平方公式的探索過(guò)程,自主探索出完全平方公式的基本形式,并用語(yǔ)言表述其結(jié)構(gòu)特征,進(jìn)一步發(fā)展學(xué)生的合情推理能力、合作交流能力和數(shù)學(xué)化能力。

知識(shí)與技能。

利用添括號(hào)法則靈活應(yīng)用乘法公式。

過(guò)程與方法。

利用去括號(hào)法則得到添括號(hào)法則,培養(yǎng)學(xué)生的逆向思維能力。

情感態(tài)度與價(jià)值觀。

鼓勵(lì)學(xué)生算法多樣化,培養(yǎng)學(xué)生多方位思考問(wèn)題的習(xí)慣,提高學(xué)生的合作交流意識(shí)和創(chuàng)新精神。

教學(xué)重點(diǎn)。

理解添括號(hào)法則,進(jìn)一步熟悉乘法公式的合理利用。

教學(xué)難點(diǎn)。

在多項(xiàng)式與多項(xiàng)式的乘法中適當(dāng)添括號(hào)達(dá)到應(yīng)用公式的目的。

思考分析、歸納總結(jié)、練習(xí)、應(yīng)用拓展等環(huán)節(jié)。

師生活動(dòng)。

設(shè)計(jì)意圖。

一.提出問(wèn)題,創(chuàng)設(shè)情境。

請(qǐng)同學(xué)們完成下列運(yùn)算并回憶去括號(hào)法則.。

(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括號(hào)法則:

也就是說(shuō),遇“加”不變,遇“減”都變.。

二、探究新知。

把上述四個(gè)等式的左右兩邊反過(guò)來(lái),又會(huì)得到什么結(jié)果呢?

(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)。

(3)a+b+c=a+(b+c)(4)a-b+c=a-(b-c)。

左邊沒(méi)括號(hào),右邊有括號(hào),也就是添了括號(hào),同學(xué)們可不可以總結(jié)出添括號(hào)法則來(lái)呢?

(學(xué)生分組討論,最后總結(jié))。

添括號(hào)法則是:

也是:遇“加”不變,遇“減”都變.。

請(qǐng)同學(xué)們利用添括號(hào)法則完成下列練習(xí):

1.在等號(hào)右邊的括號(hào)內(nèi)填上適當(dāng)?shù)捻?xiàng):

(1)a+b-c=a+()(2)a-b+c=a-()。

(3)a-b-c=a-()(4)a+b+c=a-()。

判斷下列運(yùn)算是否正確.。

(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)。

(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)。

三、新知運(yùn)用。

例:運(yùn)用乘法公式計(jì)算。

(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2。

(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)。

四.隨堂練習(xí):

1.課本p111練習(xí)。

2.《學(xué)案》101頁(yè)——鞏固訓(xùn)練。

五、課堂小結(jié):

通過(guò)本節(jié)課的學(xué)習(xí),你有何收獲和體會(huì)?

六、檢測(cè)作業(yè)。

習(xí)題14.2:必做題:3、4、5題。

選做題:7題。

知識(shí)梳理,教學(xué)導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情。

交流合作,探究新知,以問(wèn)題驅(qū)動(dòng),層層深入。

歸納總結(jié),提升課堂效果。

作業(yè)檢測(cè),檢測(cè)目標(biāo)的達(dá)成情況。

完全平方公式教案篇十七

這一節(jié)課主要研究完全平方公式的證明方法,關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過(guò)程,以及這兩個(gè)公式的幾何背景。

這節(jié)課我做的比較好的方面:

經(jīng)歷探索完全平方公式的過(guò)程,通過(guò)拼圖游戲,從形到數(shù)又從數(shù)到形,讓學(xué)生了解公式的幾何背景,學(xué)生體會(huì)了數(shù)形結(jié)合的數(shù)學(xué)思想,并知道猜想的結(jié)論必須加以驗(yàn)證,本節(jié)授課思維流暢,知識(shí)發(fā)生發(fā)展過(guò)程過(guò)渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極,氣氛活躍,教學(xué)效果較好。

這節(jié)課采用小組自主探究,小組合作的學(xué)習(xí)方式,緊張而愉快,學(xué)生及相互交流的同時(shí)又相互合作,極大的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的熱情同時(shí)我也比較關(guān)注那些積極動(dòng)腦,熱情參與的同學(xué),及時(shí)的給予表?yè)P(yáng)和鼓勵(lì),進(jìn)而促進(jìn)課堂教學(xué)的有效性。

從幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖游戲,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現(xiàn)結(jié)論,并通過(guò)小組合作,探究歸納公式,從而突出以學(xué)生為主體的的探究性學(xué)習(xí)原則。

這節(jié)課做的不足的方面有對(duì)學(xué)生個(gè)別指導(dǎo)較少,應(yīng)到各小組當(dāng)中去積極參與學(xué)生的活動(dòng);學(xué)生拼圖時(shí)間略微有些偏長(zhǎng),對(duì)后面的教學(xué)稍有影響,顯的前松后緊。

完全平方公式教案篇十八

一、教學(xué)內(nèi)容:

本節(jié)內(nèi)容是人教版教材八年級(jí)上冊(cè),第十四章第2節(jié)乘法公式的第二課時(shí)——完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要組成部分,也是乘法運(yùn)算知識(shí)的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對(duì)多項(xiàng)式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運(yùn)算的必備知識(shí),它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識(shí)奠定了基礎(chǔ),所以說(shuō)完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。

本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗(yàn)證為學(xué)生體驗(yàn)規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些代數(shù)式的運(yùn)算,培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。

重點(diǎn):掌握完全平方公式,會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

難點(diǎn):理解公式中的字母含義,即對(duì)公式中字母a、b的理解與正確應(yīng)用。

三、教學(xué)目標(biāo)。

(1)經(jīng)歷探索完全平方公式的推導(dǎo)過(guò)程,掌握完全平方公式,并能正確運(yùn)用公式進(jìn)行簡(jiǎn)單計(jì)算。

(2)進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會(huì)獨(dú)立思考。

(3)通過(guò)推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會(huì)與他人合作交流,體驗(yàn)解決問(wèn)題的多樣性。

(4)體驗(yàn)完全平方公式可以簡(jiǎn)化運(yùn)算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過(guò)程中獲得體驗(yàn)成功的喜悅,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。

四、學(xué)情分析與教法學(xué)法。

學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運(yùn)算及平方差公式的基礎(chǔ)上開(kāi)展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強(qiáng)的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級(jí)學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問(wèn)題。

學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨(dú)立思考、歸納總結(jié)、合作交流。

總結(jié)反思中獲得數(shù)學(xué)知識(shí)與技能。

教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過(guò)程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動(dòng)探究的學(xué)習(xí)狀態(tài)。

五、教學(xué)過(guò)程(略)。

六、教學(xué)評(píng)價(jià)。

在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評(píng)價(jià)學(xué)生在知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決和情感態(tài)度等方面的表現(xiàn)。教師通過(guò)情境引入、提供問(wèn)題引導(dǎo)學(xué)生從已有的知識(shí)為出發(fā)點(diǎn),自主探究,發(fā)現(xiàn)問(wèn)題,深入思考。學(xué)生解決問(wèn)題要以獨(dú)立思考為主,當(dāng)遇到困難時(shí)學(xué)會(huì)求助交流,教師也要給學(xué)生思考交流的時(shí)間,讓學(xué)生經(jīng)歷得出結(jié)論的過(guò)程,培養(yǎng)發(fā)現(xiàn)問(wèn)題解決問(wèn)題的能力。

在整個(gè)學(xué)習(xí)過(guò)程中,通過(guò)對(duì)學(xué)生參與自主探究的程度、合作交流的意識(shí)以及獨(dú)立思考的習(xí)慣,發(fā)現(xiàn)問(wèn)題的能力進(jìn)行評(píng)價(jià),并對(duì)學(xué)生的想法或結(jié)論給予鼓勵(lì)評(píng)價(jià)。

完全平方公式教案篇十九

1.本節(jié)課學(xué)生的探究活動(dòng)比較多,教師既要全局把握,又要順其自然,千萬(wàn)不可拔苗助長(zhǎng),為了后面多做幾道練習(xí)而人為的主觀裁斷時(shí)間安排,其實(shí)公式的探究活動(dòng)本身既是對(duì)學(xué)生能力的培養(yǎng),又是對(duì)公式的識(shí)記過(guò)程,而且還可以提高他們的應(yīng)用公式的本領(lǐng).因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂(lè)此不疲,更加充分的參與其中.對(duì)于這一點(diǎn),教師一定要轉(zhuǎn)變觀念.

2.在完全平方公式的探求過(guò)程中,學(xué)生表現(xiàn)出觀察角度的差異:有些學(xué)生只是側(cè)重觀察某個(gè)單獨(dú)的式子,把它孤立地看,而不知道將幾個(gè)式子聯(lián)系地看;有些學(xué)生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強(qiáng)的觀察力.教師要善于抓住這個(gè)契機(jī),適當(dāng)對(duì)學(xué)生進(jìn)行學(xué)法指導(dǎo),培養(yǎng)他們“既見(jiàn)樹(shù)木,又見(jiàn)森林”的優(yōu)良觀察品質(zhì).

3.對(duì)于公式使用的條件既要把握好“度”,又要把握好“方向”.對(duì)于公式中的字母取值范圍,不必過(guò)分強(qiáng)調(diào)(實(shí)際上,這個(gè)范圍限定的太小了);而對(duì)于公式的特點(diǎn),則應(yīng)當(dāng)左右兼顧,特別是公式的左邊,它是正確應(yīng)用公式的前提,卻往往不被重視,結(jié)果造成幾個(gè)類(lèi)似公式的.混淆,給正確解題設(shè)置了障礙.

4.教無(wú)定法,教師應(yīng)根據(jù)本班的實(shí)際情況靈活安排教學(xué)步驟,切實(shí)把關(guān)注學(xué)生的發(fā)展放在首位來(lái)考慮,并依此制定合理而科學(xué)的教學(xué)計(jì)劃.如,對(duì)于較好的班級(jí),則可以優(yōu)先發(fā)展,采取居高臨下的教學(xué)思路,先整體把握再對(duì)比擊破,或是將其納入整體結(jié)構(gòu)系統(tǒng),采取類(lèi)比的學(xué)習(xí)方式;而對(duì)于基礎(chǔ)較薄弱的班級(jí),則應(yīng)以提高學(xué)習(xí)興趣、教會(huì)學(xué)習(xí)、培養(yǎng)成功體驗(yàn)為主,千萬(wàn)不可拔苗助長(zhǎng),以防物極必反.

【本文地址:http://mlvmservice.com/zuowen/14328999.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔