完全平方公式教案(專業(yè)20篇)

格式:DOC 上傳日期:2023-11-23 05:43:18
完全平方公式教案(專業(yè)20篇)
時間:2023-11-23 05:43:18     小編:文軒

編寫教案有助于提前預設教學結果和評價標準,為教學評價提供依據(jù)。教案要體現(xiàn)教學過程中的評價機制,包括形成性評價和總結性評價。以下是小編為大家收集的教案范例,供大家參考和借鑒。

完全平方公式教案篇一

教學目標:

1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。

2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。

4、在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內在美。

教學重點:

1、弄清完全平方公式的來源及其結構特點,用自己的.語言說明公式及其特點;

教學難點:

教學方法:

探索討論、歸納總結。

教學過程:

一、回顧與思考。

活動內容:復習已學過的平方差公式。

1、平方差公式:(a+b)(a―b)=a2―b2;

公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。

右邊是兩數(shù)的平方差。

2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

二、情境引入。

活動內容:提出問題:

一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。

用不同的形式表示實驗田的總面積,并進行比較。

活動內容:

1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a―b)2=a2―2ab+b2。

2、引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。

3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。

結構特點:左邊是二項式(兩數(shù)和(差))的平方;

右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

五、鞏固練習:

1、下列各式中哪些可以運用完全平方公式計算。

一、學習目標。

1、會推導完全平方公式,并能運用公式進行簡單的計算。

二、學習重點:會用完全平方公式進行運算。

三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。

四、學習設計。

(一)預習準備。

(1)預習書p23―26。

(2)思考:和的平方等于平方的和嗎?

1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。

2、已知(a+b)2=24,(a―b)2=20,求:

(1)ab的值是多少?

(2)a2+b2的值是多少?

3、已知2(x+y)=―6,xy=1,求代數(shù)式(x+2)―(3xy―y)的值。

1、(5―x2)2等于;

答案:25―10x2+x4。

解析:解答:(5―x2)2=25―10x2+x4。

2、(x―2y)2等于;

答案:x2―8xy+4y2。

解析:解答:(x―2y)2=x2―8xy+4y2。

3、(3a―4b)2等于;

答案:9a2―24ab+16b2。

解析:解答:(3a―4b)2=9a2―24ab+16b2。

完全平方公式教案篇二

教學目標:

1.經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學生的符號感和推理能力;。

1.弄清完全平方公式的來源及其結構特點,能用自己的語言說明公式及其特點;。

2.會用完全平方公式進行運算.教學難點:會用完全平方公式進行運算教學過程:

一、探索練習:

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(圖略)。

用不同的形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?

(2)(a-b)2等于什么?小穎寫出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來.

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

二、鞏固練習:

1.下列各式中哪些可以運用完全平方公式計算_______________。

(1);(2);。

(3);(4).

2.計算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)_____________;(2);。

(3);三、提高練習:

1.求的值,其中。

2.若。

對公式的真正理解有待加強.

完全平方公式教案篇三

(2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[。

(1)(2)(3)(4)。

2、計算:

(1)(2)。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,則k=。

例1計算:1.2.

現(xiàn)在我們從幾何角度去解釋完全平方公式:

從圖(1)中可以看出大正方形的邊長是a+b,

它是由兩個小正方形和兩個矩形組成,所以。

大正方形的面積等于這四個圖形的面積之和。

則s==。

即:

如圖(2)中,大正方形的邊長是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長都是,寬都是,所以它們的面積都是;正方形hcgm的邊長是b,其面積就是;正方形afme的邊長是,所以它的面積是。從圖中可以看出正方形aemf的面積等于正方形abcd的'面積減去兩個矩形dcge和bchf的面積再加上正方形hcgm的面積。也就是:(a-b)2=。這也正好符合完全平方公式。

例2.計算:。

(1)(2)。

變式訓練:

(1)(2)。

(3)(4)(x+5)2–(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,則=。

(2)已知,求________,________。

(3)不論為任意有理數(shù),的值總是()。

a.負數(shù)b.零c.正數(shù)d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3)。已知,求的值。

1、完全平方公式的使用:在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數(shù)、也可以是單項式,還可以是多項式,所以要記得添括號。

2、解題技巧:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優(yōu)化選擇。

完全平方公式教案篇四

重點、難點根據(jù)公式的特征及問題的特征選擇適當?shù)墓接嬎?

教學過程。

一、議一議。

1.邊長為(a+b)的正方形面積是多少?

2.邊長分別為a、b拍的兩個正方形面積和是多少?

3.你能比較(1)(2)的結果嗎?說明你的理由.師生共同討論:學生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.

二、做一做。

例1.利用完全平方式計算1.102。

三、試一試。

計算:。

1.(a+b+c)。

2.(a+b)師生共同分析:對于1要把多項式完全平方轉化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,并與同伴交流你的做法.學生敘述。

四、隨堂練習。

p381。

五、小結。

本節(jié)課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點.1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當?shù)墓接嬎?3.用加法結合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項式的完全平方轉化為二項式的完全平方.

六、作業(yè)。

課本習題1.14p381、2、3.

七、教后反思。

1.9整式的除法第一課時單項式除以單項式教學目標1.經(jīng)歷探索單項式除法的法則過程,了解單項式除法的意義.

2.理解單項式除法法則,會進行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.

將本文的word文檔下載到電腦,方便收藏和打印。

完全平方公式教案篇五

二、學習重點。

三、學習難點。

靈活運用平方差和完全平方公式進行整式的簡便運算。

四、學習設計。

(一)預習準備。

(2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[。

(1)(2)(3)(4)。

2.計算:

(1)(2)。

(二)學習過程。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,則k=。

例1計算:1.2.

現(xiàn)在我們從幾何角度去解釋完全平方公式:

從圖(1)中可以看出大正方形的邊長是a+b,

它是由兩個小正方形和兩個矩形組成,所以。

大正方形的面積等于這四個圖形的面積之和.

則s==。

即:

如圖(2)中,大正方形的邊長是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長都是,寬都是,所以它們的面積都是;正方形hcgm的邊長是b,其面積就是;正方形afme的邊長是,所以它的面積是.從圖中可以看出正方形aemf的面積等于正方形abcd的面積減去兩個矩形dcge和bchf的面積再加上正方形hcgm的面積.也就是:(a-b)2=.這也正好符合完全平方公式.

例2.計算:。

(1)(2)。

變式訓練:

(1)(2)。

(3)(4)(x+5)2c(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,則=。

(2)已知,求________,________。

(3)不論為任意有理數(shù),的值總是。

a.負數(shù)b.零c.正數(shù)d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值。

回顧小結。

1.完全平方公式的使用:在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數(shù)、也可以是單項式,還可以是多項式,所以要記得添括號。

2.解題技巧:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優(yōu)化選擇。

完全平方公式教案篇六

1、了解完全平方公式的特征,會用完全平方公式進行因式分解.

2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學生逆向思維能力和推理能力.

3、通過猜想、觀察、討論、歸納等活動,培養(yǎng)學生觀察能力,實踐能力和創(chuàng)新能力.

學習建議教學重點:

完全平方公式教案篇七

引例講解:將下列各式分解因式。

1、x2+6x+92、4x2-20x+25。

問題:這兩題首先怎么分析?

生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學生回答,教師板書)。

生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5。

x2+6x+9=x2+2×x×3+32=(x+3)2。

4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2。

(聯(lián)系字母表達式用箭頭對應表示,加深學生印象。)。

生16:由符號來決定。

師:能不能具體點。

生16:由中間一項的符號決定,就是兩個數(shù)乘積2倍這項的符號決定,是正,就是兩個數(shù)的和;是負,就是兩個數(shù)的差。

師:總之,在分解完全平方式時,要根據(jù)第二項的符號來選擇運用哪一個完全平方公式。

例題1:把25x4+10x2+1分解因式。

師:這道題目能否運用以前所學的方法分解?就題目本身有什么特點?可以怎么分解?

生17:題目符合完全平方式的特點,可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學生板演,過程略)。

例題2:把-x2-4y2+4xy分解因式。

師:按照常規(guī)我們首先怎么辦?

生齊答:提取負號?!步處煱鍟?(x2+4y2-4xy)〕以下過程學生板演。

師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)。

提示:從項的特征進行考慮,怎樣轉化比較合理?四人小組討論。

生18:同樣還是將負號提取改變成完全平方式的形式。

師:從這里我們可以發(fā)現(xiàn),只要三項式中能改寫成平方的兩項是同號,且另一項為兩底數(shù)積的2倍,我們都能利用這個公式分解,若這兩項同為正則可直接分解,若同為負則先提取負號再分解。

練習題:課本p21練習:第1題,學生板演,教師講解,學生板演的同時,教師提示注意點、多項式的特征;第2題,學生口答。

例題3:把3ax2+6axy+3ay2分解因式。

師:先觀察,再選擇適當?shù)姆椒ā?學生板演,教師點評)。

練習:課本p22第3題分兩組學生板演,教師評講、適當提示注意點。

師:這一堂課我們一起研究了完全平方式的有關知識,同學們先自查一下自己的收獲,然后請同學發(fā)表自己的見解。(學生小聲討論)。

生甲:我學到了如何將完全平方式分解因式,遇到三項式中有兩項符號相同且能化成平方的形式,另一項為這兩個數(shù)的積的2倍的形式,如果能化成平方項是負的,首先將負號提取再分解。第二項是正的就是兩數(shù)的和的平方,第二項是負的就是兩數(shù)差的平方。

生乙:有公因式可提取的先提取公因式,然后再分解,同時根據(jù)第二項的符號來選用合適的公式。

教師布置課堂作業(yè):課本p23習題8.2a組4~5偶數(shù)題。

課外作業(yè):課本p23習題8.2a組4~5奇數(shù)題。

下課!

完全平方公式教案篇八

探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab)。師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy。另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得=xy.學生動筆:寫出(2)(3)題的結果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

p401學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學完成后,師生共同訂正。

本節(jié)課主要學習了單項式除以單項式的運算。在運用法則計算時應注意以下幾點:。

1、系數(shù)相除與同底數(shù)冪相除的區(qū)別;

2、符號問題;

完全平方公式教案篇九

完全平方公式是初中代數(shù)的一個重要組成部分,是學生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。

本節(jié)課是繼乘法公式的內容的一種升華,起著承上啟下的作用。在內容上是由多項式乘多項式而得到的,同時又為下一節(jié)課打下了基礎,環(huán)環(huán)相扣,層層遞進。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉化等重要的思想方法。

多數(shù)學生的抽象思維能力、邏輯思維能力、數(shù)學化能力有限,理解完全平方公式的幾何解釋、推導過程、結構特點有一定困難。所以教學中應盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結構特征,進一步發(fā)展學生的合情推理能力、合作交流能力和數(shù)學化能力。

知識與技能。

利用添括號法則靈活應用乘法公式。

過程與方法。

利用去括號法則得到添括號法則,培養(yǎng)學生的逆向思維能力。

情感態(tài)度與價值觀。

鼓勵學生算法多樣化,培養(yǎng)學生多方位思考問題的習慣,提高學生的合作交流意識和創(chuàng)新精神。

教學重點。

理解添括號法則,進一步熟悉乘法公式的合理利用。

教學難點。

在多項式與多項式的乘法中適當添括號達到應用公式的目的。

思考分析、歸納總結、練習、應用拓展等環(huán)節(jié)。

師生活動。

設計意圖。

一.提出問題,創(chuàng)設情境。

請同學們完成下列運算并回憶去括號法則.。

(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括號法則:

也就是說,遇“加”不變,遇“減”都變.。

二、探究新知。

把上述四個等式的左右兩邊反過來,又會得到什么結果呢?

(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)。

(3)a+b+c=a+(b+c)(4)a-b+c=a-(b-c)。

左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結出添括號法則來呢?

(學生分組討論,最后總結)。

添括號法則是:

也是:遇“加”不變,遇“減”都變.。

請同學們利用添括號法則完成下列練習:

1.在等號右邊的括號內填上適當?shù)捻棧?/p>

(1)a+b-c=a+()(2)a-b+c=a-()。

(3)a-b-c=a-()(4)a+b+c=a-()。

判斷下列運算是否正確.。

(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)。

(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)。

三、新知運用。

例:運用乘法公式計算。

(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2。

(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)。

四.隨堂練習:

1.課本p111練習。

2.《學案》101頁——鞏固訓練。

五、課堂小結:

通過本節(jié)課的學習,你有何收獲和體會?

六、檢測作業(yè)。

習題14.2:必做題:3、4、5題。

選做題:7題。

知識梳理,教學導入,激發(fā)學生的學習熱情。

交流合作,探究新知,以問題驅動,層層深入。

歸納總結,提升課堂效果。

作業(yè)檢測,檢測目標的達成情況。

完全平方公式教案篇十

(2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[。

(1)(2)(3)(4)。

2.計算:

(1)(2)。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,則k=。

例1計算:1.2.

從圖(1)中可以看出大正方形的邊長是a+b,

它是由兩個小正方形和兩個矩形組成,所以。

大正方形的面積等于這四個圖形的面積之和。

則s==。

即:

如圖(2)中,大正方形的邊長是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長都是,寬都是,所以它們的面積都是;正方形hcgm的邊長是b,其面積就是;正方形afme的邊長是,所以它的面積是.從圖中可以看出正方形aemf的面積等于正方形abcd的'面積減去兩個矩形dcge和bchf的面積再加上正方形hcgm的面積。也就是:(a-b)2=.這也正好符合完全平方公式。

例2.計算:

(1)(2)。

變式訓練:

(1)(2)。

(3)(4)(x+5)2–(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,則=。

(2)已知,求________,________。

(3)不論為任意有理數(shù),的值總是()。

a.負數(shù)b.零c.正數(shù)d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值。

1.完全平方公式的使用:在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數(shù)、也可以是單項式,還可以是多項式,所以要記得添括號。

2.解題技巧:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優(yōu)化選擇。

完全平方公式教案篇十一

在進入三中這個大家庭里,我感受到了這個大家庭的愛,有來自領導,師傅,辦公室同事的指導,深感欣慰。由于第一次教授初中數(shù)學,對于備學生和備教材缺乏全面理解,本節(jié)課的教學沒有很好的完成教學目的標,本課的知識要點是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應用公式進行簡單的計算。理解公式的推導過程,了解公式的幾何背景,會應用公式進行簡單的計算。探索完全平方公式的過程,培養(yǎng)學生的發(fā)現(xiàn)能力、求簡意識、應用意識、解決問題的能力和創(chuàng)新能力。培養(yǎng)學生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質。

通過本課,讓學生體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質,并會運用公式進行簡單的計算,理解公式中的字母含義,及公式的應用。

通過本節(jié)課的教學得到如下收獲:。

(1)這節(jié)課倡導了以學生為主,教師為輔的思想,留足了一定的時間讓學生去發(fā)現(xiàn)探索、以及做練習。

(2)采用了多媒體輔助教學,以較清晰的手段呈現(xiàn)了學生整個學習過程,讓課堂更加直觀明了,同時客容量也增大了。

(3)讓學生體會了數(shù)形結合及轉化的數(shù)學思想,并知道猜想的結論必須要加以驗證。

本節(jié)課采用了以小組自主探究的學習方式,整節(jié)課都在緊張而愉快的氣氛中進行,學生活躍,能積極參與。教學中,比較關注學生的情感態(tài)度,對那些積極動腦,熱情參與的同學,都給予了鼓勵和表揚,促使學生的情感和興趣始終保持最佳狀態(tài),進而提高課堂教學的有效性。

完全平方公式教案篇十二

一、教學內容:

本節(jié)內容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時——完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結,體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學生后續(xù)學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數(shù)等知識奠定了基礎,所以說完全平方公式屬于代數(shù)學的基礎地位。

本節(jié)課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發(fā)現(xiàn)與驗證為學生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數(shù)式的運算,培養(yǎng)學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數(shù)學工具。

重點:掌握完全平方公式,會運用公式進行簡單的計算。

難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

三、教學目標。

(1)經(jīng)歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

(2)進一步發(fā)展學生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學會獨立思考。

(3)通過推導完全平方公式及分析結構特征,培養(yǎng)學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。

(4)體驗完全平方公式可以簡化運算從而激發(fā)學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數(shù)學的自信心。

四、學情分析與教法學法。

學情分析:課程標準提出數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上,本節(jié)課就是在前面的學習中,學生已經(jīng)掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調動學生的學習熱情,本節(jié)內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。

學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流。

總結反思中獲得數(shù)學知識與技能。

教法:以啟發(fā)引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態(tài)。

五、教學過程(略)。

六、教學評價。

在教學中,教師在精心設置教學環(huán)節(jié)中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數(shù)學思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導學生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經(jīng)歷得出結論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。

在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

完全平方公式教案篇十三

這一節(jié)課主要研究完全平方公式的證明方法,關鍵是引導學生正確理解完全平方公式的推導過程,以及這兩個公式的幾何背景。

這節(jié)課我做的比較好的方面:

經(jīng)歷探索完全平方公式的過程,通過拼圖游戲,從形到數(shù)又從數(shù)到形,讓學生了解公式的幾何背景,學生體會了數(shù)形結合的數(shù)學思想,并知道猜想的結論必須加以驗證,本節(jié)授課思維流暢,知識發(fā)生發(fā)展過程過渡自然,學生容易得到一些結論但在老師的引導下又使問題的探討得以不斷深入,學生思考積極,氣氛活躍,教學效果較好。

這節(jié)課采用小組自主探究,小組合作的學習方式,緊張而愉快,學生及相互交流的同時又相互合作,極大的調動了學生學習的熱情同時我也比較關注那些積極動腦,熱情參與的同學,及時的給予表揚和鼓勵,進而促進課堂教學的有效性。

從幾何意義出發(fā),激發(fā)學生的圖形觀,利用拼圖游戲,使學生在動手的過程中發(fā)現(xiàn)結論,并通過小組合作,探究歸納公式,從而突出以學生為主體的的探究性學習原則。

這節(jié)課做的不足的方面有對學生個別指導較少,應到各小組當中去積極參與學生的活動;學生拼圖時間略微有些偏長,對后面的教學稍有影響,顯的前松后緊。

完全平方公式教案篇十四

(2)切勿把“乘積項”2ab中的2丟掉.

今后在教學中?,要注意以下幾點:

1.讓學生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征.

2.引入完全平方公式,讓學生用文字概括公式的內容,培養(yǎng)抽象的數(shù)字思維能力.

完全平方公式教案篇十五

3.4探究實際問題與一元一次方程組。

掌握一元一次方程得解法,了解銷售中的數(shù)量關系。

能夠分析實際問題中的數(shù)量關系,找相等關系,列出一元一次方程。

基本思想。

基本活動經(jīng)驗體會解決實際問題的一般步驟及盈虧中的關系。

重點探索并掌握列一元一次方程解決實際問題的方法,

教學。

難點找出已知量與未知量之間的關系及相等關系。

教具資料準備教師準備:課件。

書、本。

教學過程自備。

補充集備。

補充。

探究銷售中的盈虧問題:

1、商品原價200元,九折出售,賣價是元。

2、商品進價是30元,售價是50元,則利潤。

是元。

2、某商品原來每件零售價是a元,現(xiàn)在每件降價10%,降價后每件零售價是元。

3、某種品牌的彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應為元。

4、某商品按定價的八折出售,售價是14.8元,則原定售價是。

(學生總結公式)。

熟悉各個量之間的聯(lián)系有助于熟悉利潤、利潤率售價進價之間聯(lián)系。

分析:售價=進價+利潤。

售價=(1+利潤率)×進價。

(3)某商場把進價為1980元的商品按標價的八折出售,仍獲利10%,則該商品的標價為元。

注:標價×n/10=進(1+率)。

則這種藥品在2005年漲價前價格為元。

通過本節(jié)課的學習你有哪些收獲?你還有哪些疑惑?

虧損還是盈利對比售價與進價的關系才能加以判斷。

小組研究解決提出質疑。

優(yōu)生展示講解質疑。

板書設計一元一次方程的應用-----盈虧問題。

相關的關系式:例題。

課后反思售價、進價、利潤、利潤率、標價、折扣數(shù)這幾個量之間的關系一定清楚,之后才能靈活運用,通過變式練習加強記憶提高能力。

完全平方公式教案篇十六

完全平方和(差)公式是某些特殊形式的多項式相乘,只有掌握完全平方和(差)公式的一些本質地結構特點,才能正確地讓公式更好地幫助我們進行簡單計算。

要學好這部分,首先要注意掌握:

1、公式本身:(a+b)2=a2+2ab+b2。

文字敘述:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。

2、公式的結構特點:等號左邊是一個二項式的平方,等號右邊是一個二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍?;虻忍栍疫呌涀鳎菏灼椒?,尾平方,2倍之積中間放。

3、公式中字母的廣泛意義:既可以代表任意的數(shù)(正數(shù)、負數(shù)),又可以代表任意代數(shù)式。注意代表代數(shù)式時,要有“整體思想”的觀念。

其次要注意易錯點:

1、易錯寫:(a+b)2=a2+b2。

許多學生往往認為(a+b)2=a2+b2,甚至認為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說明這個問題,我首先利用分地的`故事引入,第一個農夫分得a2+b2,第二個分得(a+b)2,然后讓同學們對比2個代數(shù)式,通過各種方法說明這兩者是不同的,比如計算法,代數(shù)字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進行強化訓練。雖然還有極個別學生出現(xiàn)2項的情況,但絕大部分明白了2倍之積中間放的意義。

2、兩個公式中的符號易混:課堂上進行了教學的改進,把2個公式(a+b)2與(a-b)2并作一個公式來處理。為了避免符號上出現(xiàn)混亂,把2個公式的符號特點進行觀察,得出同號得正,異號得負的結論。由此應對兩項式的平方的符號問題,也省去了一些變號的煩惱。

3、兩公式靈活運用。

在一些實際問題中,有些題目不能直接運用公式,需要一步轉化才可以。如計算:

(1)(y-x)(x-y)(2)(x+y)(-x-y)。

完全平方公式教案篇十七

學習目標:

1、能說出有序數(shù)對的定義。

2、能用有序數(shù)對表示實際生活中物體的位置。

學習重點:用有序數(shù)對表示位置。

學習難點:用有序數(shù)對表示位置。

學習過程:

自學過程:(一)、自學知識清單。

1、教材64頁,在圖7.1—1中找出參加數(shù)學問題討論的同學。

小組內交流一下,看一看你們找的'位置相同嗎?

思考:(2,4)和(4,2)在同一位置嗎?為什么?

2、請回答教材65頁:思考題。

3、我們把這種有順序的______個數(shù)a與b組成的_______叫做_______,記作(,)。

(二)、自學反饋。

練習1、利用________________,可以準確地表示出一個位置,

如電影院的座號,“3排2號”、表示為(3,2),則“2排3號”可以表示為。

練習2、如圖(1)所示,一方隊正沿箭頭所指的方向前進,a的位置為三列四行,表示為a(3,4),則b,c,d表示為b(,),c(,)。

d(,)。

練習3、完成課本第65頁的練習。

練習4、用有序數(shù)對表示物體位置時,(3,2)與(2,3)表示的位置相同嗎?請結合下面圖形加以說明.

練習5、如圖所示,a的位置為(2,6),小明從a出發(fā),經(jīng)。

完全平方公式教案篇十八

1.弄清完全平方公式的來源及其結構特點,能用自己的。語言說明公式及其特點;

2.會用完全平方公式進行運算。教學難點:會用完全平方公式進行運算教學過程:

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。

用不同的`形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?

(2)(a-b)2等于什么?小穎寫出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來。

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

(1);(2);。

(3);(4).

2.計算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)xxxxxxxxx_;(2);。

1.求的值,其中。

2.若。

對公式的真正理解有待加強。

完全平方公式教案篇十九

1.本節(jié)課學生的探究活動比較多,教師既要全局把握,又要順其自然,千萬不可拔苗助長,為了后面多做幾道練習而人為的主觀裁斷時間安排,其實公式的探究活動本身既是對學生能力的培養(yǎng),又是對公式的識記過程,而且還可以提高他們的應用公式的本領.因此,不但不可以省,而且還要充分挖掘,以使不同程度的學生都有事情做且樂此不疲,更加充分的參與其中.對于這一點,教師一定要轉變觀念.

2.在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學生只是側重觀察某個單獨的式子,把它孤立地看,而不知道將幾個式子聯(lián)系地看;有些學生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強的觀察力.教師要善于抓住這個契機,適當對學生進行學法指導,培養(yǎng)他們“既見樹木,又見森林”的優(yōu)良觀察品質.

3.對于公式使用的條件既要把握好“度”,又要把握好“方向”.對于公式中的字母取值范圍,不必過分強調(實際上,這個范圍限定的太小了);而對于公式的特點,則應當左右兼顧,特別是公式的左邊,它是正確應用公式的前提,卻往往不被重視,結果造成幾個類似公式的.混淆,給正確解題設置了障礙.

4.教無定法,教師應根據(jù)本班的實際情況靈活安排教學步驟,切實把關注學生的發(fā)展放在首位來考慮,并依此制定合理而科學的教學計劃.如,對于較好的班級,則可以優(yōu)先發(fā)展,采取居高臨下的教學思路,先整體把握再對比擊破,或是將其納入整體結構系統(tǒng),采取類比的學習方式;而對于基礎較薄弱的班級,則應以提高學習興趣、教會學習、培養(yǎng)成功體驗為主,千萬不可拔苗助長,以防物極必反.

完全平方公式教案篇二十

理解兩個完全平方公式的結構,靈活運用完全平方公式進行運算。

在運用完全平方公式的過程中,進一步發(fā)展學生的符號演算的能力,提高運算能力。

培養(yǎng)學生在獨立思考的基礎上,積極參與對數(shù)學問題的討論,敢于發(fā)表自己的見解。

一、復習導入。

2.計算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

學生思考后回答:由于兩數(shù)差可以轉化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計算,結果是一樣的。

教師歸納:當我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的,區(qū)別是其結果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準確;另一方面,當我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結構上來看就是一致的了,其結構都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍?!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。

我們學習運算,除了要重視結果,還要重視過程,平時注意訓練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。

二、新課講解。

溫故知新。

與,與相等嗎?為什么?

學生討論交流,鼓勵學生從不同的。角度進行說理,共同歸納總結出兩條判斷的思路:

1.對原式進行運算,利用運算的結果來判斷;

2.不對原式進行運算,只做適當變形后利用整體的方法來判斷。

思考:與,與相等嗎?為什么?

利用整體的方法判斷,把看成一個數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

總結歸納得到:;

三、典例剖析。

【本文地址:http://mlvmservice.com/zuowen/14279599.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔