反比例的教案范文(13篇)

格式:DOC 上傳日期:2023-11-11 03:56:21
反比例的教案范文(13篇)
時間:2023-11-11 03:56:21     小編:紫薇兒

教案不僅可以用于指導(dǎo)教學(xué)過程,還可以用于教學(xué)研究和教學(xué)改進(jìn),有助于提高教師的教學(xué)水平和專業(yè)素養(yǎng)。教案的編寫要考慮到學(xué)生的情感和心理發(fā)展特點,注重個性化教育。通過學(xué)習(xí)這些教案,你可以提高你的教學(xué)水平和能力。

反比例的教案篇一

[設(shè)計意圖]通過多種形式的練習(xí),加強(qiáng)了學(xué)生對用數(shù)據(jù)說明成反比例的量和反比例關(guān)系的學(xué)習(xí)。使不同層次的學(xué)生從中體會到成功的快樂。

同學(xué)們,通過上節(jié)課的學(xué)習(xí),我們已經(jīng)學(xué)會了兩個成反比例的量和它們的關(guān)系,今天我們一起來回顧復(fù)習(xí)一下成正比例的量和成反比例的量。

1、判斷。

(1)一個因數(shù)不變,積與另一個因數(shù)成正比例。()。

(2)長方形的長一定,寬和面積成正比例。()。

(3)大米的總量一定,吃掉的和剩下的成反比例。()。

(4)圓的半徑和周長成正比例。()。

(5)分?jǐn)?shù)的分子一定,分?jǐn)?shù)值和分母成反比例。()。

(6)鋪地面積一定,方磚的邊長和所需塊數(shù)成反比例。()。

(7)鋪地面積一定,方磚面積和所需塊數(shù)成反比例。()。

(8)除數(shù)一定,被除數(shù)和商成正比例。()。

2、選擇。

(1)把一堆化肥裝入麻袋,麻袋的數(shù)量和每袋化肥的重量()。

a、成正比例b、成反比例c、不成比例。

(2)和一定,加數(shù)和另一個加數(shù)()。

a、成正比例b、成反比例c、不成比例。

(3)在汽車每次運貨噸數(shù),運貨次數(shù)和運貨的總噸數(shù)這三種量中,成正比例關(guān)系是(),成反比例關(guān)系是()。

a、汽車每次運貨噸數(shù)一定,運貨次數(shù)和運貨總噸數(shù)。

b、汽車運貨次數(shù)一定,每次運貨的噸數(shù)和運貨總噸數(shù)。

c、汽車運貨總噸數(shù)一定,每次運貨的噸數(shù)和運貨的次數(shù)。

3、判斷題:自主練習(xí)第3題。

學(xué)生判斷各題中的兩個量是不是成反比例。并說說理由。

重點引導(dǎo)學(xué)生運用反比例的意義進(jìn)行判斷。

4、印刷廠用6000張紙裝訂練習(xí)本。

每本的頁數(shù)。

(1)先填寫上表。

(2)思考每本的頁數(shù)與裝訂的本數(shù)有什么關(guān)系?

6、自主練習(xí)第2題。

這是一道用抽象形式鞏固反比例意義的題目。學(xué)生先思考,根據(jù)x和成反比例,確定x和的乘積一定,再根據(jù)第一組數(shù)據(jù)找到x和的乘積,然后利用這個乘積和每組中的已知數(shù)據(jù),求出另一數(shù)據(jù)。

介紹反比例圖像,學(xué)生了解反比例關(guān)系也能用圖像表示。由于理解難度較大,只作了解,不做學(xué)習(xí)要求。

教學(xué)反思:

本節(jié)課課堂練習(xí)。課上要重視學(xué)生掌握的情況,正確判斷的同時,還要說理清楚。學(xué)生對一些不是很熟悉的關(guān)系如:車輪的直徑一定,所行使的路程和車輪的轉(zhuǎn)數(shù)成何比例?出粉率一定,面粉重量和小麥的總重量成何比例?判斷時會較為困難,說理也不是很清楚。所以教師在補(bǔ)充這些練習(xí)時,應(yīng)該有前瞻性,引導(dǎo)學(xué)生對以前所學(xué)的知識進(jìn)行相關(guān)的復(fù)習(xí),然后再進(jìn)行相關(guān)形式的練習(xí),我想對學(xué)生的后繼學(xué)習(xí)必然有所幫助。

這節(jié)課我們研究了什么問題?你有什么收獲?

(引導(dǎo)學(xué)生進(jìn)行總結(jié),能用自己的話說出學(xué)習(xí)主要內(nèi)容。)。

教學(xué)反思:

本節(jié)課首先通過復(fù)習(xí),鞏固了正比例的意義。通過舊知識引出新知識“反比例的意義”,過渡自然,知識做到了連貫性。然后啟發(fā)學(xué)生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律。通過知識的對比,加強(qiáng)了知識的內(nèi)在聯(lián)系,并通過區(qū)別不同的概念,鞏固了知識。學(xué)生的全面參與,有效地培養(yǎng)了總結(jié)、區(qū)別、溝通的能力。再加以練習(xí)的及時,使學(xué)生加深概念的理解。

反比例的教案篇二

問題:。

你們還記得一次函數(shù)圖象與性質(zhì)嗎?

設(shè)計意圖。

通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生復(fù)習(xí)一次函數(shù)圖象的知識,激發(fā)學(xué)生參與課堂學(xué)習(xí)的熱情,為學(xué)習(xí)反比例函數(shù)的圖象奠定基礎(chǔ)。

師生形為:

教師提出問題。學(xué)生思考、交流,回答問題。教師根據(jù)學(xué)生活動情況進(jìn)行補(bǔ)充和完善。

活動2。

問題:

例2畫出反比例函數(shù)y=與y=-的圖象。

(教師先引導(dǎo)學(xué)生思考,示范畫出反比例函數(shù)y=的圖象,再讓學(xué)生嘗試畫出反比例函數(shù)y=-的圖象。)。

設(shè)計意圖:

通過畫反比例函數(shù)的圖象使學(xué)生進(jìn)一步了解用描點的方法畫函數(shù)圖象的基本步驟,其他函數(shù)的圖象奠定基礎(chǔ),同時也培養(yǎng)了學(xué)生動手操作能力。

師生形為:

學(xué)生可以先自己動手畫圖,相互觀摩。

在此活動中,教師應(yīng)重點關(guān)注:

1學(xué)生能否順利進(jìn)行三種表示方法的相互轉(zhuǎn)換:

2是否熟悉作出函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;。

3在動手作圖的過程中,能否勤于動手,樂于探索。

比較y=、y=-的圖象有什么共同特征?它們之間有什么關(guān)系?

(由學(xué)生觀察思考,回答問題,并使學(xué)生了解反比例函數(shù)的圖象是一種雙曲線。)。

設(shè)計意圖:

學(xué)生通過觀察比較,總結(jié)兩個反比例函數(shù)圖象的共同特征(都是雙曲線),以及在平面直角坐標(biāo)系中的位置。在活動中,讓學(xué)生自己去觀察、類比發(fā)現(xiàn),過程讓學(xué)生自己去感受,結(jié)論讓學(xué)生自己去總結(jié),實現(xiàn)學(xué)生主動參與、探究新知的目的。

師生形為:

學(xué)生分組針對問題結(jié)合畫出的圖象分類討論,歸納總結(jié)反比例函數(shù)圖象的共同點,為后面性質(zhì)的探索打下基礎(chǔ)。

教師參與到學(xué)生的討論中去,積極引導(dǎo)。

活動3。

問題:

你能發(fā)現(xiàn)它們的共同特征以及不同點嗎?

每個函數(shù)的圖象分別位于哪幾個象限?

在每一個象限內(nèi),y隨x的變化如何變化?

由學(xué)生分小組討論,觀察思考后進(jìn)行分析、歸納,得到反比例函數(shù)y=的性質(zhì):

形狀:反比例函數(shù)的圖象是由兩支雙曲線組成的.因此稱反比例函數(shù)的圖象為雙曲線;。

任意一組變量的乘積是一個定值,即xy=k.

(注意:雙曲線的兩個分支都不會與x軸,y軸相交。)。

學(xué)生通過對反比例函數(shù)圖象進(jìn)行觀察、分析,總結(jié)出了反比例函數(shù)的性質(zhì),使學(xué)生明白性質(zhì)的可靠性;通過對函數(shù)圖象的位置與k值符號關(guān)系的探討,以及反比例函數(shù)的兩個分支在相應(yīng)的象限內(nèi),y隨x值的增大(或減小)而增大(或減小)的探討,有利于加深學(xué)生對性質(zhì)的理解和掌握;使學(xué)生經(jīng)歷從特殊到一般的過程,體驗知識產(chǎn)生、形成的過程,逐步達(dá)到培養(yǎng)學(xué)生抽象概括能力和激發(fā)求知欲望;同時通過對反比例函數(shù)增減性的討論,對學(xué)生進(jìn)行辯證唯物主義思想教育.

設(shè)計意圖:

拓展練習(xí)是為了讓學(xué)生靈活運用反比例函數(shù)性質(zhì)解決問題,學(xué)生在研究問題的特點時,能夠緊扣性質(zhì)進(jìn)行分析,達(dá)到理解并掌握性質(zhì)的目的.

師生形為:

學(xué)生獨立思考完成。

教師巡視,引導(dǎo)學(xué)困生完成任務(wù)。

問題:

本節(jié)課學(xué)習(xí)了哪些知識?在知識應(yīng)用過程中需要注意什么?你有什么收獲?

反比例的教案篇三

1、借助正比例的意義理解反比例的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。

2、在小組合作學(xué)習(xí)過程中,掌握合作學(xué)習(xí)技能,體驗合作學(xué)習(xí)的快樂。

一、創(chuàng)設(shè)情境,明確問題

同學(xué)們,昨天老師去幼兒園接小朋友,看見幼兒園的老師正在給小朋友們分餅干,想知道他們是怎么分的嗎?我們一起去看一看:

人數(shù)(人)



1



2



3



4



5



塊數(shù)(塊)



3



6



9



12



15



每人分的塊數(shù)(塊)



3



3



3



3



3



仔細(xì)觀察,從這個表中,你知道了什么?你知道表中的哪兩種量成正比例嗎?(說明理由)

說一說成正比例的兩個量的變化規(guī)律。

師小明的媽媽要去銀行換一些零錢,請你幫忙算一算,各換多少張:

面值(元)



1



2



5



10



20



張數(shù)(張)





20





總錢數(shù)(元)








1、獨立思考:出示表格,讓學(xué)生自己觀察,提出問題并解決問題。

2、小組合作,交流探討問題。

要求:認(rèn)真聽取別人的意見,詳細(xì)說明自己的'觀點,如果有不懂的地方要虛心求助,最重要的是要控制好自己的言行,小組長要協(xié)調(diào)好本組的合作過程。

3、匯報交流,發(fā)現(xiàn)規(guī)律。

4、教師小結(jié),明確概念,呈現(xiàn)課題。

5、在理解概念的基礎(chǔ)上增加記憶。

1、給車棚的地面鋪上水泥磚,每塊水泥磚的面積與所需數(shù)量如下:

沒塊水泥磚的面積(平方厘米)


500


400


300


數(shù)量(塊)


600


750


1000


每塊水泥磚的面積與所需數(shù)量是否成反比例?為什么?

2、下表中x和y兩個量成反比例,請把表格填寫完整。

x


2




40



y


5



0.1




3、判斷下面每題中的兩種量是否成反比例,并說明理由。

(1)全班的人數(shù)一定,每組的人數(shù)和組數(shù)。

(2)圓柱的體積一定,圓柱的底面積和高。

(3)書的總頁數(shù)一定,已經(jīng)看的頁數(shù)和未看的頁數(shù)。

(4)圓柱的側(cè)面積一定,它的底面周長和高。

(5)、六(1)班學(xué)生的出席人數(shù)與缺席人數(shù)。

4、下面各題中的兩種量是不是成比例?如果成比 例,成什么比例?

(1)、訂閱《小學(xué)生天地》的份數(shù)和總錢數(shù)。

(2)、小新跳高的高度與他的身高。

(3)、平行四邊形的面積一定,底和高。

(4)、正方行的邊長與它的周長。

(5)、三角形的面積一定,底和高。

5、生活中還有哪些成反比例關(guān)系的量?

1、這節(jié)課學(xué)會了什么知識?反比例的意義是什么?

2、這節(jié)課你與小組同學(xué)合作的怎么樣?以后應(yīng)該怎么做?

反比例的教案篇四

(二)對反比例函數(shù)的三種表示方法進(jìn)行鞏固和熟悉。

例題非常簡單,在例題的處理上我注重了學(xué)生解題步驟的培養(yǎng),同時通過兩次變式進(jìn)一步鞏固解法,并拓寬了學(xué)生的思路。在變式訓(xùn)練之后,我又補(bǔ)充了一個綜合性題目的例題,(在上學(xué)期曾有過類似問題的,由于時間的久遠(yuǎn)學(xué)生不是很熟悉)但在補(bǔ)充例題的處理上點撥不到位,導(dǎo)致這個問題的解決有點走彎路。

題組(三)在本節(jié)既是知識的鞏固又是知識的檢測,通過這組題目的處理,發(fā)現(xiàn)學(xué)生對本節(jié)知識的掌握還可以。從整體來看,時間有點緊張,小結(jié)很是倉促,而且是由老師代勞了,沒有讓學(xué)生來談收獲,在這點有些包辦的趨勢。

雖然在題目的設(shè)計和教學(xué)設(shè)計上我注重了由淺入深的梯度,但有些問題的處理方式不是恰到好處,有的學(xué)生課堂表現(xiàn)不活躍,這也說明老師沒有調(diào)動起所有學(xué)生的學(xué)習(xí)積極性。總之,我會在以后的教學(xué)中注意細(xì)節(jié)問題的。

還希望數(shù)學(xué)組的老題多提寶貴的意見。謝謝了!

反比例的教案篇五

由對現(xiàn)實問題的討論抽象出反比例函數(shù)的概念,通過對問題的解決進(jìn)一步明確:1.反比例函數(shù)的意義;2.反比例函數(shù)的概念;3.反比例函數(shù)的一般形式。

1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā),討論兩個變量之間的相依關(guān)系,加深對函數(shù)概念的理解。

2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,表述反比例函數(shù)的概念。

1.經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)辯證唯物主義觀點。

2.經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展抽象思維能力,提高數(shù)學(xué)化意識。

1.認(rèn)識到數(shù)學(xué)知識是有聯(lián)系的,逐步感受數(shù)學(xué)內(nèi)容的系統(tǒng)性;

2.通過分組討論,培養(yǎng)合作交流意識和探索精神。

理解和領(lǐng)會反比例函數(shù)的概念。

領(lǐng)悟反比例函數(shù)的概念。

啟發(fā)引導(dǎo)、分組討論

1課時

課件

復(fù)習(xí)引入

2.在上一學(xué)段,我們研究了現(xiàn)實生活中成反比例的兩個量

反比例的教案篇六

1、使學(xué)生進(jìn)一步認(rèn)識正、反比例的意義,了解正反比例的區(qū)別和聯(lián)系,更好的把握正、反比例概念的本質(zhì)。

2、進(jìn)一步加深學(xué)生對正、反比例意義的理解,使他們能夠從整體上把握各種量之間的比例關(guān)系,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

進(jìn)一步認(rèn)識正、反比例的意義,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

實物投影。

一、復(fù)習(xí)。

要求學(xué)生說出成正反比例量的關(guān)鍵,根據(jù)學(xué)生回答板書關(guān)系式。

2、判斷下面各題中的兩種量是不是成比例,成什么比例。

(1)圓錐的體積和底面積。

(2)用銅制成的零件的體積和質(zhì)量。

(3)一個人的身高和體重。

(4)互為倒數(shù)的兩個數(shù)。

(5)三角形的底一定,它的`面積和高。

(6)圓的周長和直徑。

(7)被除數(shù)一定,商和除數(shù)。

二、練習(xí)。

完成練習(xí)十三9~13題。

1、第9題。

觀察每個表中的數(shù)據(jù),討論表下的問題。要注意啟發(fā)學(xué)生根據(jù)表數(shù)據(jù)的變化規(guī)律,寫出相應(yīng)的數(shù)量關(guān)系式,再進(jìn)行判斷。

2、第10題。

(1)看圖填寫表格。

(2)求出這幅圖的比例尺,再根據(jù)圖像特點判斷圖上距離和實際距離成什么比例,也可以根據(jù)相關(guān)的計算結(jié)果作出判斷。要讓學(xué)生認(rèn)識到:同一幅地圖的比例尺一定,所以這幅圖的圖上距離和實際距離成正比例。

(3)啟發(fā)學(xué)生運用有關(guān)比例尺的知識進(jìn)行解答。

3、第11題。

填寫表格,組織學(xué)生對兩個問題進(jìn)行比較,進(jìn)一步突出成反比例量的特點。

4、第12題。

引導(dǎo)學(xué)生說說每題中的哪兩種量是變化的,這兩種量中,一種量變化,另一種量也隨著變化,能不能用相應(yīng)的數(shù)量關(guān)系式表示這種變化的規(guī)律。

5、第13題。

讓學(xué)生小組進(jìn)行討論,教師指導(dǎo)有困難的學(xué)生。

三、補(bǔ)充練習(xí)。

1、a與b成正比例,并且在a=1。。時,b的對應(yīng)值是0。15。

(1)a與b的關(guān)系式是a/b=()。

(2)當(dāng)a=2。5時,b的對應(yīng)值是()。

(3)當(dāng)b=9。2時,a的對應(yīng)值是()。

2、甲、乙兩人步行速度的比為5:6,從a地到b地,甲走12小時,乙要走幾小時?

反比例的教案篇七

1、甲數(shù)除以乙數(shù)的商是2.8,甲、乙兩數(shù)的最簡比是()。

2、圓的周長與直徑的比值是();正方形的周長與邊長的比值是()。

3、在24的約數(shù)中選出四個數(shù),組成一個比例是()。

4、如果蘋果重量的1/6與橘子重量的20%相等,那么蘋果重量與橘子重量的比是()。

5、在一個比例中。兩個內(nèi)項互為倒數(shù),其中一個外項是最小的合數(shù),另一個外項是()。

6、用一張長和寬之比為2:1的紙剪兩個最大的圓,這張紙的利用率是()。

7、一根鋼管長3米,截去1/3后又截去1/3米,比原來短了()米。

8、圓柱體的側(cè)面積一定,()和高成反比例。

9、兩個長方形的面積比是8:7,長的比是4:5,寬的比是()。

10、請寫出兩個內(nèi)項相等,兩個比的比值都是0.4的一個比例。

二、判斷題。

2、等第等高的平行四邊形與三角形的面積之比為2:1。

4、甲、乙兩個足球隊的比賽結(jié)果是3:0,這個比的前項是3,后項是0。

5、兩個正方體的棱長之比為2:3,則他們的體積之比為4:9。

三、選擇題。

1、一種長5毫米的零件,畫在圖紙上長10厘米,這副圖的比例尺是()。

a、1/2b、2/1c、1/20d、20/1。

2、圓的面積和()成正比例。

a、半徑b、直徑c、半徑的平方d、

3、一項工程,甲獨做5天完成,乙獨做6天完成,甲、乙兩人的工作效率的比是()。

a、5:6b、6:5c、1/6:1/5d、5/11:6/11。

4、路程一定,所走的路程和剩下的`路程()。

5、xy+2=k(一定),x和y()。

6、下列選項中,()成正比例,()成反比例,()不成比例。

a、比的前項一定,比的后項和比值。

b、比例尺一定,分母和分?jǐn)?shù)值。

c、正方形的邊長和面積。

四、計算題(解比例略)。

五、解決問題。

6、一個長方形操場長100米,寬50米,把它畫在比例尺是1/2000的圖紙上,長和寬各應(yīng)畫多少厘米?請畫出這個長方形。

反比例的教案篇八

p53~54、第4~13題,思考題,正、反比例應(yīng)用題的練習(xí)。

進(jìn)一步掌握正、反比例的意義,能正確應(yīng)用比例知識解答基本的正、反比例應(yīng)用題,并溝通不同解法之間的聯(lián)系,進(jìn)一步提高學(xué)生判斷,分析和推理等思維能力。

一、基本訓(xùn)練。

p53第4題,口答并說明理由。

二、基本題練習(xí)。

1、做練習(xí)十第5題。

2提問:按過去的算術(shù)解法,第(1)題要先求什么數(shù)量?第(2)題呢?

用比例的知識怎樣解答呢,請大家自己做一做。

評講:說一說是怎樣想的`?

(板書:速度×?xí)r間=路程(一定)=反比例。

提問:正、反比例應(yīng)用題解題過程有什么相同的地方?解題方法有什么不同?為什么?

3、練習(xí):(略)。

三、綜合練習(xí)。

3、練習(xí)十第11題。

啟發(fā)學(xué)生用幾種方法解答。

4、做練習(xí)十第13題。

(1)提問:這是一道什么應(yīng)用題?可以怎樣列式解答?

(2)把樹苗總數(shù)看做單位“1”,成活棵數(shù)是94%,你還能用比例知識解答嗎?

四、講解思考題。

引導(dǎo):增加鉛以后,鉛與錫的比是5:3,有怎樣的關(guān)系式?

五、課堂:

通過本課的練習(xí),你進(jìn)一步明確了哪些內(nèi)容?

六、作業(yè):

第8、9、10題。

七、課后作業(yè):

第6、7、12題。

反比例的教案篇九

教學(xué)目標(biāo):

知識與技能:

1.結(jié)合豐富的實例,認(rèn)識反比例。

2.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。

過程與方法:

通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認(rèn)識反比例。

情感態(tài)度價值觀:

培養(yǎng)學(xué)生自主、合作學(xué)習(xí)、探索新知的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。感受反比例關(guān)系在生活中的廣泛應(yīng)用。初步滲透函數(shù)思想。

認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。

認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。

電腦課件。

一、復(fù)習(xí)引入。

1、計算。

2、判斷下面各題中的兩種量是否成正比例?為什么?

(1)文具盒的單價一定,買文具盒的個數(shù)和總價。

(2)一堆貨物一定,運走的量和剩下的量。

(3)汽車行駛的速度一定,行駛的路程和時間。

3、說說什么是正比例。

師:大家對正比例知識理解掌握得非常好,接下來我們就該學(xué)習(xí)什么了?

二、出示學(xué)習(xí)目標(biāo)。

1.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。

2.通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認(rèn)識反比例。

3.培養(yǎng)學(xué)生探索研究的能力,感受反比例關(guān)系在生活中的廣泛應(yīng)用。

三、指導(dǎo)自學(xué)。

師:給你們講個小故事:

過了幾天,財主到了裁縫店取帽子,結(jié)果一看,頓時傻了眼:10頂?shù)拿弊有〉弥荒艽髟谑种割^上了!

學(xué)習(xí)提示:獨立思考?

1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”

合作學(xué)習(xí)小組討論上述的問題??磿献鲗W(xué)習(xí)。

1、把25頁例。

2、例3的表格補(bǔ)充完整。

4、你知道什么是反比例嗎?

四、學(xué)生自學(xué)。

五、檢查自學(xué)效果。

讓學(xué)生說說自學(xué)要求中的內(nèi)容。

師歸納:兩種相關(guān)聯(lián)的量,一種量隨著另一種量的變化而變化,在變化過程中兩種量的積一定,那么這兩種量成反比例。

六、引導(dǎo)更正,指導(dǎo)運用。

你們還找出類似這樣關(guān)系的量來嗎?”

學(xué)生:要走一段路,速度越慢(快),用的時間就越多(少)運一堆貨物,每次運的越多(少),運的次數(shù)就越?。ǘ啵┌倜踪惻?,路程100米不變,速度和時間是反比例;排隊做操,總?cè)藬?shù)不變,排隊的行數(shù)和每行的人數(shù)是反比例;長方體的體積一定,底面積和高是反比例。

七、當(dāng)堂訓(xùn)練基礎(chǔ)練習(xí)。

1、填空。

兩種_____的量,一種量隨著另一種量變化,如果這兩種量中相對應(yīng)的兩個數(shù)的______,這兩種量叫做成反比例的量,它們的關(guān)系叫做_______關(guān)系。

2、判斷下面每題中的兩種量是不是成反比例,并說明理由。

(1)煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。

(2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時間。

(3)生產(chǎn)電視機(jī)的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù)。

(4)圓柱體的體積一定,底面積和高。

(5)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。

(6)長方形的長一定,面積和寬。

(7)平行四邊形面積一定,底和高。提高練習(xí)。

四、小結(jié)。

通過這節(jié)課的學(xué)習(xí),你有什么收獲?

相關(guān)聯(lián),一個量變化,另一個量也隨著變化積一定。

xy=k(一定)。

反比例的教案篇十

1、使學(xué)生認(rèn)識反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關(guān)系。

2、進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學(xué)生判斷、推理的能力。

認(rèn)識反比例關(guān)系的意義。

掌握成反比例量的變化規(guī)律及其特征。

一、鋪墊孕伏:

1、正比例關(guān)系的意義是什么?怎樣用字母表示這種關(guān)系?

判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?

2、下面哪兩種量成正比例關(guān)系?為什么?

(1)時間一定,行駛的速度和路程。

(2)數(shù)量一定,單價和總價。

4、引入新課。

如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學(xué)習(xí)的反比例關(guān)系。(板書課題)。

二、自主探究:

1、教學(xué)例1。

出示例1某運輸公司要運一批300噸的貨物。讓學(xué)生計算并完成填表任務(wù)。

每天運的數(shù)量(噸)1020304050。

所需的天數(shù)3015107.5。

在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學(xué)生按學(xué)習(xí)正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。

指名學(xué)生口答討論結(jié)果得出:

(1)、每天運的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。

(2)、每天運的噸數(shù)縮小,需要的天數(shù)反而擴(kuò)大,每天運的噸數(shù)擴(kuò)大,需要的天數(shù)反而縮小。

(3)、可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是300。提問:這里的300是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面的板書補(bǔ)充成:運的總噸數(shù)一定時,每天運的'噸數(shù)和天數(shù)的積一定)。

2、教學(xué)例2。

出示例2。

3、概括反比例的意義。

(1)、綜合例1、例2的共同點。

提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?

(2)、概括反比例意義。

例1、例2里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?說明:像例1、例2里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應(yīng)的兩個數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用xy=k(一定)來表示。

4、具體認(rèn)識。

(2)、提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?

(3)、判斷。

現(xiàn)在回過來看開始寫的關(guān)系式:工作效率工作時間=工作總量,當(dāng)工作總量一定時,工作效率和工作時間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時乘積一定,那它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。

反比例的教案篇十一

教材第106、107頁例1,例2。

1.使學(xué)生認(rèn)識正、反比例應(yīng)用題的特點,理解、掌握用比例知識解答應(yīng)用題的解題思路和解題方法,學(xué)會正確地解答基本的正、反比例應(yīng)用題。

2.進(jìn)一步培養(yǎng)學(xué)生應(yīng)用知識進(jìn)行分析、推理的能力,發(fā)展學(xué)生思維。

認(rèn)識正、反比例應(yīng)用題的特點。

掌握用比例知識解答應(yīng)用題的解題思路。

1.判斷下面的量各成什么比例。

(1)工作效率一定,工作總量和工作時間。

(2)路程一定,行駛的速度和時間。

讓學(xué)生先分別說出數(shù)量關(guān)系式,再判斷。

2.根據(jù)條件說出數(shù)量關(guān)系式,再說出兩種相關(guān)聯(lián)的量成什么比例,并列出相應(yīng)的等式。

(1)一臺機(jī)床5小時加工40個零件,照這樣計算,8小時加工64個。

(2)一列火車行駛360千米。每小時行90千米,要行4小時;每小時行80千米,要行x小時。

指名學(xué)生口答,老師板書。

3.引入新課。

從上面可以看出,生產(chǎn)、生活中的一些實際問題,應(yīng)用比例的知識,也可以根據(jù)題意列一個等式。所以,我們以前學(xué)過的一些應(yīng)用題,還可以應(yīng)用比例的知識來解答。這節(jié)課,就學(xué)習(xí)正、反比例應(yīng)用題。(板書課題)。

1.教學(xué)例1。

(1)出示例1,讓學(xué)生讀題。

(2)說明:這道題還可以用比例知識解答。

(3)小結(jié):

提問:誰來說一說,用正比例知識解答這道應(yīng)用題要怎樣想?怎樣做?指出:先按題意列關(guān)系式判斷成正比例,再找出兩種相關(guān)聯(lián)量里相對應(yīng)的數(shù)值,然后根據(jù)正比例關(guān)系里比值一定,也就是兩次籃球個數(shù)與總價對應(yīng)數(shù)值比的比值相等,列等式解答。

2.教學(xué)改編題。

出示改變的問題,讓學(xué)生說一說題意。請同學(xué)們按照例1的方法自己在練習(xí)本上解答。同時指名一人板演,然后集體訂正。指名說一說是怎樣想的,列等式的依據(jù)是什么。

3.教學(xué)例2。

(1)出示例2,學(xué)生讀題。

(2)誰能仿照例l的解題過程,用比例知識來解答例2?請同學(xué)們自己來試一試。指名板演,其余學(xué)生做在練習(xí)本上。學(xué)生練習(xí)后提問是怎樣想的。效率和時間的對應(yīng)關(guān)系怎樣,檢查列式解答過程,結(jié)合提問弄清為什么列成積相等的等式解答。

(3)提問:按過去的方法是先求什么再解答的?先求總量的應(yīng)用題現(xiàn)在用什么比例關(guān)系解答的?誰來說一說,用反比例關(guān)系解答這道應(yīng)用題是怎樣想,怎樣做的?指出;解答例2要先按題意列出關(guān)系式,判斷成反比例,再找出兩種相關(guān)聯(lián)量里相對應(yīng)的數(shù)值,然后根據(jù)反比例關(guān)系里積一定,也就是兩次修地下管道相對應(yīng)數(shù)值的乘積相等,列等式解答。

4.小結(jié)解題思路。

請同學(xué)們看一下黑板上例1、例2的解題過程,想一想,應(yīng)用比例知識解答應(yīng)用題,是怎樣想怎樣做的?同學(xué)們可以相互討論一下,然后告訴大家。指名學(xué)生說解題思路。指出:應(yīng)用比例知識解答應(yīng)用題,先要判斷兩種相關(guān)聯(lián)的量成什么比例關(guān)系,(板書:判斷比例關(guān)系)再找出相關(guān)聯(lián)量的對應(yīng)數(shù)值,(板書:找出對應(yīng)數(shù)值)再根據(jù)正、反比例的意義列出等式解答。(板書:列出等式解答)追問:你認(rèn)為解題時關(guān)鍵是什么?(正確判斷成什么比例)怎樣來列出等式?(正比例比值相等,反比例乘積相等)。

1.做練一練。

指名兩人板演,其余學(xué)生做在練習(xí)本上。集體訂正,讓學(xué)生說說為什么列出的等式不一樣。指出:只有先正確判斷成什么比例關(guān)系,才能根據(jù)正比例或反比例的意義正確列式。

2.做練習(xí)十三第1題。

先自己判斷,小組交流,再集體訂正。

這節(jié)課學(xué)習(xí)了什么內(nèi)容?正、反比例應(yīng)用題要怎樣解答?你還認(rèn)識了些什么?

完成練習(xí)十三第2~6題的解答。

反比例的教案篇十二

2、情境一中的兩個表中量變化關(guān)系相同嗎?

3、三個情境中的兩個量哪些是成反比例的量?為什么?

二、展示與交流。

利用反義詞來導(dǎo)入今天研究的課題。今天研究兩種量成反比例關(guān)系的變化規(guī)律。

情境(一)。

認(rèn)識加法表中和是12的直線及乘法表中積是12的曲線。

引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個加數(shù)隨另一個加數(shù)的變化而變化;乘法表中積是12,一個乘數(shù)隨另一個乘數(shù)的變化而變化。

情境(二)。

情境(三)。

寫出關(guān)系式:每杯果汁量×杯數(shù)=果汗總量(一定)。

5、以上兩個情境中有什么共同點?

引導(dǎo)小結(jié):都有兩種相關(guān)聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這兩種量中相對應(yīng)的兩個數(shù)的乘積是一定的。這兩種量之間是反比例關(guān)系。

活動四:想一想。

二、反饋與檢測。

1、判斷下面每題是否成反比例。

(1)出油率一定,香油的質(zhì)量與芝麻的質(zhì)量。

(2)三角形的面積一定,它的底與高。

(3)一個數(shù)和它的倒數(shù)。

(4)一捆100米電線,用去長度與剩下長度。

(5)圓柱體的體積一定,底面積和高。

(6)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。

(7)長方形的長一定,面積和寬。

(8)平行四邊形面積一定,底和高。

2、教材“練一練”p33第1題。

3、教材“練一練”p33第2題。

4、找一找生活中成反比例的例子,并與同伴交流。

兩個相關(guān)聯(lián)的量,乘積一定,成反比例。

關(guān)系式:x×y=k(一定)。

反比例的教案篇十三

小學(xué)六年級的學(xué)生在學(xué)習(xí)正比例和反比例這部分內(nèi)容時,尤其是在練習(xí)過程中容易混淆不清,經(jīng)常弄錯。下面,本文從不同的角度幫助他們正確區(qū)分這兩者的關(guān)系,希望對他們的學(xué)習(xí)會有所幫助。

一、正確認(rèn)識兩者的意義。

正比例和反比例的意義教材中是安排在從p39到p47來進(jìn)行敘述講解的,且都是通過對實驗中的數(shù)據(jù)進(jìn)行分析之后概括得出的結(jié)論,這樣學(xué)生相對易于接受。

1.正比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系?!?/p>

2.反比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。”

如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系可以用下面的關(guān)系式來表示:

y/x=k(一定)或y=kx(k一定)。

(二)反比例關(guān)系的表達(dá)式。

如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系可以用下面的關(guān)系式來表示:

x×y=k(k一定)或y=kx(k一定)。

1.正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律。正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律是:同時擴(kuò)大,同時縮小,比值(或商)不變。

例如:汽車每小時行駛的速度一定,所行的路程和所用的時間是否成正比例?

完成該題練習(xí)時,可以先寫出路程、速度和時間三者之間的關(guān)系式:速度=路程/時間,已知條件中速度為一定(即常量),根據(jù)“速度=路程/時間”這一關(guān)系式,結(jié)合正比例的意義,即可知道所行的路程和所用的時間是成正比例關(guān)系的。也就是說,當(dāng)速度一定時,走的路程越多,所花費的時間也越多,反之,亦然。換句話說,路程和時間是成倍增長或縮小的。

2.反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律。

反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律是:一種量擴(kuò)大,另一種量縮小,一種量縮而另一種量則擴(kuò)大,積不變。

例如:當(dāng)圖上距離一定時,實際距離和比例尺是否成反比例?因為實際距離×比例尺=圖上距離(一定),所以,實際距離和比例尺是成反比例的。

1.在事物關(guān)系中都包含有三個量,(本網(wǎng)網(wǎng))即有兩個變量和一個常量(即定值)。

2.在相關(guān)聯(lián)的兩個變量中,當(dāng)一個變量發(fā)生變化時(擴(kuò)大或縮?。?,則另一個變量也隨之發(fā)生變化。

3.它們相對應(yīng)的兩個變量的積或商都是一定的(即常量)。

也就是說,在正比例和反比例的兩個相關(guān)聯(lián)的變量中,均是一個量變化,另一個量也隨之變化。并且變化方式均屬于擴(kuò)大(乘以一個數(shù))或縮?。ǔ砸粋€數(shù))若干倍的變化。

1.正比例的定量(或定值)是兩個變量中相對應(yīng)的兩個數(shù)(即變量)的比值(或商)。反比例的定量是兩個變量中相對應(yīng)的兩個數(shù)的積。

2.當(dāng)用圖象來表示正比例或反比例中兩個變量之間的關(guān)系時,所畫出來的圖象是不一樣的。正比例的圖象是一條傾斜的直線(又叫斜線)。反比例的圖象是一條曲線,且兩端永遠(yuǎn)不會與兩條軸線(即橫軸和縱軸或函數(shù)中所稱的x軸和y軸)相交。

當(dāng)正比例中的x值(自變量的值)轉(zhuǎn)化為它的倒數(shù)時,由正比例轉(zhuǎn)化為反比例;當(dāng)反比例中的x值(自變量的值)也轉(zhuǎn)化為它的倒數(shù)時,則由反比例轉(zhuǎn)化為正比例。

需要說明的是,教科書中在“正比例和反比例的意義”的講解中,并沒有指出正比例和反比例關(guān)系表達(dá)式中常量和變量的取值范圍。根據(jù)正比例的關(guān)系式y(tǒng)/x=k(一定)和反比例的關(guān)系x×y=k(k一定)可以知道,無論是正比例還是反比例,兩個變量x、y和常量k均不能為零。試想,在正比例y/x=k(一定)中,如果x為0,式子無意義;如果y為0,x不為0,則x的值是不確定的(這時候k的值為0),此時x和y就不存在正比例的說法了。同樣,在反比例x×y=k(k一定)中,如果x和y兩個變量中,只要其中一個為0或兩個都同時為0,則k的值都為0,x和y也無所謂反比例關(guān)系了。再說,如果x和y同時為0的話,那么x和y也不叫變量了,都不符合反比例的意義。所以,無論是正比例關(guān)系,還是反比例關(guān)系中,兩個變量x和y以及常量k都不能為0。

因此,當(dāng)正比例或反比例關(guān)系中其中一個變量用字母表示時,要求我們通過討論確定另一個變量的取值范圍的時候,我們就要注意正比例或反比例關(guān)系中兩個變量的取值絕對不能為零,否則,就失去意義了。

【參考文獻(xiàn)】。

1.盧江、楊剛主編,義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書小學(xué)六年級《數(shù)學(xué)》下冊[s],人民教育出版社出版。

2.謝鼓平主編,小學(xué)六年級數(shù)學(xué)《教案與設(shè)計》[s],新疆青少年出版社出版。

3.《貴州教育》[j]第3-4期合訂本第65頁中《小學(xué)數(shù)學(xué)畢業(yè)復(fù)習(xí)建議》(王艷)。

【本文地址:http://mlvmservice.com/zuowen/10545878.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔