函數(shù)的奇偶性教案人教版(優(yōu)秀20篇)

格式:DOC 上傳日期:2023-11-07 05:22:09
函數(shù)的奇偶性教案人教版(優(yōu)秀20篇)
時(shí)間:2023-11-07 05:22:09     小編:MJ筆神

教案是教師和學(xué)生之間的橋梁,能夠幫助學(xué)生更好地理解和掌握所學(xué)知識(shí)。編寫(xiě)教案時(shí)要明確教學(xué)目標(biāo),確保教學(xué)的針對(duì)性和有效性。教師可以通過(guò)學(xué)習(xí)他人的優(yōu)秀教案,提高自己的編寫(xiě)水平。

函數(shù)的奇偶性教案人教版篇一

《函數(shù)的奇偶性》這節(jié)課的教學(xué)模式是采用循序漸進(jìn),由簡(jiǎn)單的問(wèn)題引入,然后在教師的引導(dǎo)下,探索結(jié)論,最后,在教師的指導(dǎo)下,對(duì)所學(xué)的實(shí)際結(jié)論進(jìn)行學(xué)生的實(shí)際應(yīng)用。

一、這種教學(xué)模式的教學(xué)程序是:

(一)實(shí)際練習(xí)引入課題,并能去發(fā)現(xiàn)生活中的相關(guān)信息,引起學(xué)生的興趣。

(二)看圖,具體引入函數(shù)進(jìn)行觀察探索,包括圖像觀察,自變量的變化,函數(shù)值的變化規(guī)律。

(三)明確這是函數(shù)的一種性質(zhì),明確定義,并強(qiáng)調(diào)定義中的注意事項(xiàng),怎樣理解定義中的規(guī)定。

(四)教師具體以例題進(jìn)行示范,學(xué)生們領(lǐng)會(huì)對(duì)函數(shù)奇偶性的認(rèn)識(shí),并怎樣進(jìn)行判斷。

(五)同學(xué)們?cè)陬I(lǐng)會(huì)的基礎(chǔ)上,進(jìn)行實(shí)際訓(xùn)練,達(dá)到對(duì)知識(shí)的理解和應(yīng)用。

二、這種教學(xué)模式的優(yōu)勢(shì)是:循序漸進(jìn),學(xué)生能夠?qū)嶋H參與,在教學(xué)中體現(xiàn)和諧,教師的導(dǎo)和學(xué)生的練保證教學(xué)的效果。

這種教學(xué)模式的`缺點(diǎn)與解決方法是:

還缺乏對(duì)學(xué)生更高層次的參與的調(diào)動(dòng),尤其是職業(yè)中學(xué)中部分在初中已經(jīng)放棄學(xué)習(xí)的同學(xué)的參與問(wèn)題。對(duì)配套練習(xí)要進(jìn)一步細(xì)化,要對(duì)每一個(gè)知識(shí)點(diǎn)都要精心設(shè)計(jì)相應(yīng)知識(shí)點(diǎn)的訓(xùn)練,圖像的認(rèn)識(shí)上,要加大同學(xué)們對(duì)生活的感知和相關(guān)軟件的使用,并能在電腦上實(shí)際體驗(yàn)函數(shù)圖像的對(duì)稱(chēng)情況。

函數(shù)的奇偶性教案人教版篇二

一.多媒體使用的思考:

1.用:充分考慮多媒體的必用性和實(shí)用性,如實(shí)例引入,借助一些圖片,讓學(xué)生更形象的看到對(duì)稱(chēng)。例題展現(xiàn)、問(wèn)題展現(xiàn),節(jié)約了教師黑板抄題的時(shí)間,提高了課堂效率。當(dāng)然本節(jié)課不需要?jiǎng)赢?huà)展示,如果需要有動(dòng)畫(huà)演示的可以做在課件上,把一些無(wú)法言傳的內(nèi)容呈現(xiàn)在課件上才能真正體現(xiàn)多媒體之“用”。

2.不用:如果要把課件帶入每一節(jié)新授課,那么在制作課件的時(shí)候就要效率高,有一些內(nèi)容就不用放入課件,如:例題的解題過(guò)程和在黑板上必須呈現(xiàn)的內(nèi)容不用再搬到課件上去,否則學(xué)生也不知道該看黑板還是課件,增大了學(xué)生學(xué)習(xí)負(fù)擔(dān),降低了學(xué)習(xí)效率。所以我在課件制作中,注重內(nèi)容與黑板板書(shū)不重疊。

在多媒體應(yīng)用上,我們要注重區(qū)分什么該用,什么不該用以確實(shí)提高課堂效率。

設(shè)計(jì)教學(xué)設(shè)計(jì)的過(guò)程中,充分考慮課程標(biāo)準(zhǔn)和教材的要求來(lái)確定教學(xué)目標(biāo),把握學(xué)生的學(xué)習(xí)水平,在教學(xué)中給學(xué)生充分思考的時(shí)間和空間,尊重學(xué)生的思想方法,點(diǎn)評(píng)優(yōu)化學(xué)生的學(xué)習(xí)收獲,充分調(diào)動(dòng)學(xué)生探究的積極性,培養(yǎng)學(xué)生學(xué)習(xí)的興趣。在教學(xué)中不變的是先進(jìn)的教學(xué)理念和合理的教學(xué)設(shè)計(jì)。放手給學(xué)生們自主學(xué)和研究就是我們應(yīng)該大膽做的。從學(xué)生的角度設(shè)計(jì)教學(xué),才能體現(xiàn)以學(xué)生為本!

三.做到重點(diǎn)突出和難點(diǎn)突破。

如何重點(diǎn)突出和難點(diǎn)突破是教學(xué)技術(shù)、教學(xué)專(zhuān)業(yè)上挑戰(zhàn),我們?cè)谏厦恳还?jié)課面對(duì)這些問(wèn)題時(shí)都必須精心設(shè)計(jì),那樣的課堂才能高效,學(xué)生才會(huì)喜歡。

在本節(jié)課中重點(diǎn)之一是函數(shù)奇偶性概念的理解,從實(shí)例引入,讓學(xué)生感到本節(jié)課研究的必要性與趣味性,從圖像對(duì)稱(chēng)的本質(zhì)讓學(xué)生給出概念,老師總結(jié),再讓學(xué)生回頭感悟,有利于學(xué)生真正理解概念和應(yīng)用概念。如何理解0再定義域內(nèi)時(shí),奇函數(shù)在0處的值為0時(shí)本節(jié)課難點(diǎn)之一,從一條辨析題到處問(wèn)題,在研究問(wèn)題,自然!同時(shí)激發(fā)了學(xué)生探究的欲望,學(xué)得深刻。

總之,要上好每一節(jié)課才能真正鍛煉老師的教學(xué)素養(yǎng)、技術(shù),才能真正提高咱們的教學(xué)理念。

函數(shù)的奇偶性教案人教版篇三

本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個(gè)性質(zhì)。

函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對(duì)稱(chēng)性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)打下了堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對(duì)知識(shí)起到了承上啟下的作用。

(二)重點(diǎn)、難點(diǎn)。

1、本課時(shí)的教學(xué)重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。

2、本課時(shí)的教學(xué)難點(diǎn)是:判斷函數(shù)的奇偶性的方法與格式。

(三)教學(xué)目標(biāo)。

1、知識(shí)與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;

2、方法與過(guò)程:引導(dǎo)學(xué)生通過(guò)觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運(yùn)用函數(shù)奇偶性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力。

3、情感態(tài)度與價(jià)值觀:在奇偶性概念形成過(guò)程中,使學(xué)生體會(huì)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

二、教法、學(xué)法分析。

1、教學(xué)方法:?jiǎn)l(fā)引導(dǎo)式。

結(jié)合本章實(shí)際,教材簡(jiǎn)單易懂,重在應(yīng)用、解決實(shí)際問(wèn)題,本節(jié)課準(zhǔn)備采用“引導(dǎo)發(fā)現(xiàn)法”進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識(shí)的方法和樂(lè)趣,在解決問(wèn)題的過(guò)程中,體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。使用多媒體輔助教學(xué),突出了知識(shí)的產(chǎn)生過(guò)程,又增加了課堂的趣味性。

2、學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會(huì)學(xué)習(xí)。

三、教輔手段。

四、教學(xué)過(guò)程。

為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個(gè)主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識(shí)應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。

(一)設(shè)疑導(dǎo)入,觀圖激趣。

讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。

學(xué)生舉例生活中的對(duì)稱(chēng)現(xiàn)象。

折紙:取一張紙,在其上畫(huà)出直角坐標(biāo)系,并在第一象限任畫(huà)一函數(shù)的圖象,以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫(huà)出第一象限內(nèi)圖形的痕跡,然后將紙展開(kāi),觀察坐標(biāo)系中的圖形。

問(wèn)題:將第一象限和第二象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。

以y軸為折痕將紙對(duì)折,然后以x軸為折痕將紙對(duì)折,在紙的背面(即第三象限)畫(huà)出第二象限內(nèi)圖象的.痕跡,然后將紙展開(kāi)。觀察坐標(biāo)喜之中的圖形:

問(wèn)題:將第一象限和第三象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。

(二)指導(dǎo)觀察,形成概念。

這節(jié)課我們首先從兩類(lèi)對(duì)稱(chēng):軸對(duì)稱(chēng)和中心對(duì)稱(chēng)展開(kāi)研究。

思考:請(qǐng)同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個(gè)函數(shù)圖象的對(duì)稱(chēng)性如何。

給出圖象,然后問(wèn)學(xué)生初中是怎樣判斷圖象關(guān)于軸對(duì)稱(chēng)呢此時(shí)提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律。

借助課件演示,學(xué)生會(huì)回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì)得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對(duì)所有的x,都有類(lèi)似的情況借助課件演示,學(xué)生會(huì)得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。

思考:由于對(duì)任一x,必須有一-x與之對(duì)應(yīng),因此函數(shù)的定義域有什么特征。

引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱(chēng)。根據(jù)以上特點(diǎn),請(qǐng)學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書(shū):

(1)函數(shù)f(x)的定義域?yàn)閍,且關(guān)于原點(diǎn)對(duì)稱(chēng),如果有f(-x)=f(x),則稱(chēng)f(x)為偶函數(shù)。

提出新問(wèn)題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng),它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢。

學(xué)生可類(lèi)比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:

強(qiáng)調(diào)注意點(diǎn):“定義域關(guān)于原點(diǎn)對(duì)稱(chēng)”的條件必不可少。

接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識(shí),歸納步驟:

(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對(duì)稱(chēng)。

(2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。

給出例題,加深理解:

例1,利用定義,判斷下列函數(shù)的奇偶性:

(1)f(x)=x2+1。

(2)f(x)=x3-x。

(3)f(x)=x4-3x2-1。

(4)f(x)=1/x3+1。

提出新問(wèn)題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?

得到注意點(diǎn):既不是奇函數(shù)也不是偶函數(shù)的稱(chēng)為非奇非偶函數(shù)。

接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),二是定義域雖關(guān)于原點(diǎn)對(duì)稱(chēng),但不滿(mǎn)足f(-x)=f(x)或f(-x)=-f(x)。

然后根據(jù)前面引入知識(shí)中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:

給出例2:書(shū)p63例3,再進(jìn)行當(dāng)堂鞏固,

1。書(shū)p65ex2。

y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。

歸納:對(duì)形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。

(三)學(xué)生探索,發(fā)展思維。

思考:1,函數(shù)y=2是什么函數(shù)。

2,函數(shù)y=0有是什么函數(shù)。

(四)布置作業(yè):課本p39習(xí)題1、3(a組)第6題,b組第3。

五、板書(shū)設(shè)計(jì)。

函數(shù)的奇偶性教案人教版篇四

了解奇偶性的含義,會(huì)判斷函數(shù)的奇偶性。能證明一些簡(jiǎn)單函數(shù)的奇偶性。弄清函數(shù)圖象對(duì)稱(chēng)性與函數(shù)奇偶性的關(guān)系。

一、復(fù)習(xí)引入。

(1)奇函數(shù)。

(2)偶函數(shù)。

(3)與圖象對(duì)稱(chēng)性的關(guān)系。

(4)說(shuō)明(定義域的要求)。

二、例題分析。

例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)。

例2、證明函數(shù)在r上是奇函數(shù)。

三、隨堂練習(xí)。

1、函數(shù)()。

是奇函數(shù)但不是偶函數(shù)是偶函數(shù)但不是奇函數(shù)。

既是奇函數(shù)又是偶函數(shù)既不是奇函數(shù)又不是偶函數(shù)。

2、下列4個(gè)判斷中,正確的是_______.

(1)既是奇函數(shù)又是偶函數(shù);

(2)是奇函數(shù);

(3)是偶函數(shù);

(4)是非奇非偶函數(shù)。

3、函數(shù)的圖象是否關(guān)于某直線對(duì)稱(chēng)?它是否為偶函數(shù)?

函數(shù)的奇偶性教案人教版篇五

《函數(shù)的奇偶性》這節(jié)課采用的是我校712課堂模式,主要給老師們展示教學(xué)環(huán)節(jié)。

在《函數(shù)的奇偶性》這節(jié)課教學(xué)過(guò)程中,我讓學(xué)生通過(guò)圖象直觀獲得函數(shù)奇偶性的認(rèn)識(shí),然后利用表格探究數(shù)量變化特征,通過(guò)代數(shù)運(yùn)算,驗(yàn)證發(fā)現(xiàn)的數(shù)量特征對(duì)定義域中的”任意”值都成立,最后在這個(gè)基礎(chǔ)上建立奇偶函數(shù)的概念。

在本節(jié)課的教學(xué)中我還要注意到以下幾個(gè)方面的問(wèn)題:

1、幻燈片的設(shè)計(jì)。

幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動(dòng),但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計(jì),在出現(xiàn)某些字或者數(shù)字時(shí)應(yīng)直接出現(xiàn),而不要設(shè)計(jì)成動(dòng)畫(huà)的形式,以免學(xué)生分散注意力。

2、學(xué)生練習(xí)。

在教學(xué)過(guò)程中應(yīng)多注意學(xué)生的活動(dòng),由單一的問(wèn)答式轉(zhuǎn)化為多方位的考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。

3、例題書(shū)寫(xiě)。

在數(shù)學(xué)教學(xué)中我們都要對(duì)例題的解題過(guò)程進(jìn)行講解,并書(shū)寫(xiě)解題過(guò)程,以便讓學(xué)生更好的模仿。在書(shū)寫(xiě)解題過(guò)程或定義時(shí)要認(rèn)真板書(shū),保證字跡清楚,便于學(xué)生仿照。

4、語(yǔ)言組織。

在講授過(guò)程中還要注意到說(shuō)話語(yǔ)速,語(yǔ)言組織等講授技巧,應(yīng)該用平緩的語(yǔ)氣講授,語(yǔ)言描述要簡(jiǎn)練易懂,不能拖泥帶水。

5、教學(xué)環(huán)節(jié)的完整。

在授課過(guò)程中要注意到教學(xué)環(huán)節(jié)設(shè)計(jì),我們的教學(xué)過(guò)程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時(shí)小結(jié)、布置作業(yè)等幾個(gè)重要的環(huán)節(jié),有時(shí)候可能因?yàn)榫o張等各種因素往往忽略小細(xì)節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計(jì)不完善。在以后的教學(xué)過(guò)程中要注意這些環(huán)節(jié)。

6、教案設(shè)計(jì)的完整。

在本節(jié)課教學(xué)中我因?yàn)榭紤]到有幻燈片而沒(méi)有在教案中設(shè)計(jì)“板書(shū)設(shè)計(jì)”這個(gè)環(huán)節(jié),但是在授課過(guò)程中又用到了板書(shū),所以一定要設(shè)計(jì)“板書(shū)設(shè)計(jì)”,以保證教案的完整性。

以上是我對(duì)這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯(cuò)誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。

函數(shù)的奇偶性教案人教版篇六

【知識(shí)目標(biāo)】:使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,學(xué)會(huì)利用函數(shù)圖像理解和研究函數(shù)的性質(zhì),初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.

【能力目標(biāo)】通過(guò)對(duì)函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語(yǔ)言表達(dá)能力;通過(guò)對(duì)函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.

【教學(xué)難點(diǎn)】歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性.由于判斷或證明函數(shù)的單調(diào)性,常常要綜合運(yùn)用一些知識(shí)(如不等式、因式分解、配方及數(shù)形結(jié)合的思想方法等)所以判斷或證明函數(shù)的單調(diào)性是本節(jié)課的難點(diǎn).

【教材分析】函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它把自變量的變化方向和函數(shù)值的變化方向定性的聯(lián)系在一起,所以本節(jié)課在教材中的作用如下(1)函數(shù)的單調(diào)性起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決函數(shù)的某些問(wèn)題中得到了充分運(yùn)用,函數(shù)的單調(diào)性與前一節(jié)內(nèi)容函數(shù)的概念和圖像知識(shí)的延續(xù)有密切的聯(lián)系;函數(shù)的單調(diào)性一節(jié)中的知識(shí)是它和后面的函數(shù)奇偶性,合稱(chēng)為函數(shù)的簡(jiǎn)單性質(zhì),是今后研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ)。

(2)函數(shù)的單調(diào)性是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,這節(jié)課通過(guò)對(duì)具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個(gè)區(qū)間上是增函數(shù)或減函數(shù)的準(zhǔn)確定義,明確指出函數(shù)的增減性是相對(duì)于某個(gè)區(qū)間來(lái)說(shuō)的。教材中判斷函數(shù)的增減性,既有從圖像上進(jìn)行觀察的直觀方法,又有根據(jù)其定義進(jìn)行邏輯推理的嚴(yán)格證明方法,最后將兩種方法統(tǒng)一起來(lái),形成根據(jù)觀察圖像得出猜想結(jié)論,進(jìn)而用推理證明猜想的體系。同時(shí)還要綜合利用前面的知識(shí)解決函數(shù)單調(diào)性的一些問(wèn)題,有利于學(xué)生數(shù)學(xué)能力的提高。

(3)函數(shù)的單調(diào)性有著廣泛的實(shí)際應(yīng)用。在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問(wèn)題中均需用到函數(shù)的單調(diào)性;同時(shí)在這一節(jié)中利用函數(shù)圖象來(lái)研究函數(shù)性質(zhì)的'數(shù)形結(jié)合思想將貫穿于我們整個(gè)數(shù)學(xué)教學(xué)。因此“函數(shù)的單調(diào)性”在中學(xué)數(shù)學(xué)內(nèi)容里占有十分重要的地位。它體現(xiàn)了函數(shù)的變化趨勢(shì)和變化特點(diǎn),在利用函數(shù)觀點(diǎn)解決問(wèn)題中起著十分重要的作用,為培養(yǎng)創(chuàng)新意識(shí)和實(shí)踐能力提供了重要方式和途徑。

【學(xué)情分析】從學(xué)生的知識(shí)上看,學(xué)生已經(jīng)學(xué)過(guò)一次函數(shù),二次函數(shù),反比例函數(shù)等簡(jiǎn)單函數(shù),函數(shù)的概念及函數(shù)的表示,能畫(huà)出一些簡(jiǎn)單函數(shù)的圖像,從圖像的直觀變化,學(xué)生能粗略的得到函數(shù)增減性的定義,所以引入函數(shù)的單調(diào)性的定義應(yīng)該是順理成章的。從學(xué)生現(xiàn)有的學(xué)習(xí)能力看,通過(guò)初中對(duì)函數(shù)的認(rèn)識(shí)與實(shí)驗(yàn),學(xué)生已具備了一定的觀察事物的能力,積累了一些研究問(wèn)題的經(jīng)驗(yàn),在一定程度上具備了抽象、概括的能力和語(yǔ)言轉(zhuǎn)換能力。從學(xué)生的心理學(xué)習(xí)心理上看,學(xué)生頭腦中雖有一些函數(shù)性質(zhì)的實(shí)物實(shí)例,但并沒(méi)有上升為“概念”的水平,如何“定性”“定量”地描述函數(shù)性質(zhì)是學(xué)生關(guān)注的問(wèn)題,也是學(xué)習(xí)的重點(diǎn)問(wèn)題。函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個(gè)性質(zhì),學(xué)生也容易產(chǎn)生共鳴,通過(guò)對(duì)比產(chǎn)生頓悟,渴望獲得這種學(xué)習(xí)的積極心向是學(xué)生學(xué)好本節(jié)課的情感基礎(chǔ)。但是如何運(yùn)用數(shù)學(xué)符號(hào)將自然語(yǔ)言的描述提升為形式化的定義,學(xué)生接受起來(lái)比較困難?在教學(xué)中要多引導(dǎo),讓學(xué)生真正的理解函數(shù)單調(diào)性的定義。

【教學(xué)方法】教師是教學(xué)的主體、學(xué)生是學(xué)習(xí)的主體,通過(guò)雙主體的教學(xué)模式方法:?jiǎn)l(fā)式教學(xué)法——以設(shè)問(wèn)和疑問(wèn)層層引導(dǎo),激發(fā)學(xué)生,啟發(fā)學(xué)生積極思考,逐步從常識(shí)走向科學(xué),將感性認(rèn)識(shí)提升到理性認(rèn)識(shí),培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。探究教學(xué)法——引導(dǎo)學(xué)生去疑;鼓勵(lì)學(xué)生去探;激勵(lì)學(xué)生去思,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。合作學(xué)習(xí)——通過(guò)組織小組討論達(dá)到探究、歸納的目的。【教學(xué)手段】計(jì)算機(jī)、投影儀.

【教學(xué)過(guò)程】一、創(chuàng)設(shè)情境,引入課題(利用電腦展示)1.如圖為某市一天內(nèi)的氣溫變化圖:(1)觀察這個(gè)氣溫變化圖,說(shuō)出氣溫在這一天內(nèi)的變化情況.(2)怎樣用數(shù)學(xué)語(yǔ)言刻畫(huà)在這一天內(nèi)“隨著時(shí)間的增大,氣溫逐漸升高或下降”這一特征?引導(dǎo)學(xué)生識(shí)圖,捕捉信息,啟發(fā)學(xué)生思考.問(wèn)題:觀察圖形,能得到什么信息?預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及何時(shí)達(dá)到;(2)在某時(shí)刻的溫度;(3)某些時(shí)段溫度升高,某些時(shí)段溫度降低.在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,是很有幫助的.問(wèn)題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?預(yù)案:股票價(jià)格、水位變化、心電圖等等春蘭股份線性圖.水位變化圖歸納:用函數(shù)觀點(diǎn)看,其實(shí)就是隨著自變量的變化,函數(shù)值是變大還是變小.

〖設(shè)計(jì)意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對(duì)于自變量變化時(shí),函數(shù)值是變大還是變小,初中同學(xué)們就有了一定的認(rèn)識(shí),但是沒(méi)有嚴(yán)格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴(yán)格定義.1.借助圖象,直觀感知問(wèn)題1:分別作出函數(shù)的圖象,并且觀察自變量變化時(shí),函數(shù)值有什么變化規(guī)律?(學(xué)生自己動(dòng)手畫(huà),然后電腦顯示下圖)預(yù)案:生:函數(shù)在整個(gè)定義域內(nèi)y隨x的增大而增大;函數(shù)在整個(gè)定義域內(nèi)y隨x的增大而減小.師:函數(shù)的圖像變化規(guī)律生:在y軸的的左側(cè)y隨x的增大而減小.在y軸的的右側(cè)y隨x的增大而增大。師:我們學(xué)過(guò)區(qū)間的表示方法,如何用區(qū)間的概念來(lái)表述圖像的變化規(guī)律生:在上y隨x的增大而增大,在上y隨x的增大而減小.師:這樣表述就比較嚴(yán)密了,很好。由上面的討論可知,函數(shù)的單調(diào)性與自變量的范圍有關(guān),一個(gè)函數(shù)并不一定在整個(gè)正義域內(nèi)是單調(diào)函數(shù),但在定義城的某個(gè)子集上可以是單調(diào)函數(shù)。(3)函數(shù)的圖像變化規(guī)律如何。

生:(1)定義域中的減函數(shù)。(2)在上y隨x的增大而減小,在上y隨x的增大而減小.師:對(duì)于兩種答案,哪一種是正確的,為什么?學(xué)生分組討論。從定義域,圖像的角度考慮,也可以舉反例引導(dǎo)學(xué)生進(jìn)行分類(lèi)描述(增函數(shù)、減函數(shù)).并引導(dǎo)學(xué)生用區(qū)間明確描述函數(shù)的單調(diào)性從而讓學(xué)生明確函數(shù)的單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,是函數(shù)的局部性質(zhì).

問(wèn)題2:能不能根據(jù)自己的理解說(shuō)說(shuō)什么是增函數(shù)、減函數(shù)?預(yù)案:如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y也越來(lái)越大,我們說(shuō)函數(shù)在該區(qū)間上為增函數(shù);如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y越來(lái)越小,我們說(shuō)函數(shù)在該區(qū)間上為減函數(shù).教師指出:這種認(rèn)識(shí)是從圖象的角度得到的,是對(duì)函數(shù)單調(diào)性的直觀,描述性的認(rèn)識(shí).

〖設(shè)計(jì)意圖〗從圖象直觀感知函數(shù)單調(diào)性,完成對(duì)函數(shù)單調(diào)性的第一次認(rèn)識(shí).2.探究規(guī)律,理性認(rèn)識(shí)問(wèn)題1:下圖是函數(shù)的圖象,能說(shuō)出這個(gè)函數(shù)分別在哪個(gè)區(qū)間為增函數(shù)和減函數(shù)嗎?(電腦顯示,學(xué)生分組討論)學(xué)生的困難是難以確定分界點(diǎn)的確切位置.通過(guò)討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時(shí)不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究.

〖設(shè)計(jì)意圖〗使學(xué)生體會(huì)到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性.問(wèn)題2:如何從解析式的角度說(shuō)明在為增函數(shù)?預(yù)案:生:在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)?222,所以在為增函數(shù).生:僅僅兩個(gè)數(shù)的大小關(guān)系不能說(shuō)明函數(shù)y=x2在區(qū)間[0,+∞)上為單調(diào)遞增函數(shù),應(yīng)該舉出無(wú)數(shù)個(gè)。由于很多學(xué)生不能分清“無(wú)數(shù)”和“所有”的區(qū)別,所以許多學(xué)生對(duì)學(xué)生2的說(shuō)法表示贊同。

生:函數(shù))無(wú)數(shù)個(gè)如(2)中的實(shí)數(shù),顯然f(x)也隨x的增大而增大,是不是也可以說(shuō)函數(shù)在區(qū)間上是增函數(shù)?可這與圖象矛盾啊?師:“無(wú)數(shù)個(gè)”能不能代表“所有”呢?比如:2、3、4、5……有無(wú)數(shù)個(gè)自然數(shù)都比大,那我們能不能說(shuō)所有的自然數(shù)都比大呢?所以具體值取得再多,也不能代表所有的,思考如何體現(xiàn)區(qū)間上的所有值。引導(dǎo)學(xué)生利用字母表示數(shù)。生:任取且,因?yàn)?即,所以在為增函數(shù).舊教材的定義在這里就可以歸納出來(lái),但是人教b版新教材使用了自變量的增量和函數(shù)值的增量來(lái)表述,并為以后學(xué)習(xí)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性做準(zhǔn)備,所以需進(jìn)一步引導(dǎo)學(xué)生利用增量來(lái)定義函數(shù)的單調(diào)性。

(5)仿(4)且,由圖象可知,即給自變量一個(gè)增量,,函數(shù)值的增量所以在為增函數(shù)。對(duì)于學(xué)生錯(cuò)誤的回答,引導(dǎo)學(xué)生分別用圖形語(yǔ)言和文字語(yǔ)言進(jìn)行辨析,使學(xué)生認(rèn)識(shí)到問(wèn)題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個(gè)自變量進(jìn)一步尋求自變量的增量與函數(shù)值的增量之間的變化規(guī)律,判斷函數(shù)單調(diào)性。注意這里的“都有”是對(duì)應(yīng)于“任意”的。

〖設(shè)計(jì)意圖〗把對(duì)單調(diào)性的認(rèn)識(shí)由感性上升到理性認(rèn)識(shí)的高度,完成對(duì)概念的第二次認(rèn)識(shí).事實(shí)上也給出了證明單調(diào)性的方法,為證明單調(diào)性做好鋪墊.3.抽象思維,形成概念問(wèn)題:你能用準(zhǔn)確的數(shù)學(xué)符號(hào)語(yǔ)言表述出增函數(shù)的定義嗎?師生共同探究,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類(lèi)比得出減函數(shù)的定義.

(1)板書(shū)定義設(shè)函數(shù)的定義域?yàn)閍,區(qū)間ma,如果取區(qū)間m中的任意兩個(gè)值,當(dāng)改變量時(shí),都有,那么就稱(chēng)函數(shù)在區(qū)間m上是增函數(shù),如圖(1)當(dāng)改變量時(shí),都有,那么就稱(chēng)函數(shù)在區(qū)間m上是減函數(shù),如圖(2)。

函數(shù)的奇偶性教案人教版篇七

今天我說(shuō)課的課題是高中數(shù)學(xué)人教a版必修一第一章第三節(jié)函數(shù)的基本性質(zhì)中的函數(shù)的奇偶性,下面我將從教材分析,教法、學(xué)法分析,教學(xué)過(guò)程,教輔手段,板書(shū)設(shè)計(jì)等方面對(duì)本課時(shí)的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)明。

(一)教材特點(diǎn)、教材的地位與作用。

本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個(gè)性質(zhì)。

函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對(duì)稱(chēng)性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)打下了堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對(duì)知識(shí)起到了承上啟下的作用。

(二)重點(diǎn)、難點(diǎn)。

1、本課時(shí)的教學(xué)重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。

2、本課時(shí)的教學(xué)難點(diǎn)是:判斷函數(shù)的奇偶性的方法與格式。

(三)教學(xué)目標(biāo)。

1、知識(shí)與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;

2、方法與過(guò)程:引導(dǎo)學(xué)生通過(guò)觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運(yùn)用函數(shù)奇偶性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力。

3、情感態(tài)度與價(jià)值觀:在奇偶性概念形成過(guò)程中,使學(xué)生體會(huì)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

1.教學(xué)方法:?jiǎn)l(fā)引導(dǎo)式。

結(jié)合本章實(shí)際,教材簡(jiǎn)單易懂,重在應(yīng)用、解決實(shí)際問(wèn)題,本節(jié)課準(zhǔn)備采用"引導(dǎo)發(fā)現(xiàn)法"進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識(shí)的方法和樂(lè)趣,在解決問(wèn)題的過(guò)程中,體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu).使用多媒體輔助教學(xué),突出了知識(shí)的產(chǎn)生過(guò)程,又增加了課堂的趣味性.

2.學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會(huì)學(xué)習(xí).

為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個(gè)主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識(shí)應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。

(一)設(shè)疑導(dǎo)入,觀圖激趣。

讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。

學(xué)生舉例生活中的對(duì)稱(chēng)現(xiàn)象。

折紙:取一張紙,在其上畫(huà)出直角坐標(biāo)系,并在第一象限任畫(huà)一函數(shù)的圖象,以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫(huà)出第一象限內(nèi)圖形的痕跡,然后將紙展開(kāi),觀察坐標(biāo)系中的'圖形。

問(wèn)題:將第一象限和第二象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。

以y軸為折痕將紙對(duì)折,然后以x軸為折痕將紙對(duì)折,在紙的背面(即第三象限)畫(huà)出第二象限內(nèi)圖象的痕跡,然后將紙展開(kāi).觀察坐標(biāo)喜之中的圖形:

問(wèn)題:將第一象限和第三象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。

(二)指導(dǎo)觀察,形成概念。

這節(jié)課我們首先從兩類(lèi)對(duì)稱(chēng):軸對(duì)稱(chēng)和中心對(duì)稱(chēng)展開(kāi)研究.

思考:請(qǐng)同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個(gè)函數(shù)圖象的對(duì)稱(chēng)性如何。

借助課件演示,學(xué)生會(huì)回答自變量互為相反數(shù),函數(shù)值相等.接著再讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì)得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對(duì)所有的x,都有類(lèi)似的情況借助課件演示,學(xué)生會(huì)得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示.

思考:由于對(duì)任一x,必須有一-x與之對(duì)應(yīng),因此函數(shù)的定義域有什么特征。

引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱(chēng).根據(jù)以上特點(diǎn),請(qǐng)學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書(shū):

提出新問(wèn)題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng),它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢(同時(shí)打出y=1/x的圖象讓學(xué)生觀察研究)。

學(xué)生可類(lèi)比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:

強(qiáng)調(diào)注意點(diǎn):"定義域關(guān)于原點(diǎn)對(duì)稱(chēng)"的條件必不可少.

接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識(shí),歸納步驟:

(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對(duì)稱(chēng)。

(2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。

給出例題,加深理解:

例1,利用定義,判斷下列函數(shù)的奇偶性:

(1)f(x)=x2+1。

(2)f(x)=x3-x。

(3)f(x)=x4-3x2-1。

(4)f(x)=1/x3+1。

提出新問(wèn)題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?

得到注意點(diǎn):既不是奇函數(shù)也不是偶函數(shù)的稱(chēng)為非奇非偶函數(shù)。

接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),二是定義域雖關(guān)于原點(diǎn)對(duì)稱(chēng),但不滿(mǎn)足f(-x)=f(x)或f(-x)=-f(x)。

然后根據(jù)前面引入知識(shí)中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:

函數(shù)f(x)是奇函數(shù)=圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

函數(shù)f(x)是偶函數(shù)=圖象關(guān)于y軸對(duì)稱(chēng)。

給出例2:書(shū)p63例3,再進(jìn)行當(dāng)堂鞏固,

1,書(shū)p65ex2。

y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。

歸納:對(duì)形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。

(三)學(xué)生探索,發(fā)展思維。

思考:

2,函數(shù)y=0有是什么函數(shù)。

(四)布置作業(yè)。

課本p39習(xí)題1.3(a組)第6題,b組第3。

函數(shù)的奇偶性教案人教版篇八

本節(jié)課的教學(xué)模式是采用循序漸進(jìn),由簡(jiǎn)單的問(wèn)題引入,然后在教師的引導(dǎo)下,探索結(jié)論,最后,在教師的指導(dǎo)下,對(duì)所學(xué)的實(shí)際結(jié)論進(jìn)行學(xué)生的實(shí)際應(yīng)用。

一、這種教學(xué)模式的教學(xué)程序是:

(一)實(shí)際練習(xí)引入課題,并能去發(fā)現(xiàn)生活中的相關(guān)信息,引起學(xué)生的興趣。

(二)看圖,具體引入函數(shù)進(jìn)行觀察探索,包括圖像觀察,自變量的變化,函數(shù)值的變化規(guī)律。

(三)明確這是函數(shù)的一種性質(zhì),明確定義,并強(qiáng)調(diào)定義中的注意事項(xiàng),怎樣理解定義中的規(guī)定。

(四)教師具體以例題進(jìn)行示范,學(xué)生們領(lǐng)會(huì)對(duì)函數(shù)奇偶性的`認(rèn)識(shí),并怎樣進(jìn)行判斷。

(五)同學(xué)們?cè)陬I(lǐng)會(huì)的基礎(chǔ)上,進(jìn)行實(shí)際訓(xùn)練,達(dá)到對(duì)知識(shí)的理解和應(yīng)用。

二、這種教學(xué)模式的優(yōu)勢(shì)是:循序漸進(jìn),學(xué)生能夠?qū)嶋H參與,在教學(xué)中體現(xiàn)和諧,教師的導(dǎo)和學(xué)生的練保證教學(xué)的效果。

這種教學(xué)模式的缺點(diǎn)與解決方法是:

還缺乏對(duì)學(xué)生更高層次的參與的調(diào)動(dòng),尤其是職業(yè)中學(xué)中部分在初中已經(jīng)放棄學(xué)習(xí)的同學(xué)的參與問(wèn)題。對(duì)配套練習(xí)要進(jìn)一步細(xì)化,要對(duì)每一個(gè)知識(shí)點(diǎn)都要精心設(shè)計(jì)相應(yīng)知識(shí)點(diǎn)的訓(xùn)練,圖像的認(rèn)識(shí)上,要加大同學(xué)們對(duì)生活的感知和相關(guān)軟件的使用,并能在電腦上實(shí)際體驗(yàn)函數(shù)圖像的對(duì)稱(chēng)情況。

函數(shù)的奇偶性教案人教版篇九

【過(guò)程與方法】。

利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來(lái)解決問(wèn)題.

【情感態(tài)度與價(jià)值觀】。

體會(huì)指數(shù)函數(shù)是一類(lèi)重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

二、教學(xué)重難點(diǎn)。

【重點(diǎn)】。

【難點(diǎn)】。

三、教學(xué)過(guò)程。

(一)導(dǎo)入新課。

取一張紙,在其上畫(huà)出平面直角坐標(biāo)系,并在第一象限任畫(huà)一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問(wèn)題:

答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱(chēng);。

(2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.

(二)新課教學(xué)。

像上面實(shí)踐操作1中的圖象關(guān)于y軸對(duì)稱(chēng)的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的函數(shù)即是奇函數(shù).

(1)偶函數(shù)(evenfunction)。

一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。

(2)奇函數(shù)(oddfunction)。

一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的'一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng)).

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);。

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

3.典型例題。

例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說(shuō)明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。

解:(略)。

1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng);。

2確定f(-x)與f(x)的關(guān)系;。

3作出相應(yīng)結(jié)論:

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

(三)鞏固提高。

1.教材p46習(xí)題1.3b組每1題。

解:(略)。

說(shuō)明:函數(shù)具有奇偶性的一個(gè)必要條件是,定義域關(guān)于原點(diǎn)對(duì)稱(chēng),所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),若不是即可斷定函數(shù)是非奇非偶函數(shù).

(教材p41思考題)。

規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);。

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

(四)小結(jié)作業(yè)。

本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng).單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì).

課本p46習(xí)題1.3(a組)第9、10題,b組第2題.

四、板書(shū)設(shè)計(jì)。

一、偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

二、奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).

三、規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);。

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

函數(shù)的奇偶性教案人教版篇十

教學(xué)目標(biāo):了解奇偶性的含義,會(huì)判斷函數(shù)的奇偶性。能證明一些簡(jiǎn)單函數(shù)的奇偶性。弄清函數(shù)圖象對(duì)稱(chēng)性與函數(shù)奇偶性的關(guān)系。

難點(diǎn):函數(shù)圖象對(duì)稱(chēng)性與函數(shù)奇偶性的關(guān)系。

一、復(fù)習(xí)引入。

(1)奇函數(shù)。

(2)偶函數(shù)。

(3)與圖象對(duì)稱(chēng)性的關(guān)系。

(4)說(shuō)明(定義域的要求)。

二、例題分析。

例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)。

例2、證明函數(shù)在r上是奇函數(shù)。

三、隨堂練習(xí)。

1、函數(shù)()。

是奇函數(shù)但不是偶函數(shù)是偶函數(shù)但不是奇函數(shù)。

既是奇函數(shù)又是偶函數(shù)既不是奇函數(shù)又不是偶函數(shù)。

2、下列4個(gè)判斷中,正確的是_______.

(1)既是奇函數(shù)又是偶函數(shù);

(2)是奇函數(shù);

(3)是偶函數(shù);

(4)是非奇非偶函數(shù)。

3、函數(shù)的圖象是否關(guān)于某直線對(duì)稱(chēng)?它是否為偶函數(shù)?

函數(shù)的奇偶性教案人教版篇十一

【過(guò)程與方法】。

利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來(lái)解決問(wèn)題。

【情感態(tài)度與價(jià)值觀】。

體會(huì)指數(shù)函數(shù)是一類(lèi)重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

【重點(diǎn)】。

【難點(diǎn)】。

(一)導(dǎo)入新課。

取一張紙,在其上畫(huà)出平面直角坐標(biāo)系,并在第一象限任畫(huà)一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問(wèn)題:

答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱(chēng);。

(二)新課教學(xué)。

(1)偶函數(shù)(evenfunction)。

(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。

(2)奇函數(shù)(oddfunction)。

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng))。

2.具有奇偶性的函數(shù)的圖象的特征。

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);。

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

3.典型例題。

例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說(shuō)明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。

解:(略)。

總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng);。

2確定f(-x)與f(x)的關(guān)系;。

3作出相應(yīng)結(jié)論:

若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。

(三)鞏固提高。

1.教材p46習(xí)題1.3b組每1題。

解:(略)。

(教材p41思考題)。

規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);。

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

(四)小結(jié)作業(yè)。

課本p46習(xí)題1.3(a組)第9、10題,b組第2題。

三、規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);。

奇函數(shù)的`圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

函數(shù)的奇偶性教案人教版篇十二

知識(shí)梳理:

1、軸對(duì)稱(chēng)圖形:

2中心對(duì)稱(chēng)圖形:

1、畫(huà)出函數(shù),與的圖像;并觀察兩個(gè)函數(shù)圖像的對(duì)稱(chēng)性。

2、求出,時(shí)的函數(shù)值,寫(xiě)出。

結(jié)論:

(1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。

(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)。

5、奇函數(shù)與偶函數(shù)圖像的對(duì)稱(chēng)性:

如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形,則這個(gè)函數(shù)是___________。

如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以軸為對(duì)稱(chēng)軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于軸對(duì)稱(chēng),則這個(gè)函數(shù)是___________。

(1)(2)(3)。

(4)(5)。

練習(xí):教材第49頁(yè),練習(xí)a第1題。

總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

題型二:利用奇偶性求函數(shù)解析式。

例2:若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng)時(shí)f(x)的解析式。

練習(xí):若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。

已知定義在實(shí)數(shù)集上的奇函數(shù)滿(mǎn)足:當(dāng)x0時(shí),,求的表達(dá)式。

題型三:利用奇偶性作函數(shù)圖像。

例3研究函數(shù)的性質(zhì)并作出它的圖像。

練習(xí):教材第49練習(xí)a第3,4,5題,練習(xí)b第1,2題。

當(dāng)堂檢測(cè)。

1已知是定義在r上的奇函數(shù),則(d)。

a.b.c.d.

2如果偶函數(shù)在區(qū)間上是減函數(shù),且最大值為7,那么在區(qū)間上是(b)。

a.增函數(shù)且最小值為-7b.增函數(shù)且最大值為7。

c.減函數(shù)且最小值為-7d.減函數(shù)且最大值為7。

3函數(shù)是定義在區(qū)間上的偶函數(shù),且,則下列各式一定成立的是(c)。

a.b.c.d.

4已知函數(shù)為奇函數(shù),若,則-1。

5若是偶函數(shù),則的單調(diào)增區(qū)間是。

6下列函數(shù)中不是偶函數(shù)的是(d)。

abcd。

7設(shè)f(x)是r上的偶函數(shù),切在上單調(diào)遞減,則f(-2),f(-),f(3)的大小關(guān)系是(a)。

abf(-)f(-2)f(3)cf(-)。

8奇函數(shù)的圖像必經(jīng)過(guò)點(diǎn)(c)。

a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。

9已知函數(shù)為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是(a)。

a0b1c2d4。

11若f(x)在上是奇函數(shù),且f(3)_f(-1)。

12、解答題。

已知函數(shù)在區(qū)間d上是奇函數(shù),函數(shù)在區(qū)間d上是偶函數(shù),求證:是奇函數(shù)。

已知分段函數(shù)是奇函數(shù),當(dāng)時(shí)的解析式為,求這個(gè)函數(shù)在區(qū)間上的解析表達(dá)式。

函數(shù)的奇偶性教案人教版篇十三

正比例函數(shù)的概念.

2.內(nèi)容解析。

一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過(guò)對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類(lèi)比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn).

對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問(wèn)題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問(wèn)題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.

本節(jié)課主要是通過(guò)對(duì)生活中大量實(shí)際問(wèn)題的分析,寫(xiě)出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫(xiě)出正比例函數(shù)的解析式.

基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念.

二、目標(biāo)和目標(biāo)解析。

1.目標(biāo)。

(1)經(jīng)歷正比例函數(shù)概念的形成過(guò)程,理解正比例函數(shù)的概念;。

(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想.

2.目標(biāo)解析。

達(dá)成目標(biāo)(1)的標(biāo)志是:通過(guò)對(duì)實(shí)際問(wèn)題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.

達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問(wèn)題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問(wèn)題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想.

三、教學(xué)問(wèn)題診斷分析。

正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問(wèn)題進(jìn)行分析過(guò)程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問(wèn)題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過(guò)大量實(shí)例分析,寫(xiě)出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過(guò)程學(xué)生有一定難度.

因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過(guò)程.

四、教學(xué)過(guò)程設(shè)計(jì)。

1.情境引入,初步感知。

引言。

上一節(jié)我們已經(jīng)學(xué)習(xí)了關(guān)于函數(shù)的最基礎(chǔ)的知識(shí),知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開(kāi)始,我們將重點(diǎn)研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).

問(wèn)題12011年開(kāi)始運(yùn)營(yíng)的京滬高速鐵路全長(zhǎng)1318km.設(shè)列車(chē)的平均速度為300km/h.考慮以下問(wèn)題:

師生活動(dòng):教師引導(dǎo)學(xué)生分析問(wèn)題中的數(shù)量關(guān)系,這是典型的行程問(wèn)題,數(shù)量關(guān)系是學(xué)生熟悉的“路程=速度×?xí)r間”.

設(shè)計(jì)意圖:讓學(xué)生真切感受數(shù)學(xué)與實(shí)際的聯(lián)系,即數(shù)學(xué)理論來(lái)源于實(shí)際又服務(wù)于實(shí)際.幫助學(xué)生逐步提高將實(shí)際問(wèn)題抽象為函數(shù)模型的能力,初步體會(huì)函數(shù)建模思想.

設(shè)計(jì)意圖:由于自變量t是列車(chē)運(yùn)行時(shí)間,作為實(shí)際問(wèn)題,自變量的取值是受限制的,應(yīng)對(duì)其取值范圍作出說(shuō)明.

對(duì)問(wèn)題(2)的分析解答過(guò)程讓學(xué)生回答下列問(wèn)題:

追問(wèn)1這個(gè)問(wèn)題中兩個(gè)變量之間的對(duì)應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,試說(shuō)明理由.

設(shè)計(jì)意圖:讓學(xué)生感受量與量之間的函數(shù)關(guān)系,體會(huì)函數(shù)關(guān)系蘊(yùn)涵在實(shí)際問(wèn)題中,激發(fā)學(xué)生探究興趣.對(duì)理由的說(shuō)明學(xué)生可能有障礙,此時(shí)教師要引導(dǎo)學(xué)生回顧函數(shù)概念的學(xué)習(xí)過(guò)程,用函數(shù)的概念來(lái)回答:?jiǎn)栴}中的兩個(gè)變量,當(dāng)其中的變量t變化時(shí),另一個(gè)變量y隨著t的變化而變化,并且對(duì)于變量t的每一個(gè)?定的值,另一個(gè)變量y都有唯一確定的值與之對(duì)應(yīng).

追問(wèn)2請(qǐng)你寫(xiě)出y與t之間的函數(shù)解析式,并分析解析式在結(jié)構(gòu)上是什么形式?

追問(wèn)3對(duì)于自變量t和函數(shù)y的每一對(duì)對(duì)應(yīng)值,y與t的比值,

函數(shù)的奇偶性教案人教版篇十四

知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。

過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。

情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操,通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。

難點(diǎn):函數(shù)奇偶性的判斷。

學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。

1、復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形的定義:

2、分別畫(huà)出函數(shù)f(x)=x3與g(x)=x2的圖象,并說(shuō)出圖象的對(duì)稱(chēng)性。

(1)對(duì)于函數(shù),其定義域關(guān)于原點(diǎn)對(duì)稱(chēng):

如果______________________________________,那么函數(shù)為偶函數(shù)。

(2)奇函數(shù)的圖象關(guān)于__________對(duì)稱(chēng),偶函數(shù)的圖象關(guān)于_________對(duì)稱(chēng)。

(3)奇函數(shù)在對(duì)稱(chēng)區(qū)間的增減性;偶函數(shù)在對(duì)稱(chēng)區(qū)間的增減性。

(1)f(x)=x4;(2)f(x)=x5;。

(3)f(x)=x+(4)f(x)=。

a2、二次函數(shù)()是偶函數(shù),則b=___________。

b3、已知,其中為常數(shù),若,則。

_______。

b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。

(a)軸對(duì)稱(chēng)(b)軸對(duì)稱(chēng)(c)原點(diǎn)對(duì)稱(chēng)(d)以上均不對(duì)。

b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。

c6、若函數(shù)是定義在r上的奇函數(shù),且當(dāng)時(shí),,那么當(dāng)。

時(shí),=_______。

d7、設(shè)是上的奇函數(shù),,當(dāng)時(shí),,則等于()。

(a)0.5(b)(c)1.5(d)。

d8、定義在上的奇函數(shù),則常數(shù)____,_____。

本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng)。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。

函數(shù)的奇偶性教案人教版篇十五

依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:

1、自學(xué)體驗(yàn)法——利用學(xué)生描點(diǎn)作圖經(jīng)歷體驗(yàn)并發(fā)現(xiàn)問(wèn)題,分析問(wèn)題進(jìn)一步歸納總結(jié)。

目的:通過(guò)這種教學(xué)方式來(lái)激發(fā)學(xué)生學(xué)習(xí)的積極主動(dòng)性,培養(yǎng)學(xué)生獨(dú)立思考能力和創(chuàng)新意識(shí)。

2、直觀教學(xué)法——利用多媒體現(xiàn)代教學(xué)手段。

目的:通過(guò)圖片和材料的展示來(lái)激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識(shí)直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認(rèn)識(shí)引領(lǐng)到理性的思考。

2、學(xué)法指導(dǎo)。

做為一名合格的老師,不止局限于知識(shí)的傳授,更重要的是使學(xué)生學(xué)會(huì)如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。

1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨(dú)立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。

2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。

函數(shù)的奇偶性教案人教版篇十六

講授新課前,做一份完美的教案,能夠更大程度的調(diào)動(dòng)學(xué)生在上課時(shí)的積極性,以下是白話文為大家整理的人教版高一數(shù)學(xué)《指數(shù)函數(shù)》教案,希望可以幫助到有需要的朋友。

1。使學(xué)生掌握的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫(huà)出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫(huà)出形如的圖象。

2。通過(guò)對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。通過(guò)對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。

(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見(jiàn)函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。

(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分。

(3)是學(xué)生完全陌生的一類(lèi)函數(shù),對(duì)于這樣的.函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類(lèi)函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是。

(2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類(lèi)討論,還關(guān)系到后面對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái)。

關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫(huà)圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。

1。理解的定義,初步掌握的圖象,性質(zhì)及其簡(jiǎn)單應(yīng)用。

2。通過(guò)的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。通過(guò)對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn)是理解的定義,把握?qǐng)D象和性質(zhì)。

難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。

投影儀。

啟發(fā)討論研究式。

一。引入新課。

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來(lái)研究一類(lèi)新的常見(jiàn)函數(shù)———————。

1。6。(板書(shū))。

這類(lèi)函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問(wèn)題:

由學(xué)生回答:與之間的關(guān)系式,可以表示為。

問(wèn)題2:有一根1米長(zhǎng)的繩子,第一次剪去繩長(zhǎng)一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長(zhǎng)度為米,試寫(xiě)出與之間的函數(shù)關(guān)系。

由學(xué)生回答:。

在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱(chēng)為。

一。的概念(板書(shū))。

1。定義:形如的函數(shù)稱(chēng)為。(板書(shū))。

教師在給出定義之后再對(duì)定義作幾點(diǎn)說(shuō)明。

2。幾點(diǎn)說(shuō)明(板書(shū))。

(1)關(guān)于對(duì)的規(guī)定:

教師首先提出問(wèn)題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問(wèn)題分解為若會(huì)有什么問(wèn)題?如,此時(shí),等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。

若對(duì)于都無(wú)意義,若則無(wú)論取何值,它總是1,對(duì)它沒(méi)有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定且。

(2)關(guān)于的定義域(板書(shū))。

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無(wú)理數(shù)時(shí),也是一個(gè)確定的實(shí)數(shù),對(duì)于無(wú)理指數(shù)冪,學(xué)過(guò)的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)?。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。

(3)關(guān)于是否是的判斷(板書(shū))。

剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來(lái)認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是。

(1),?(2),?(3)。

(4),?(5)。

學(xué)生回答并說(shuō)明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)可以寫(xiě)成,也是指數(shù)圖象。

最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問(wèn)題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫(huà)出它的圖象,再細(xì)致歸納性質(zhì)。

3。歸納性質(zhì)。

作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。

函數(shù)。

1。定義域:

2。值域:

3。奇偶性:既不是奇函數(shù)也不是偶函數(shù)。

4。截距:在軸上沒(méi)有,在軸上為1。

對(duì)于性質(zhì)1和2可以?xún)蓷l合在一起說(shuō),并追問(wèn)起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫(huà)圖的依據(jù)。(圖象位于軸上方,且與軸不相交。)。

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱(chēng)性,故的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。

此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線。

二。圖象與性質(zhì)(板書(shū))。

1。圖象的畫(huà)法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。

2。草圖:

當(dāng)畫(huà)完第一個(gè)圖象之后,可問(wèn)學(xué)生是否需要再畫(huà)第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫(huà)第二個(gè),不妨取為例。

此時(shí)畫(huà)它的圖象的方法應(yīng)讓學(xué)生來(lái)選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡(jiǎn)單。即=與圖象之間關(guān)于軸對(duì)稱(chēng),而此時(shí)的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱(chēng),教師借助計(jì)算機(jī)畫(huà)圖,在同一坐標(biāo)系下得到的圖象。

最后問(wèn)學(xué)生是否需要再畫(huà)。(可能有兩種可能性,若學(xué)生認(rèn)為無(wú)需再畫(huà),則追問(wèn)其原因并要求其說(shuō)出性質(zhì),若認(rèn)為還需畫(huà),則教師可利用計(jì)算機(jī)再畫(huà)出如的圖象一起比較,再找共性)。

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:

以上內(nèi)容學(xué)生說(shuō)不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿(mǎn)。

填好后,讓學(xué)生仿照此例再列一個(gè)的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來(lái)分類(lèi),整理函數(shù)的性質(zhì)。

3。性質(zhì)。

(1)無(wú)論為何值,都有定義域?yàn)椋涤驗(yàn)?,都過(guò)點(diǎn)。

(2)時(shí),在定義域內(nèi)為增函數(shù),時(shí),為減函數(shù)。

(3)時(shí),,???時(shí),。

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。

三。簡(jiǎn)單應(yīng)用??(板書(shū))。

1。利用單調(diào)性比大小。?(板書(shū))。

一類(lèi)函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡(jiǎn)單的問(wèn)題。首先我們來(lái)看下面的問(wèn)題。

例1。比較下列各組數(shù)的大小。

(1)與;?(2)與;。

(3)與1。(板書(shū))。

首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問(wèn)根據(jù)這個(gè)特點(diǎn),用什么方法來(lái)比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過(guò)程。

解:在上是增函數(shù),且。

(板書(shū))。

教師最后再?gòu)?qiáng)調(diào)過(guò)程必須寫(xiě)清三句話:

(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。

(2)自變量的大小比較。

(3)函數(shù)值的大小比較。

后兩個(gè)題的過(guò)程略。要求學(xué)生仿照第(1)題敘述過(guò)程。

例2。比較下列各組數(shù)的大小。

(1)與;?(2)與?;。

(3)與。(板書(shū))。

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來(lái)說(shuō)可以寫(xiě)成,這樣就可以轉(zhuǎn)化成同底的問(wèn)題,再用例1的方法解決,對(duì)(2)來(lái)說(shuō)可以寫(xiě)成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來(lái)起橋梁作用)。

最后由學(xué)生說(shuō)出1,1,。

解決后由教師小結(jié)比較大小的方法。

(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。

(2)搭橋比較法:用特殊的數(shù)1或0。

三。鞏固練習(xí)。

練習(xí):比較下列各組數(shù)的大?。ò鍟?shū))。

(1)與???(2)與;。

(3)與;(4)與。解答過(guò)程略。

四。小結(jié)。

1。的概念。

2。的圖象和性質(zhì)。

3。簡(jiǎn)單應(yīng)用。

五。板書(shū)設(shè)計(jì)。

函數(shù)的奇偶性教案人教版篇十七

理解函數(shù)的奇偶性及其幾何意義。

【過(guò)程與方法】。

利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來(lái)解決問(wèn)題。

【情感態(tài)度與價(jià)值觀】。

體會(huì)指數(shù)函數(shù)是一類(lèi)重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

【重點(diǎn)】。

【難點(diǎn)】。

(一)導(dǎo)入新課。

取一張紙,在其上畫(huà)出平面直角坐標(biāo)系,并在第一象限任畫(huà)一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問(wèn)題:

答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱(chēng);

(二)新課教學(xué)。

(1)偶函數(shù)(evenfunction)。

(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。

(2)奇函數(shù)(oddfunction)。

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng))。

2、具有奇偶性的函數(shù)的圖象的特征。

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

3、典型例題。

例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說(shuō)明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。

解:(略)。

總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng);

2確定f(-x)與f(x)的關(guān)系;

3作出相應(yīng)結(jié)論:

若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。

(三)鞏固提高。

1、教材p46習(xí)題1.3b組每1題。

解:(略)。

(教材p41思考題)。

規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

說(shuō)明:這也可以作為判斷函數(shù)奇偶性的依據(jù)。

(四)小結(jié)作業(yè)。

課本p46習(xí)題1.3(a組)第9、10題,b組第2題。

三、規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);

奇函數(shù)的`圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

函數(shù)的奇偶性教案人教版篇十八

一次函數(shù)解析式的求法一般是采用待定系法,對(duì)于學(xué)生而言,如何理解這種方法是解決這一問(wèn)題的關(guān)鍵。

為了解決這個(gè)問(wèn)題,我舉了這樣一個(gè)例子:已知直線y=kx+b經(jīng)過(guò)點(diǎn)(1,2)和點(diǎn)(-2,3)試求這個(gè)函數(shù)關(guān)系式?學(xué)生們很容易想到列方程組解決這個(gè)問(wèn)題,我卻提出了一個(gè)比較簡(jiǎn)單的問(wèn)題,為什么你要選擇列方程組解決這個(gè)問(wèn)題,你的目的是什么?我教的那個(gè)班的學(xué)生沉默了好久,是啊,對(duì)于學(xué)生來(lái)說(shuō),他們習(xí)慣于如何做題,卻從不想為什么采用這種方法,這種方法的出發(fā)點(diǎn)是什么?經(jīng)過(guò)一段時(shí)間的思考,有的學(xué)生終于答出了這個(gè)問(wèn)題:他們說(shuō)這是為了確定k,b的值,只要k,b的值確定了,那么一次函數(shù)解析式就確定下來(lái)了。而實(shí)際他們回答的恰恰是待定系數(shù)法的精髓,學(xué)生們只有能理解到這一點(diǎn)才能領(lǐng)會(huì)到待定系數(shù)法的精髓。進(jìn)而我總結(jié),如果知道一次函數(shù)圖象上個(gè)點(diǎn)就能確定它的解析式。如上例是顯而易見(jiàn)的兩點(diǎn)。

接著我給出另一個(gè)例題:已知一次函數(shù)圖象過(guò)點(diǎn)(1,-2),且與直線y=3x+2交y軸于同一點(diǎn),試求該函數(shù)的解析式。這個(gè)題一個(gè)點(diǎn)顯而易見(jiàn),另一個(gè)點(diǎn)是隱含的,學(xué)生們開(kāi)始找到一個(gè)明線,通過(guò)分析找到了另一個(gè)暗線,最終大家一致認(rèn)為兩點(diǎn)確定一條直線,想求一次函數(shù)的解析式,只要找到兩個(gè)點(diǎn)的坐標(biāo)就行。

最后我出了一個(gè)例題:一個(gè)一次函數(shù)的圖象,與直線y=2x+1的交點(diǎn)m的橫坐標(biāo)為2,與直線y=-x+2的交點(diǎn)n的縱坐標(biāo)為1,求這個(gè)一次函數(shù)的解析式。學(xué)生們發(fā)現(xiàn)沒(méi)有一條明線,全是暗線,但只要理解找兩個(gè)點(diǎn)求一次函數(shù)解析式,看似難的問(wèn)題就會(huì)迎刃而解。如果學(xué)生能理解透這三道其實(shí)是一類(lèi)題,他們就會(huì)利用待定系數(shù)法求一次函數(shù)解析式了。

函數(shù)的奇偶性教案人教版篇十九

1、了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法。

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。

(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性。

(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程。

2、通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想。

3、通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。

一、知識(shí)結(jié)構(gòu)。

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。

二、重點(diǎn)難點(diǎn)分析。

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí)。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),掌握單調(diào)性的證明。

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn)。

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋?zhuān)龑?dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái)。在這個(gè)過(guò)程當(dāng)中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái)。

(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。

函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái)。經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱(chēng)的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱(chēng)性,同時(shí)還可以借助圖象(如)說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱(chēng)只是函數(shù)具備奇偶性的必要條件而不是充分條件。

函數(shù)的奇偶性教案人教版篇二十

尊敬的各位老師:

大家好,我是1號(hào)考生。我說(shuō)課的題目是《函數(shù)的'奇偶性》(板書(shū)課題),根據(jù)新課標(biāo)的理念,以教什么,怎么教,為什么這樣教為思路,我從6個(gè)方面進(jìn)行說(shuō)課。

一、說(shuō)設(shè)計(jì)理念。

根據(jù)新課程教學(xué)理念,在教學(xué)中,我以領(lǐng)悟?yàn)槟康模毩?xí)為主線,引導(dǎo)學(xué)生自主學(xué)習(xí),合作探究,在教學(xué)中,注重培養(yǎng)學(xué)生邏輯思維能力、創(chuàng)新能力、合作能力、歸納能力、及數(shù)學(xué)聯(lián)系生活的能力。即實(shí)現(xiàn)數(shù)學(xué)教學(xué)的知識(shí)目標(biāo),又實(shí)現(xiàn)育人的情感目標(biāo)。

二、說(shuō)教材。

《函數(shù)的奇偶性》是人教版第一章集合與函數(shù)概念單元的重要知識(shí)點(diǎn)。全面介紹了偶函數(shù)的定義及判定,奇函數(shù)的定義及判定等兩部分知識(shí)。為后面學(xué)習(xí)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)等知識(shí)奠定了基礎(chǔ)。

(一)教學(xué)目標(biāo):

依據(jù)本節(jié)課的知識(shí)特點(diǎn)及新課標(biāo)要求,本課的三維教學(xué)目標(biāo)是:

1.知識(shí)與技能目標(biāo)是:理解函數(shù)的奇偶性及其幾何意義,掌握判斷函數(shù)奇偶性的方法。

2.過(guò)程與方法目標(biāo)是:通過(guò)學(xué)生自主探索,合作學(xué)習(xí),培養(yǎng)學(xué)生的觀察、分析和歸納等數(shù)學(xué)能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。。

3.情感態(tài)度與價(jià)值觀目標(biāo)是:讓學(xué)生了解數(shù)學(xué)在生活中運(yùn)用的廣泛性和實(shí)用性,引發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣。

(二)重點(diǎn)、難點(diǎn):

(三)學(xué)情分析。

本課的授課對(duì)象是高一年級(jí)的學(xué)生,他們思維活躍,求知欲強(qiáng),他們已經(jīng)初步認(rèn)識(shí)了函數(shù)的概念,高一年級(jí)的學(xué)生有自主學(xué)習(xí)、合作探究的能力,但仍需要教師的指導(dǎo)。

三、教法學(xué)法。

教法:本節(jié)課采用自主探究法、啟發(fā)式教學(xué)法、討論交流法等。

學(xué)法:引導(dǎo)學(xué)生探究合作,歸納總結(jié),注重對(duì)學(xué)生自主探究問(wèn)題能力的培養(yǎng),發(fā)揮學(xué)習(xí)小組的合作作用。

四、教學(xué)準(zhǔn)備。

教師制作多媒體課件,編印導(dǎo)學(xué)案;學(xué)生預(yù)習(xí)課文,觀察生活中具有對(duì)稱(chēng)美的物體或圖像。

五、教學(xué)過(guò)程。

本節(jié)課我從導(dǎo)、研、練、拓、升五個(gè)環(huán)節(jié)進(jìn)行說(shuō)課。

環(huán)節(jié)一:創(chuàng)設(shè)情境,導(dǎo)入新課。(導(dǎo)3)、

該環(huán)節(jié),用多媒體向?qū)W生展示現(xiàn)實(shí)生活中蝴蝶、太陽(yáng)、湖面倒影等具有對(duì)稱(chēng)性的圖像,再讓學(xué)生舉例函數(shù)圖像是否有類(lèi)似的屬性?通過(guò)評(píng)價(jià)學(xué)生回答,引出本節(jié)課的標(biāo)題:函數(shù)的奇偶性。

環(huán)節(jié)二:合作探究,獲取新知(研20)。

該環(huán)節(jié),我分兩個(gè)模塊進(jìn)行。

模塊一:完成偶函數(shù)的定義。(板書(shū)知識(shí)點(diǎn)的小標(biāo)題)。該模塊中,讓學(xué)生觀察課本圖1.3.7并思考,兩個(gè)函數(shù)圖像有什么共同特征?相應(yīng)的對(duì)應(yīng)表是如何體現(xiàn)這些特征的?進(jìn)而讓學(xué)生觀察討論,得出結(jié)論:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值相同,并引導(dǎo)學(xué)生歸納總結(jié)出偶函數(shù)的定義:定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

模塊二:完成奇函數(shù)的定義。(板書(shū)知識(shí)點(diǎn)的小標(biāo)題)。該模塊中,學(xué)生已經(jīng)學(xué)習(xí)了偶函數(shù)的定義,根據(jù)偶函數(shù)相同的教學(xué)方法引導(dǎo)學(xué)生推導(dǎo)出奇函數(shù)的定義,即:定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

模塊三:完成例題5講解。在引導(dǎo)學(xué)生復(fù)述偶函數(shù)、奇函數(shù)的定義的基礎(chǔ)上,師生共同完成例題5中的1)2)小題。在這個(gè)過(guò)程中教師要提醒學(xué)生注意函數(shù)定義域的范圍,掌握函數(shù)奇偶性判定的方法。在完成1、2小題的基礎(chǔ)上,讓學(xué)生獨(dú)立完成3)4)兩個(gè)小題。然后在小組內(nèi)討論交流,教師巡視,以便發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。

環(huán)節(jié)三:強(qiáng)化訓(xùn)練,目標(biāo)達(dá)成。(練12)。

該環(huán)節(jié),讓同學(xué)們拿出之前下發(fā)的練習(xí)題,每個(gè)小組選出一位同學(xué)到黑板板演。然后教師對(duì)板演情況進(jìn)行講評(píng),其他同學(xué)小組內(nèi)互相批閱。

環(huán)節(jié)四:聯(lián)系生活,拓展延伸(拓5)。

這根據(jù)所學(xué)知識(shí),讓學(xué)生聯(lián)系生活,列舉在教室中具有奇偶性的具體實(shí)物,提高學(xué)生將知識(shí)聯(lián)系生活的能力。

環(huán)節(jié)五:總結(jié)提升,布置作業(yè)(升5)。

教師對(duì)本節(jié)課知識(shí)點(diǎn)進(jìn)行梳理。完成課堂達(dá)標(biāo)測(cè)評(píng)試題,然后啟發(fā)學(xué)生思考這一課的收獲。最后布置兩種作業(yè)?;A(chǔ)型作業(yè)為總結(jié)本節(jié)課的所學(xué)知識(shí)完成相關(guān)練習(xí)。擴(kuò)展型作業(yè)為學(xué)生自主查詢(xún)函數(shù)奇偶性的相關(guān)資料。

本環(huán)節(jié)通過(guò)梳理總結(jié),使本課知識(shí)要點(diǎn)化,系統(tǒng)化,給學(xué)生以強(qiáng)化記憶。所布置的作業(yè),既可以鞏固所學(xué)知識(shí),又能把課堂所學(xué)應(yīng)用于實(shí)踐當(dāng)中,從而達(dá)到教學(xué)的目的。

六、說(shuō)板書(shū)設(shè)計(jì)。

我的板書(shū)直觀具體形象地將本節(jié)課的學(xué)生重點(diǎn)呈現(xiàn)在黑板之上,方便學(xué)生理解掌握。

我的說(shuō)課到此結(jié)束,謝謝各位專(zhuān)家老師!

附:板書(shū)設(shè)計(jì)。

【本文地址:http://mlvmservice.com/zuowen/8682085.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔