教案的編寫應當遵循科學的教育原理和教學法則,盡量提高教學效果。教師在編寫教案時應該注重培養(yǎng)學生的實踐能力和動手能力。以下是小編為大家收集的教案范例,供大家參考借鑒。
函數(shù)的奇偶性教案人教版篇一
本節(jié)課的教學模式是采用循序漸進,由簡單的問題引入,然后在教師的引導下,探索結論,最后,在教師的指導下,對所學的實際結論進行學生的實際應用。
一、這種教學模式的教學程序是:
(一)實際練習引入課題,并能去發(fā)現(xiàn)生活中的相關信息,引起學生的興趣。
(二)看圖,具體引入函數(shù)進行觀察探索,包括圖像觀察,自變量的變化,函數(shù)值的變化規(guī)律。
(三)明確這是函數(shù)的一種性質,明確定義,并強調定義中的注意事項,怎樣理解定義中的規(guī)定。
(四)教師具體以例題進行示范,學生們領會對函數(shù)奇偶性的`認識,并怎樣進行判斷。
(五)同學們在領會的基礎上,進行實際訓練,達到對知識的理解和應用。
二、這種教學模式的優(yōu)勢是:循序漸進,學生能夠實際參與,在教學中體現(xiàn)和諧,教師的導和學生的練保證教學的效果。
這種教學模式的缺點與解決方法是:
還缺乏對學生更高層次的參與的調動,尤其是職業(yè)中學中部分在初中已經放棄學習的同學的參與問題。對配套練習要進一步細化,要對每一個知識點都要精心設計相應知識點的訓練,圖像的認識上,要加大同學們對生活的感知和相關軟件的使用,并能在電腦上實際體驗函數(shù)圖像的對稱情況。
函數(shù)的奇偶性教案人教版篇二
1。了解函數(shù)的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法。
(1)了解并區(qū)分增函數(shù),減函數(shù),單調性,單調區(qū)間,奇函數(shù),偶函數(shù)等概念。
(2)能從數(shù)和形兩個角度認識單調性和奇偶性。
(3)能借助圖象判斷一些函數(shù)的單調性,能利用定義證明某些函數(shù)的單調性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。
2。通過函數(shù)單調性的證明,提高學生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數(shù)形結合,從特殊到一般的數(shù)學思想。
3。通過對函數(shù)單調性和奇偶性的理論研究,增學生對數(shù)學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹?shù)难芯繎B(tài)度。
一、知識結構。
(1)函數(shù)單調性的概念。包括增函數(shù)、減函數(shù)的定義,單調區(qū)間的概念函數(shù)的單調性的判定方法,函數(shù)單調性與函數(shù)圖像的關系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點難點分析。
(1)本節(jié)教學的重點是函數(shù)的單調性,奇偶性概念的形成與認識。教學的難點是領悟函數(shù)單調性,奇偶性的本質,掌握單調性的證明。
(2)函數(shù)的單調性這一性質學生在初中所學函數(shù)中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證明是學生在函數(shù)內容中首次接觸到的代數(shù)論證內容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的'難點。
三、教法建議。
(1)函數(shù)單調性概念引入時,可以先從學生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來。在這個過程當中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來。
(2)函數(shù)單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律。
函數(shù)的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
函數(shù)的奇偶性教案人教版篇三
《函數(shù)的奇偶性》這節(jié)課采用的是我校712課堂模式,主要給老師們展示教學環(huán)節(jié)。
在《函數(shù)的奇偶性》這節(jié)課教學過程中,我讓學生通過圖象直觀獲得函數(shù)奇偶性的認識,然后利用表格探究數(shù)量變化特征,通過代數(shù)運算,驗證發(fā)現(xiàn)的數(shù)量特征對定義域中的”任意”值都成立,最后在這個基礎上建立奇偶函數(shù)的概念。
在本節(jié)課的教學中我還要注意到以下幾個方面的問題:
1、幻燈片的設計。
幻燈片的使用在一定程度上很好的輔助我的教學活動,但是數(shù)學學科中應注意到幻燈片的設計,在出現(xiàn)某些字或者數(shù)字時應直接出現(xiàn),而不要設計成動畫的形式,以免學生分散注意力。
2、學生練習。
在教學過程中應多注意學生的活動,由單一的問答式轉化為多方位的考察,可以采用學生板演或者把學生練習投影到屏幕上讓全班學生糾正等方式,更好的考察學生掌握情況。
3、例題書寫。
在數(shù)學教學中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學生仿照。
4、語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5、教學環(huán)節(jié)的完整。
在授課過程中要注意到教學環(huán)節(jié)設計,我們的教學過程有復習引入、講授新課、例題講解、學生練習、課時小結、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學設計不完善。在以后的教學過程中要注意這些環(huán)節(jié)。
6、教案設計的完整。
在本節(jié)課教學中我因為考慮到有幻燈片而沒有在教案中設計“板書設計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設計“板書設計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學反思,還有很多地方做的還不完善,我要在以后的教學中努力改進這些錯誤,以便更好的適應教學,努力使自己的教學更上一層樓。
函數(shù)的奇偶性教案人教版篇四
一.多媒體使用的思考:
1.用:充分考慮多媒體的必用性和實用性,如實例引入,借助一些圖片,讓學生更形象的看到對稱。例題展現(xiàn)、問題展現(xiàn),節(jié)約了教師黑板抄題的時間,提高了課堂效率。當然本節(jié)課不需要動畫展示,如果需要有動畫演示的可以做在課件上,把一些無法言傳的內容呈現(xiàn)在課件上才能真正體現(xiàn)多媒體之“用”。
2.不用:如果要把課件帶入每一節(jié)新授課,那么在制作課件的時候就要效率高,有一些內容就不用放入課件,如:例題的解題過程和在黑板上必須呈現(xiàn)的內容不用再搬到課件上去,否則學生也不知道該看黑板還是課件,增大了學生學習負擔,降低了學習效率。所以我在課件制作中,注重內容與黑板板書不重疊。
在多媒體應用上,我們要注重區(qū)分什么該用,什么不該用以確實提高課堂效率。
設計教學設計的過程中,充分考慮課程標準和教材的要求來確定教學目標,把握學生的學習水平,在教學中給學生充分思考的時間和空間,尊重學生的思想方法,點評優(yōu)化學生的學習收獲,充分調動學生探究的積極性,培養(yǎng)學生學習的興趣。在教學中不變的是先進的教學理念和合理的教學設計。放手給學生們自主學和研究就是我們應該大膽做的。從學生的角度設計教學,才能體現(xiàn)以學生為本!
三.做到重點突出和難點突破。
如何重點突出和難點突破是教學技術、教學專業(yè)上挑戰(zhàn),我們在上每一節(jié)課面對這些問題時都必須精心設計,那樣的課堂才能高效,學生才會喜歡。
在本節(jié)課中重點之一是函數(shù)奇偶性概念的理解,從實例引入,讓學生感到本節(jié)課研究的必要性與趣味性,從圖像對稱的本質讓學生給出概念,老師總結,再讓學生回頭感悟,有利于學生真正理解概念和應用概念。如何理解0再定義域內時,奇函數(shù)在0處的值為0時本節(jié)課難點之一,從一條辨析題到處問題,在研究問題,自然!同時激發(fā)了學生探究的欲望,學得深刻。
總之,要上好每一節(jié)課才能真正鍛煉老師的教學素養(yǎng)、技術,才能真正提高咱們的教學理念。
函數(shù)的奇偶性教案人教版篇五
【過程與方法】。
利用指數(shù)函數(shù)的圖像和性質,及單調性來解決問題.
【情感態(tài)度與價值觀】。
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學生學習數(shù)學的興趣.
二、教學重難點。
【重點】。
【難點】。
三、教學過程。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關于y軸對稱;。
(2)若點(x,f(x))在函數(shù)圖象上,則相應的點(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標互為相反數(shù)的點,它們的縱坐標一定相等.
(二)新課教學。
像上面實踐操作1中的圖象關于y軸對稱的函數(shù)即是偶函數(shù),操作2中的圖象關于原點對稱的函數(shù)即是奇函數(shù).
(1)偶函數(shù)(evenfunction)。
一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(學生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;。
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的'一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).
偶函數(shù)的圖象關于y軸對稱;。
奇函數(shù)的圖象關于原點對稱.
3.典型例題。
例1.(教材p36例3)應用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性.(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
1首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;。
2確定f(-x)與f(x)的關系;。
3作出相應結論:
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
(三)鞏固提高。
1.教材p46習題1.3b組每1題。
解:(略)。
說明:函數(shù)具有奇偶性的一個必要條件是,定義域關于原點對稱,所以判斷函數(shù)的奇偶性應應首先判斷函數(shù)的定義域是否關于原點對稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關于y軸對稱;。
奇函數(shù)的圖象關于原點對稱.
(四)小結作業(yè)。
本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關于原點對稱.單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數(shù)的圖象充分理解好單調性和奇偶性這兩個性質.
課本p46習題1.3(a組)第9、10題,b組第2題.
四、板書設計。
一、偶函數(shù):一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
二、奇函數(shù):一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
三、規(guī)律:
偶函數(shù)的圖象關于y軸對稱;。
奇函數(shù)的圖象關于原點對稱.
函數(shù)的奇偶性教案人教版篇六
【知識目標】:使學生從形與數(shù)兩方面理解函數(shù)單調性的概念,學會利用函數(shù)圖像理解和研究函數(shù)的性質,初步掌握利用函數(shù)圖象和單調性定義判斷、證明函數(shù)單調性的方法.
【能力目標】通過對函數(shù)單調性定義的探究,滲透數(shù)形結合數(shù)學思想方法,培養(yǎng)學生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單調性的證明,提高學生的推理論證能力.
【教學難點】歸納抽象函數(shù)單調性的定義以及根據(jù)定義證明函數(shù)的單調性.由于判斷或證明函數(shù)的單調性,常常要綜合運用一些知識(如不等式、因式分解、配方及數(shù)形結合的思想方法等)所以判斷或證明函數(shù)的單調性是本節(jié)課的難點.
【教材分析】函數(shù)的單調性是函數(shù)的重要性質之一,它把自變量的變化方向和函數(shù)值的變化方向定性的聯(lián)系在一起,所以本節(jié)課在教材中的作用如下(1)函數(shù)的單調性起著承前啟后的作用。一方面,初中數(shù)學的許多內容在解決函數(shù)的某些問題中得到了充分運用,函數(shù)的單調性與前一節(jié)內容函數(shù)的概念和圖像知識的延續(xù)有密切的聯(lián)系;函數(shù)的單調性一節(jié)中的知識是它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質,是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調性的理論基礎。
(2)函數(shù)的單調性是培養(yǎng)學生數(shù)學能力的良好題材,這節(jié)課通過對具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個區(qū)間上是增函數(shù)或減函數(shù)的準確定義,明確指出函數(shù)的增減性是相對于某個區(qū)間來說的。教材中判斷函數(shù)的增減性,既有從圖像上進行觀察的直觀方法,又有根據(jù)其定義進行邏輯推理的嚴格證明方法,最后將兩種方法統(tǒng)一起來,形成根據(jù)觀察圖像得出猜想結論,進而用推理證明猜想的體系。同時還要綜合利用前面的知識解決函數(shù)單調性的一些問題,有利于學生數(shù)學能力的提高。
(3)函數(shù)的單調性有著廣泛的實際應用。在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均需用到函數(shù)的單調性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質的'數(shù)形結合思想將貫穿于我們整個數(shù)學教學。因此“函數(shù)的單調性”在中學數(shù)學內容里占有十分重要的地位。它體現(xiàn)了函數(shù)的變化趨勢和變化特點,在利用函數(shù)觀點解決問題中起著十分重要的作用,為培養(yǎng)創(chuàng)新意識和實踐能力提供了重要方式和途徑。
【學情分析】從學生的知識上看,學生已經學過一次函數(shù),二次函數(shù),反比例函數(shù)等簡單函數(shù),函數(shù)的概念及函數(shù)的表示,能畫出一些簡單函數(shù)的圖像,從圖像的直觀變化,學生能粗略的得到函數(shù)增減性的定義,所以引入函數(shù)的單調性的定義應該是順理成章的。從學生現(xiàn)有的學習能力看,通過初中對函數(shù)的認識與實驗,學生已具備了一定的觀察事物的能力,積累了一些研究問題的經驗,在一定程度上具備了抽象、概括的能力和語言轉換能力。從學生的心理學習心理上看,學生頭腦中雖有一些函數(shù)性質的實物實例,但并沒有上升為“概念”的水平,如何“定性”“定量”地描述函數(shù)性質是學生關注的問題,也是學習的重點問題。函數(shù)的單調性是學生從已經學習的函數(shù)中比較容易發(fā)現(xiàn)的一個性質,學生也容易產生共鳴,通過對比產生頓悟,渴望獲得這種學習的積極心向是學生學好本節(jié)課的情感基礎。但是如何運用數(shù)學符號將自然語言的描述提升為形式化的定義,學生接受起來比較困難?在教學中要多引導,讓學生真正的理解函數(shù)單調性的定義。
【教學方法】教師是教學的主體、學生是學習的主體,通過雙主體的教學模式方法:啟發(fā)式教學法——以設問和疑問層層引導,激發(fā)學生,啟發(fā)學生積極思考,逐步從常識走向科學,將感性認識提升到理性認識,培養(yǎng)和發(fā)展學生的抽象思維能力。探究教學法——引導學生去疑;鼓勵學生去探;激勵學生去思,培養(yǎng)學生的創(chuàng)造性思維和批判精神。合作學習——通過組織小組討論達到探究、歸納的目的?!窘虒W手段】計算機、投影儀.
【教學過程】一、創(chuàng)設情境,引入課題(利用電腦展示)1.如圖為某市一天內的氣溫變化圖:(1)觀察這個氣溫變化圖,說出氣溫在這一天內的變化情況.(2)怎樣用數(shù)學語言刻畫在這一天內“隨著時間的增大,氣溫逐漸升高或下降”這一特征?引導學生識圖,捕捉信息,啟發(fā)學生思考.問題:觀察圖形,能得到什么信息?預案:(1)當天的最高溫度、最低溫度以及何時達到;(2)在某時刻的溫度;(3)某些時段溫度升高,某些時段溫度降低.在生活中,我們關心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,是很有幫助的.問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?預案:股票價格、水位變化、心電圖等等春蘭股份線性圖.水位變化圖歸納:用函數(shù)觀點看,其實就是隨著自變量的變化,函數(shù)值是變大還是變小.
〖設計意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對于自變量變化時,函數(shù)值是變大還是變小,初中同學們就有了一定的認識,但是沒有嚴格的定義,今天我們的任務首先就是建立函數(shù)單調性的嚴格定義.1.借助圖象,直觀感知問題1:分別作出函數(shù)的圖象,并且觀察自變量變化時,函數(shù)值有什么變化規(guī)律?(學生自己動手畫,然后電腦顯示下圖)預案:生:函數(shù)在整個定義域內y隨x的增大而增大;函數(shù)在整個定義域內y隨x的增大而減小.師:函數(shù)的圖像變化規(guī)律生:在y軸的的左側y隨x的增大而減小.在y軸的的右側y隨x的增大而增大。師:我們學過區(qū)間的表示方法,如何用區(qū)間的概念來表述圖像的變化規(guī)律生:在上y隨x的增大而增大,在上y隨x的增大而減小.師:這樣表述就比較嚴密了,很好。由上面的討論可知,函數(shù)的單調性與自變量的范圍有關,一個函數(shù)并不一定在整個正義域內是單調函數(shù),但在定義城的某個子集上可以是單調函數(shù)。(3)函數(shù)的圖像變化規(guī)律如何。
生:(1)定義域中的減函數(shù)。(2)在上y隨x的增大而減小,在上y隨x的增大而減小.師:對于兩種答案,哪一種是正確的,為什么?學生分組討論。從定義域,圖像的角度考慮,也可以舉反例引導學生進行分類描述(增函數(shù)、減函數(shù)).并引導學生用區(qū)間明確描述函數(shù)的單調性從而讓學生明確函數(shù)的單調性是對定義域內某個區(qū)間而言的,是函數(shù)的局部性質.
問題2:能不能根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)?預案:如果函數(shù)在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù);如果函數(shù)在某個區(qū)間上隨自變量x的增大,y越來越小,我們說函數(shù)在該區(qū)間上為減函數(shù).教師指出:這種認識是從圖象的角度得到的,是對函數(shù)單調性的直觀,描述性的認識.
〖設計意圖〗從圖象直觀感知函數(shù)單調性,完成對函數(shù)單調性的第一次認識.2.探究規(guī)律,理性認識問題1:下圖是函數(shù)的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減函數(shù)嗎?(電腦顯示,學生分組討論)學生的困難是難以確定分界點的確切位置.通過討論,使學生感受到用函數(shù)圖象判斷函數(shù)單調性雖然比較直觀,但有時不夠精確,需要結合解析式進行嚴密化、精確化的研究.
〖設計意圖〗使學生體會到用數(shù)量大小關系嚴格表述函數(shù)單調性的必要性.問題2:如何從解析式的角度說明在為增函數(shù)?預案:生:在給定區(qū)間內取兩個數(shù),例如1和2,因為1222,所以在為增函數(shù).生:僅僅兩個數(shù)的大小關系不能說明函數(shù)y=x2在區(qū)間[0,+∞)上為單調遞增函數(shù),應該舉出無數(shù)個。由于很多學生不能分清“無數(shù)”和“所有”的區(qū)別,所以許多學生對學生2的說法表示贊同。
生:函數(shù))無數(shù)個如(2)中的實數(shù),顯然f(x)也隨x的增大而增大,是不是也可以說函數(shù)在區(qū)間上是增函數(shù)?可這與圖象矛盾啊?師:“無數(shù)個”能不能代表“所有”呢?比如:2、3、4、5……有無數(shù)個自然數(shù)都比大,那我們能不能說所有的自然數(shù)都比大呢?所以具體值取得再多,也不能代表所有的,思考如何體現(xiàn)區(qū)間上的所有值。引導學生利用字母表示數(shù)。生:任取且,因為,即,所以在為增函數(shù).舊教材的定義在這里就可以歸納出來,但是人教b版新教材使用了自變量的增量和函數(shù)值的增量來表述,并為以后學習利用導數(shù)判斷函數(shù)的單調性做準備,所以需進一步引導學生利用增量來定義函數(shù)的單調性。
(5)仿(4)且,由圖象可知,即給自變量一個增量,,函數(shù)值的增量所以在為增函數(shù)。對于學生錯誤的回答,引導學生分別用圖形語言和文字語言進行辨析,使學生認識到問題的根源在于自變量不可能被窮舉,從而引導學生在給定的區(qū)間內任意取兩個自變量進一步尋求自變量的增量與函數(shù)值的增量之間的變化規(guī)律,判斷函數(shù)單調性。注意這里的“都有”是對應于“任意”的。
〖設計意圖〗把對單調性的認識由感性上升到理性認識的高度,完成對概念的第二次認識.事實上也給出了證明單調性的方法,為證明單調性做好鋪墊.3.抽象思維,形成概念問題:你能用準確的數(shù)學符號語言表述出增函數(shù)的定義嗎?師生共同探究,得出增函數(shù)嚴格的定義,然后學生類比得出減函數(shù)的定義.
(1)板書定義設函數(shù)的定義域為a,區(qū)間ma,如果取區(qū)間m中的任意兩個值,當改變量時,都有,那么就稱函數(shù)在區(qū)間m上是增函數(shù),如圖(1)當改變量時,都有,那么就稱函數(shù)在區(qū)間m上是減函數(shù),如圖(2)。
函數(shù)的奇偶性教案人教版篇七
尊敬的各位老師:
大家好,我是1號考生。我說課的題目是《函數(shù)的'奇偶性》(板書課題),根據(jù)新課標的理念,以教什么,怎么教,為什么這樣教為思路,我從6個方面進行說課。
一、說設計理念。
根據(jù)新課程教學理念,在教學中,我以領悟為目的,練習為主線,引導學生自主學習,合作探究,在教學中,注重培養(yǎng)學生邏輯思維能力、創(chuàng)新能力、合作能力、歸納能力、及數(shù)學聯(lián)系生活的能力。即實現(xiàn)數(shù)學教學的知識目標,又實現(xiàn)育人的情感目標。
二、說教材。
《函數(shù)的奇偶性》是人教版第一章集合與函數(shù)概念單元的重要知識點。全面介紹了偶函數(shù)的定義及判定,奇函數(shù)的定義及判定等兩部分知識。為后面學習指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)等知識奠定了基礎。
(一)教學目標:
依據(jù)本節(jié)課的知識特點及新課標要求,本課的三維教學目標是:
1.知識與技能目標是:理解函數(shù)的奇偶性及其幾何意義,掌握判斷函數(shù)奇偶性的方法。
2.過程與方法目標是:通過學生自主探索,合作學習,培養(yǎng)學生的觀察、分析和歸納等數(shù)學能力,滲透數(shù)形結合的數(shù)學思想。。
3.情感態(tài)度與價值觀目標是:讓學生了解數(shù)學在生活中運用的廣泛性和實用性,引發(fā)學生學習數(shù)學知識的興趣。
(二)重點、難點:
(三)學情分析。
本課的授課對象是高一年級的學生,他們思維活躍,求知欲強,他們已經初步認識了函數(shù)的概念,高一年級的學生有自主學習、合作探究的能力,但仍需要教師的指導。
三、教法學法。
教法:本節(jié)課采用自主探究法、啟發(fā)式教學法、討論交流法等。
學法:引導學生探究合作,歸納總結,注重對學生自主探究問題能力的培養(yǎng),發(fā)揮學習小組的合作作用。
四、教學準備。
教師制作多媒體課件,編印導學案;學生預習課文,觀察生活中具有對稱美的物體或圖像。
五、教學過程。
本節(jié)課我從導、研、練、拓、升五個環(huán)節(jié)進行說課。
環(huán)節(jié)一:創(chuàng)設情境,導入新課。(導3)、
該環(huán)節(jié),用多媒體向學生展示現(xiàn)實生活中蝴蝶、太陽、湖面倒影等具有對稱性的圖像,再讓學生舉例函數(shù)圖像是否有類似的屬性?通過評價學生回答,引出本節(jié)課的標題:函數(shù)的奇偶性。
環(huán)節(jié)二:合作探究,獲取新知(研20)。
該環(huán)節(jié),我分兩個模塊進行。
模塊一:完成偶函數(shù)的定義。(板書知識點的小標題)。該模塊中,讓學生觀察課本圖1.3.7并思考,兩個函數(shù)圖像有什么共同特征?相應的對應表是如何體現(xiàn)這些特征的?進而讓學生觀察討論,得出結論:當自變量x取一對相反數(shù)時,相應的函數(shù)值相同,并引導學生歸納總結出偶函數(shù)的定義:定義域內任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
模塊二:完成奇函數(shù)的定義。(板書知識點的小標題)。該模塊中,學生已經學習了偶函數(shù)的定義,根據(jù)偶函數(shù)相同的教學方法引導學生推導出奇函數(shù)的定義,即:定義域內任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
模塊三:完成例題5講解。在引導學生復述偶函數(shù)、奇函數(shù)的定義的基礎上,師生共同完成例題5中的1)2)小題。在這個過程中教師要提醒學生注意函數(shù)定義域的范圍,掌握函數(shù)奇偶性判定的方法。在完成1、2小題的基礎上,讓學生獨立完成3)4)兩個小題。然后在小組內討論交流,教師巡視,以便發(fā)現(xiàn)問題,解決問題。
環(huán)節(jié)三:強化訓練,目標達成。(練12)。
該環(huán)節(jié),讓同學們拿出之前下發(fā)的練習題,每個小組選出一位同學到黑板板演。然后教師對板演情況進行講評,其他同學小組內互相批閱。
環(huán)節(jié)四:聯(lián)系生活,拓展延伸(拓5)。
這根據(jù)所學知識,讓學生聯(lián)系生活,列舉在教室中具有奇偶性的具體實物,提高學生將知識聯(lián)系生活的能力。
環(huán)節(jié)五:總結提升,布置作業(yè)(升5)。
教師對本節(jié)課知識點進行梳理。完成課堂達標測評試題,然后啟發(fā)學生思考這一課的收獲。最后布置兩種作業(yè)?;A型作業(yè)為總結本節(jié)課的所學知識完成相關練習。擴展型作業(yè)為學生自主查詢函數(shù)奇偶性的相關資料。
本環(huán)節(jié)通過梳理總結,使本課知識要點化,系統(tǒng)化,給學生以強化記憶。所布置的作業(yè),既可以鞏固所學知識,又能把課堂所學應用于實踐當中,從而達到教學的目的。
六、說板書設計。
我的板書直觀具體形象地將本節(jié)課的學生重點呈現(xiàn)在黑板之上,方便學生理解掌握。
我的說課到此結束,謝謝各位專家老師!
附:板書設計。
函數(shù)的奇偶性教案人教版篇八
知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。
過程與方法:通過設置問題情境培養(yǎng)學生判斷、推斷的能力。
情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操,通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養(yǎng)學生善于探索的思維品質。
難點:函數(shù)奇偶性的判斷。
學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。
1、復習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
(1)對于函數(shù),其定義域關于原點對稱:
如果______________________________________,那么函數(shù)為偶函數(shù)。
(2)奇函數(shù)的圖象關于__________對稱,偶函數(shù)的圖象關于_________對稱。
(3)奇函數(shù)在對稱區(qū)間的增減性;偶函數(shù)在對稱區(qū)間的增減性。
(1)f(x)=x4;(2)f(x)=x5;。
(3)f(x)=x+(4)f(x)=。
a2、二次函數(shù)()是偶函數(shù),則b=___________。
b3、已知,其中為常數(shù),若,則。
_______。
b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關于()。
(a)軸對稱(b)軸對稱(c)原點對稱(d)以上均不對。
b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。
c6、若函數(shù)是定義在r上的奇函數(shù),且當時,,那么當。
時,=_______。
d7、設是上的奇函數(shù),,當時,,則等于()。
(a)0.5(b)(c)1.5(d)。
d8、定義在上的奇函數(shù),則常數(shù)____,_____。
本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數(shù)的圖象充分理解好單調性和奇偶性這兩個性質。
函數(shù)的奇偶性教案人教版篇九
依據(jù)當前素質教育的要求:以人為本,以學生為主體,讓教最大限度的服務與學。因此我選用了以下教學方法:
1、自學體驗法——利用學生描點作圖經歷體驗并發(fā)現(xiàn)問題,分析問題進一步歸納總結。
目的:通過這種教學方式來激發(fā)學生學習的積極主動性,培養(yǎng)學生獨立思考能力和創(chuàng)新意識。
2、直觀教學法——利用多媒體現(xiàn)代教學手段。
目的:通過圖片和材料的展示來激發(fā)學生學習興趣,把抽象的知識直觀的展現(xiàn)在學生面前,逐步將他們的感性認識引領到理性的思考。
2、學法指導。
做為一名合格的老師,不止局限于知識的傳授,更重要的是使學生學會如何去學。本著這樣的原則,課上指導學生采用以下學習方法。
1、應用自主探究。培養(yǎng)學生獨立思考能力,閱讀能力和自主探究的學習習慣。
2、指導學生觀察圖象,分析材料。培養(yǎng)觀察總結能力。
函數(shù)的奇偶性教案人教版篇十
活動1:觀察:
展示學生作圖作品(書p28例2),強調列表及圖象上的點的對應關系。
課前一兩分鐘對學生上交的作圖作品進行快速篩選,進量多選出一部分,課上多肯定多表揚多鼓勵。再從中選取一兩幅優(yōu)秀的作品上課為示例。
目的有四:
2、課上展示學生作品本身就是對學生完成作業(yè)情況的肯定,這又恰好給予了學生足夠的成功感和榮譽感,這便增加了學生學習數(shù)學的信心,樂意學習數(shù)學,激發(fā)了學習熱情,聽課更加專心。
3、學生經歷畫圖象進而感悟它的形狀及與正比例函數(shù)圖象的異同,為后面的發(fā)現(xiàn)規(guī)律作了準備。
4、令教師對學生有了更深層次的了解,能更好地把握課堂。
(二)嘗試探索、體驗新知:
活動1、觀察探索:
比較兩個函數(shù)圖象的相同點與不同點?
第一步;根據(jù)你的觀察結果回答問題。(書中原問題1、2、3)
目的:這樣在學生已經知道正比例函數(shù)的圖象是一條直線的基礎上,通過對應描點法來畫出了圖象,讓學生通過操作體驗感悟兩者之間的關系,問題變得直觀形象,學生們非常容易地完成平移。
目的:這樣通過啟發(fā)學生視覺見到的兩點,即與坐標軸的交點{(0,b),和(-b/k,0)兩點};此交點的求法(學生易從填表中的數(shù)據(jù)發(fā)現(xiàn)),再反之引導學生抓住這兩點畫圖象。就此題體驗一次函數(shù)圖象的兩點確定;同時也教會了學生用兩點法畫一次函數(shù)圖象。
活動2:知識再體驗:在同一直角坐標系中畫出四個k值不同的一次函數(shù)圖象,并觀察分析。
目的:進一步鞏固兩點作圖法,為探究一次函數(shù)的性質作準備。
活動3:展示“上下坡”材料,解決象限問題。(多媒體展示)
目的:讓學生觸發(fā)漫畫中“上下坡”的情景,引導思考k、b對圖象的影響——設置化抽象為形象,化枯燥為生動,同時學生對這種直觀的知識易接受,易理解,記憶深刻。從而突出了重點,攻破了難點。
活動4:師生互動(師生角色互換),提高拓展。(多媒體展出內容)
目的:通過這種師生互動角色轉換形式,不但能盡快烘起課堂氣憤,而且復習了本課的重點內容,對一次函數(shù)的性質理解的更透徹。
(三)課堂小結
引導學生回憶所學知識。通過這節(jié)課的學習你得到什么啟示和收獲?談談你的感受.
目的:總結回顧學習內容,有助于學生養(yǎng)成整理知識的習慣;有助于學生在剛剛理解了新知識的基礎上,及時把知識系統(tǒng)化、條理化。
(四)作業(yè)布置
加強“教、學”反思,進一步提高“教與學”效果。
四、說板書設計
采用了如下板書,要點突出,簡明清晰。
一次函數(shù)
正比例函數(shù)圖像的畫法:確定兩點為(0,0)和(1,k)一次函數(shù)選擇的兩點為:(0,k)和(-b\k,0)
五、說課后小結
函數(shù)的奇偶性教案人教版篇十一
教學目標:了解奇偶性的含義,會判斷函數(shù)的奇偶性。能證明一些簡單函數(shù)的奇偶性。弄清函數(shù)圖象對稱性與函數(shù)奇偶性的關系。
難點:函數(shù)圖象對稱性與函數(shù)奇偶性的關系。
一、復習引入。
(1)奇函數(shù)。
(2)偶函數(shù)。
(3)與圖象對稱性的關系。
(4)說明(定義域的要求)。
二、例題分析。
例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)。
例2、證明函數(shù)在r上是奇函數(shù)。
三、隨堂練習。
1、函數(shù)()。
是奇函數(shù)但不是偶函數(shù)是偶函數(shù)但不是奇函數(shù)。
既是奇函數(shù)又是偶函數(shù)既不是奇函數(shù)又不是偶函數(shù)。
2、下列4個判斷中,正確的是_______.
(1)既是奇函數(shù)又是偶函數(shù);
(2)是奇函數(shù);
(3)是偶函數(shù);
(4)是非奇非偶函數(shù)。
3、函數(shù)的圖象是否關于某直線對稱?它是否為偶函數(shù)?
函數(shù)的奇偶性教案人教版篇十二
本課的內容是人教版八年級上冊第14章第2節(jié)第2課時,就是課本115到116頁的內容。在許多方面與正比例函數(shù)的圖象和性質有著緊密聯(lián)系,是本章中的重點。本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學習使學生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質。它既是正比例函數(shù)的圖象和性質的拓展,又是今后繼續(xù)學習“用函數(shù)觀點看方程(組)與不等式”的基礎,在本章中起著承上啟下的作用。本節(jié)教學內容還是學生進一步學習“數(shù)形結合”這一數(shù)學思想方法的很好素材。作為一種數(shù)學模型,一次函數(shù)在日常生活中也有著極其廣泛的應用。
(二)說教學目標
基于以上的教材分析,結合新課程標準的新理念,確立如下教學目標:
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關系;
2、會利用兩個合適的點畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質.
數(shù)學思考:
2、通過一次函數(shù)的圖象總結函數(shù)的性質,體驗數(shù)形結合法的應用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數(shù)的圖象和性質的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)說教學重點難點
教學重點:一次函數(shù)的圖象和性質。
教學難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質及對性質的理解。
函數(shù)的奇偶性教案人教版篇十三
【過程與方法】。
利用指數(shù)函數(shù)的圖像和性質,及單調性來解決問題。
【情感態(tài)度與價值觀】。
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學生學習數(shù)學的興趣。
【重點】。
【難點】。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關于y軸對稱;。
(二)新課教學。
(1)偶函數(shù)(evenfunction)。
(學生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;。
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
2.具有奇偶性的函數(shù)的圖象的特征。
偶函數(shù)的圖象關于y軸對稱;。
奇函數(shù)的圖象關于原點對稱。
3.典型例題。
例1.(教材p36例3)應用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
總結:利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;。
2確定f(-x)與f(x)的關系;。
3作出相應結論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。
(三)鞏固提高。
1.教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關于y軸對稱;。
奇函數(shù)的圖象關于原點對稱。
(四)小結作業(yè)。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數(shù)的圖象關于y軸對稱;。
奇函數(shù)的`圖象關于原點對稱。
函數(shù)的奇偶性教案人教版篇十四
講授新課前,做一份完美的教案,能夠更大程度的調動學生在上課時的積極性,以下是白話文為大家整理的人教版高一數(shù)學《指數(shù)函數(shù)》教案,希望可以幫助到有需要的朋友。
1。使學生掌握的概念,圖象和性質。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質。
(3)能利用的性質比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象。
2。通過對的概念圖象性質的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結合的思想方法。
3。通過對的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣。使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題。
(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究。
(2)本節(jié)的教學重點是在理解定義的基礎上掌握的圖象和性質。難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分。
(3)是學生完全陌生的一類函數(shù),對于這樣的.函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是。
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內容。如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
1。理解的定義,初步掌握的圖象,性質及其簡單應用。
2。通過的圖象和性質的學習,培養(yǎng)學生觀察,分析,歸納的能力,進一步體會數(shù)形結合的思想方法。
3。通過對的研究,使學生能把握函數(shù)研究的基本方法,激發(fā)學生的學習興趣。
重點是理解的定義,把握圖象和性質。
難點是認識底數(shù)對函數(shù)值影響的認識。
投影儀。
啟發(fā)討論研究式。
一。引入新課。
我們前面學習了指數(shù)運算,在此基礎上,今天我們要來研究一類新的常見函數(shù)———————。
1。6。(板書)。
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
由學生回答:與之間的關系式,可以表示為。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關系。
由學生回答:。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
一。的概念(板書)。
1。定義:形如的函數(shù)稱為。(板書)。
教師在給出定義之后再對定義作幾點說明。
2。幾點說明(板書)。
(1)關于對的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內相應的函數(shù)值不存在。
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定且。
(2)關于的定義域(板書)。
教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的性質和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為。擴充的另一個原因是因為使她它更具代表更有應用價值。
(3)關于是否是的判斷(板書)。
剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
(1),?(2),?(3)。
(4),?(5)。
學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)可以寫成,也是指數(shù)圖象。
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質。
3。歸納性質。
作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準備明確性質,再由學生回答。
函數(shù)。
1。定義域:
2。值域:
3。奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
4。截距:在軸上沒有,在軸上為1。
對于性質1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數(shù)圖象畫圖的依據(jù)。(圖象位于軸上方,且與軸不相交。)。
在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調性不清,所取點的個數(shù)不能太少。
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線。
二。圖象與性質(板書)。
1。圖象的畫法:性質指導下的列表描點法。
2。草圖:
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例。
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即=與圖象之間關于軸對稱,而此時的圖象已經有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象。
最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質,即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學生仿照此例再列一個的表,將相應的內容填好。為進一步整理性質,教師可提出從另一個角度來分類,整理函數(shù)的性質。
3。性質。
(1)無論為何值,都有定義域為,值域為,都過點。
(2)時,在定義域內為增函數(shù),時,為減函數(shù)。
(3)時,,???時,。
總結之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質。
三。簡單應用??(板書)。
1。利用單調性比大小。?(板書)。
一類函數(shù)研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1。比較下列各組數(shù)的大小。
(1)與;?(2)與;。
(3)與1。(板書)。
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想,提出構造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調性比較大小。然后以第(1)題為例,給出解答過程。
解:在上是增函數(shù),且。
(板書)。
教師最后再強調過程必須寫清三句話:
(1)構造函數(shù)并指明函數(shù)的單調區(qū)間及相應的單調性。
(2)自變量的大小比較。
(3)函數(shù)值的大小比較。
后兩個題的過程略。要求學生仿照第(1)題敘述過程。
例2。比較下列各組數(shù)的大小。
(1)與;?(2)與?;。
(3)與。(板書)。
先讓學生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導學生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決。(教師可提示學生的函數(shù)值與1有關,可以用1來起橋梁作用)。
最后由學生說出1,1,。
解決后由教師小結比較大小的方法。
(1)構造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉化為同底的)。
(2)搭橋比較法:用特殊的數(shù)1或0。
三。鞏固練習。
練習:比較下列各組數(shù)的大?。ò鍟?。
(1)與???(2)與;。
(3)與;(4)與。解答過程略。
四。小結。
1。的概念。
2。的圖象和性質。
3。簡單應用。
五。板書設計。
函數(shù)的奇偶性教案人教版篇十五
知識梳理:
1、軸對稱圖形:
2中心對稱圖形:
1、畫出函數(shù),與的圖像;并觀察兩個函數(shù)圖像的對稱性。
2、求出,時的函數(shù)值,寫出。
結論:
(1)、強調定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質。
(2)、奇函數(shù)偶函數(shù)的定義域關于原點對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數(shù)是___________。
如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關于軸對稱,則這個函數(shù)是___________。
(1)(2)(3)。
(4)(5)。
練習:教材第49頁,練習a第1題。
總結:根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式。
例2:若f(x)是定義在r上的奇函數(shù),當x0時,f(x)=x(1-x),求當時f(x)的解析式。
練習:若f(x)是定義在r上的奇函數(shù),當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。
已知定義在實數(shù)集上的奇函數(shù)滿足:當x0時,,求的表達式。
題型三:利用奇偶性作函數(shù)圖像。
例3研究函數(shù)的性質并作出它的圖像。
練習:教材第49練習a第3,4,5題,練習b第1,2題。
當堂檢測。
1已知是定義在r上的奇函數(shù),則(d)。
a.b.c.d.
2如果偶函數(shù)在區(qū)間上是減函數(shù),且最大值為7,那么在區(qū)間上是(b)。
a.增函數(shù)且最小值為-7b.增函數(shù)且最大值為7。
c.減函數(shù)且最小值為-7d.減函數(shù)且最大值為7。
3函數(shù)是定義在區(qū)間上的偶函數(shù),且,則下列各式一定成立的是(c)。
a.b.c.d.
4已知函數(shù)為奇函數(shù),若,則-1。
5若是偶函數(shù),則的單調增區(qū)間是。
6下列函數(shù)中不是偶函數(shù)的是(d)。
abcd。
7設f(x)是r上的偶函數(shù),切在上單調遞減,則f(-2),f(-),f(3)的大小關系是(a)。
abf(-)f(-2)f(3)cf(-)。
8奇函數(shù)的圖像必經過點(c)。
a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。
9已知函數(shù)為偶函數(shù),其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是(a)。
a0b1c2d4。
11若f(x)在上是奇函數(shù),且f(3)_f(-1)。
12、解答題。
已知函數(shù)在區(qū)間d上是奇函數(shù),函數(shù)在區(qū)間d上是偶函數(shù),求證:是奇函數(shù)。
已知分段函數(shù)是奇函數(shù),當時的解析式為,求這個函數(shù)在區(qū)間上的解析表達式。
函數(shù)的奇偶性教案人教版篇十六
理解函數(shù)的奇偶性及其幾何意義。
【過程與方法】。
利用指數(shù)函數(shù)的圖像和性質,及單調性來解決問題。
【情感態(tài)度與價值觀】。
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學生學習數(shù)學的興趣。
【重點】。
【難點】。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關于y軸對稱;
(二)新課教學。
(1)偶函數(shù)(evenfunction)。
(學生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
2、具有奇偶性的函數(shù)的圖象的特征。
偶函數(shù)的圖象關于y軸對稱;
奇函數(shù)的圖象關于原點對稱。
3、典型例題。
例1.(教材p36例3)應用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
總結:利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;
2確定f(-x)與f(x)的關系;
3作出相應結論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。
(三)鞏固提高。
1、教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關于y軸對稱;
奇函數(shù)的圖象關于原點對稱。
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù)。
(四)小結作業(yè)。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數(shù)的圖象關于y軸對稱;
奇函數(shù)的`圖象關于原點對稱。
【本文地址:http://mlvmservice.com/zuowen/8437427.html】