教案是確保課堂教學(xué)順利進(jìn)行的重要保障。教案的語言應(yīng)簡潔明了,重點(diǎn)突出,以方便教師的操作和學(xué)生的理解。多讀優(yōu)秀的教案范文可以幫助您開闊教學(xué)思路,提高教學(xué)水平。
函數(shù)的奇偶性教案人教版篇一
本節(jié)課的教學(xué)模式是采用循序漸進(jìn),由簡單的問題引入,然后在教師的引導(dǎo)下,探索結(jié)論,最后,在教師的指導(dǎo)下,對所學(xué)的實(shí)際結(jié)論進(jìn)行學(xué)生的實(shí)際應(yīng)用。
一、這種教學(xué)模式的教學(xué)程序是:
(一)實(shí)際練習(xí)引入課題,并能去發(fā)現(xiàn)生活中的相關(guān)信息,引起學(xué)生的興趣。
(二)看圖,具體引入函數(shù)進(jìn)行觀察探索,包括圖像觀察,自變量的變化,函數(shù)值的變化規(guī)律。
(三)明確這是函數(shù)的一種性質(zhì),明確定義,并強(qiáng)調(diào)定義中的注意事項(xiàng),怎樣理解定義中的規(guī)定。
(四)教師具體以例題進(jìn)行示范,學(xué)生們領(lǐng)會對函數(shù)奇偶性的`認(rèn)識,并怎樣進(jìn)行判斷。
(五)同學(xué)們在領(lǐng)會的基礎(chǔ)上,進(jìn)行實(shí)際訓(xùn)練,達(dá)到對知識的理解和應(yīng)用。
二、這種教學(xué)模式的優(yōu)勢是:循序漸進(jìn),學(xué)生能夠?qū)嶋H參與,在教學(xué)中體現(xiàn)和諧,教師的導(dǎo)和學(xué)生的練保證教學(xué)的效果。
這種教學(xué)模式的缺點(diǎn)與解決方法是:
還缺乏對學(xué)生更高層次的參與的調(diào)動,尤其是職業(yè)中學(xué)中部分在初中已經(jīng)放棄學(xué)習(xí)的同學(xué)的參與問題。對配套練習(xí)要進(jìn)一步細(xì)化,要對每一個(gè)知識點(diǎn)都要精心設(shè)計(jì)相應(yīng)知識點(diǎn)的訓(xùn)練,圖像的認(rèn)識上,要加大同學(xué)們對生活的感知和相關(guān)軟件的使用,并能在電腦上實(shí)際體驗(yàn)函數(shù)圖像的對稱情況。
函數(shù)的奇偶性教案人教版篇二
今天我說課的課題是高中數(shù)學(xué)人教a版必修一第一章第三節(jié)函數(shù)的基本性質(zhì)中的函數(shù)的奇偶性,下面我將從教材分析,教法、學(xué)法分析,教學(xué)過程,教輔手段,板書設(shè)計(jì)等方面對本課時(shí)的教學(xué)設(shè)計(jì)進(jìn)行說明。
(一)教材特點(diǎn)、教材的地位與作用。
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個(gè)性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)打下了堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對知識起到了承上啟下的作用。
(二)重點(diǎn)、難點(diǎn)。
1、本課時(shí)的教學(xué)重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。
2、本課時(shí)的教學(xué)難點(diǎn)是:判斷函數(shù)的奇偶性的方法與格式。
(三)教學(xué)目標(biāo)。
1、知識與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運(yùn)用函數(shù)奇偶性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3、情感態(tài)度與價(jià)值觀:在奇偶性概念形成過程中,使學(xué)生體會數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
1.教學(xué)方法:啟發(fā)引導(dǎo)式。
結(jié)合本章實(shí)際,教材簡單易懂,重在應(yīng)用、解決實(shí)際問題,本節(jié)課準(zhǔn)備采用"引導(dǎo)發(fā)現(xiàn)法"進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu).使用多媒體輔助教學(xué),突出了知識的產(chǎn)生過程,又增加了課堂的趣味性.
2.學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會學(xué)習(xí).
為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個(gè)教學(xué)過程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個(gè)主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
(一)設(shè)疑導(dǎo)入,觀圖激趣。
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。
學(xué)生舉例生活中的對稱現(xiàn)象。
折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的'圖形。
問題:將第一象限和第二象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的痕跡,然后將紙展開.觀察坐標(biāo)喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。
(二)指導(dǎo)觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究.
思考:請同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個(gè)函數(shù)圖象的對稱性如何。
借助課件演示,學(xué)生會回答自變量互為相反數(shù),函數(shù)值相等.接著再讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對所有的x,都有類似的情況借助課件演示,學(xué)生會得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示.
思考:由于對任一x,必須有一-x與之對應(yīng),因此函數(shù)的定義域有什么特征。
引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點(diǎn)對稱.根據(jù)以上特點(diǎn),請學(xué)生用完整的語言敘述定義,同時(shí)給出板書:
提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢(同時(shí)打出y=1/x的圖象讓學(xué)生觀察研究)。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
強(qiáng)調(diào)注意點(diǎn):"定義域關(guān)于原點(diǎn)對稱"的條件必不可少.
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識,歸納步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對稱。
(2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點(diǎn):既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)。
接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點(diǎn)對稱,二是定義域雖關(guān)于原點(diǎn)對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據(jù)前面引入知識中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
函數(shù)f(x)是奇函數(shù)=圖象關(guān)于原點(diǎn)對稱。
函數(shù)f(x)是偶函數(shù)=圖象關(guān)于y軸對稱。
給出例2:書p63例3,再進(jìn)行當(dāng)堂鞏固,
1,書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。
(三)學(xué)生探索,發(fā)展思維。
思考:
2,函數(shù)y=0有是什么函數(shù)。
(四)布置作業(yè)。
課本p39習(xí)題1.3(a組)第6題,b組第3。
函數(shù)的奇偶性教案人教版篇三
【知識目標(biāo)】:使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,學(xué)會利用函數(shù)圖像理解和研究函數(shù)的性質(zhì),初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.
【能力目標(biāo)】通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.
【教學(xué)難點(diǎn)】歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性.由于判斷或證明函數(shù)的單調(diào)性,常常要綜合運(yùn)用一些知識(如不等式、因式分解、配方及數(shù)形結(jié)合的思想方法等)所以判斷或證明函數(shù)的單調(diào)性是本節(jié)課的難點(diǎn).
【教材分析】函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它把自變量的變化方向和函數(shù)值的變化方向定性的聯(lián)系在一起,所以本節(jié)課在教材中的作用如下(1)函數(shù)的單調(diào)性起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決函數(shù)的某些問題中得到了充分運(yùn)用,函數(shù)的單調(diào)性與前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù)有密切的聯(lián)系;函數(shù)的單調(diào)性一節(jié)中的知識是它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ)。
(2)函數(shù)的單調(diào)性是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,這節(jié)課通過對具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個(gè)區(qū)間上是增函數(shù)或減函數(shù)的準(zhǔn)確定義,明確指出函數(shù)的增減性是相對于某個(gè)區(qū)間來說的。教材中判斷函數(shù)的增減性,既有從圖像上進(jìn)行觀察的直觀方法,又有根據(jù)其定義進(jìn)行邏輯推理的嚴(yán)格證明方法,最后將兩種方法統(tǒng)一起來,形成根據(jù)觀察圖像得出猜想結(jié)論,進(jìn)而用推理證明猜想的體系。同時(shí)還要綜合利用前面的知識解決函數(shù)單調(diào)性的一些問題,有利于學(xué)生數(shù)學(xué)能力的提高。
(3)函數(shù)的單調(diào)性有著廣泛的實(shí)際應(yīng)用。在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均需用到函數(shù)的單調(diào)性;同時(shí)在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的'數(shù)形結(jié)合思想將貫穿于我們整個(gè)數(shù)學(xué)教學(xué)。因此“函數(shù)的單調(diào)性”在中學(xué)數(shù)學(xué)內(nèi)容里占有十分重要的地位。它體現(xiàn)了函數(shù)的變化趨勢和變化特點(diǎn),在利用函數(shù)觀點(diǎn)解決問題中起著十分重要的作用,為培養(yǎng)創(chuàng)新意識和實(shí)踐能力提供了重要方式和途徑。
【學(xué)情分析】從學(xué)生的知識上看,學(xué)生已經(jīng)學(xué)過一次函數(shù),二次函數(shù),反比例函數(shù)等簡單函數(shù),函數(shù)的概念及函數(shù)的表示,能畫出一些簡單函數(shù)的圖像,從圖像的直觀變化,學(xué)生能粗略的得到函數(shù)增減性的定義,所以引入函數(shù)的單調(diào)性的定義應(yīng)該是順理成章的。從學(xué)生現(xiàn)有的學(xué)習(xí)能力看,通過初中對函數(shù)的認(rèn)識與實(shí)驗(yàn),學(xué)生已具備了一定的觀察事物的能力,積累了一些研究問題的經(jīng)驗(yàn),在一定程度上具備了抽象、概括的能力和語言轉(zhuǎn)換能力。從學(xué)生的心理學(xué)習(xí)心理上看,學(xué)生頭腦中雖有一些函數(shù)性質(zhì)的實(shí)物實(shí)例,但并沒有上升為“概念”的水平,如何“定性”“定量”地描述函數(shù)性質(zhì)是學(xué)生關(guān)注的問題,也是學(xué)習(xí)的重點(diǎn)問題。函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個(gè)性質(zhì),學(xué)生也容易產(chǎn)生共鳴,通過對比產(chǎn)生頓悟,渴望獲得這種學(xué)習(xí)的積極心向是學(xué)生學(xué)好本節(jié)課的情感基礎(chǔ)。但是如何運(yùn)用數(shù)學(xué)符號將自然語言的描述提升為形式化的定義,學(xué)生接受起來比較困難?在教學(xué)中要多引導(dǎo),讓學(xué)生真正的理解函數(shù)單調(diào)性的定義。
【教學(xué)方法】教師是教學(xué)的主體、學(xué)生是學(xué)習(xí)的主體,通過雙主體的教學(xué)模式方法:啟發(fā)式教學(xué)法——以設(shè)問和疑問層層引導(dǎo),激發(fā)學(xué)生,啟發(fā)學(xué)生積極思考,逐步從常識走向科學(xué),將感性認(rèn)識提升到理性認(rèn)識,培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。探究教學(xué)法——引導(dǎo)學(xué)生去疑;鼓勵(lì)學(xué)生去探;激勵(lì)學(xué)生去思,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。合作學(xué)習(xí)——通過組織小組討論達(dá)到探究、歸納的目的?!窘虒W(xué)手段】計(jì)算機(jī)、投影儀.
【教學(xué)過程】一、創(chuàng)設(shè)情境,引入課題(利用電腦展示)1.如圖為某市一天內(nèi)的氣溫變化圖:(1)觀察這個(gè)氣溫變化圖,說出氣溫在這一天內(nèi)的變化情況.(2)怎樣用數(shù)學(xué)語言刻畫在這一天內(nèi)“隨著時(shí)間的增大,氣溫逐漸升高或下降”這一特征?引導(dǎo)學(xué)生識圖,捕捉信息,啟發(fā)學(xué)生思考.問題:觀察圖形,能得到什么信息?預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及何時(shí)達(dá)到;(2)在某時(shí)刻的溫度;(3)某些時(shí)段溫度升高,某些時(shí)段溫度降低.在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,是很有幫助的.問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?預(yù)案:股票價(jià)格、水位變化、心電圖等等春蘭股份線性圖.水位變化圖歸納:用函數(shù)觀點(diǎn)看,其實(shí)就是隨著自變量的變化,函數(shù)值是變大還是變小.
〖設(shè)計(jì)意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對于自變量變化時(shí),函數(shù)值是變大還是變小,初中同學(xué)們就有了一定的認(rèn)識,但是沒有嚴(yán)格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴(yán)格定義.1.借助圖象,直觀感知問題1:分別作出函數(shù)的圖象,并且觀察自變量變化時(shí),函數(shù)值有什么變化規(guī)律?(學(xué)生自己動手畫,然后電腦顯示下圖)預(yù)案:生:函數(shù)在整個(gè)定義域內(nèi)y隨x的增大而增大;函數(shù)在整個(gè)定義域內(nèi)y隨x的增大而減小.師:函數(shù)的圖像變化規(guī)律生:在y軸的的左側(cè)y隨x的增大而減小.在y軸的的右側(cè)y隨x的增大而增大。師:我們學(xué)過區(qū)間的表示方法,如何用區(qū)間的概念來表述圖像的變化規(guī)律生:在上y隨x的增大而增大,在上y隨x的增大而減小.師:這樣表述就比較嚴(yán)密了,很好。由上面的討論可知,函數(shù)的單調(diào)性與自變量的范圍有關(guān),一個(gè)函數(shù)并不一定在整個(gè)正義域內(nèi)是單調(diào)函數(shù),但在定義城的某個(gè)子集上可以是單調(diào)函數(shù)。(3)函數(shù)的圖像變化規(guī)律如何。
生:(1)定義域中的減函數(shù)。(2)在上y隨x的增大而減小,在上y隨x的增大而減小.師:對于兩種答案,哪一種是正確的,為什么?學(xué)生分組討論。從定義域,圖像的角度考慮,也可以舉反例引導(dǎo)學(xué)生進(jìn)行分類描述(增函數(shù)、減函數(shù)).并引導(dǎo)學(xué)生用區(qū)間明確描述函數(shù)的單調(diào)性從而讓學(xué)生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個(gè)區(qū)間而言的,是函數(shù)的局部性質(zhì).
問題2:能不能根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)?預(yù)案:如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù);如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y越來越小,我們說函數(shù)在該區(qū)間上為減函數(shù).教師指出:這種認(rèn)識是從圖象的角度得到的,是對函數(shù)單調(diào)性的直觀,描述性的認(rèn)識.
〖設(shè)計(jì)意圖〗從圖象直觀感知函數(shù)單調(diào)性,完成對函數(shù)單調(diào)性的第一次認(rèn)識.2.探究規(guī)律,理性認(rèn)識問題1:下圖是函數(shù)的圖象,能說出這個(gè)函數(shù)分別在哪個(gè)區(qū)間為增函數(shù)和減函數(shù)嗎?(電腦顯示,學(xué)生分組討論)學(xué)生的困難是難以確定分界點(diǎn)的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時(shí)不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究.
〖設(shè)計(jì)意圖〗使學(xué)生體會到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性.問題2:如何從解析式的角度說明在為增函數(shù)?預(yù)案:生:在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)?222,所以在為增函數(shù).生:僅僅兩個(gè)數(shù)的大小關(guān)系不能說明函數(shù)y=x2在區(qū)間[0,+∞)上為單調(diào)遞增函數(shù),應(yīng)該舉出無數(shù)個(gè)。由于很多學(xué)生不能分清“無數(shù)”和“所有”的區(qū)別,所以許多學(xué)生對學(xué)生2的說法表示贊同。
生:函數(shù))無數(shù)個(gè)如(2)中的實(shí)數(shù),顯然f(x)也隨x的增大而增大,是不是也可以說函數(shù)在區(qū)間上是增函數(shù)?可這與圖象矛盾啊?師:“無數(shù)個(gè)”能不能代表“所有”呢?比如:2、3、4、5……有無數(shù)個(gè)自然數(shù)都比大,那我們能不能說所有的自然數(shù)都比大呢?所以具體值取得再多,也不能代表所有的,思考如何體現(xiàn)區(qū)間上的所有值。引導(dǎo)學(xué)生利用字母表示數(shù)。生:任取且,因?yàn)?即,所以在為增函數(shù).舊教材的定義在這里就可以歸納出來,但是人教b版新教材使用了自變量的增量和函數(shù)值的增量來表述,并為以后學(xué)習(xí)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性做準(zhǔn)備,所以需進(jìn)一步引導(dǎo)學(xué)生利用增量來定義函數(shù)的單調(diào)性。
(5)仿(4)且,由圖象可知,即給自變量一個(gè)增量,,函數(shù)值的增量所以在為增函數(shù)。對于學(xué)生錯(cuò)誤的回答,引導(dǎo)學(xué)生分別用圖形語言和文字語言進(jìn)行辨析,使學(xué)生認(rèn)識到問題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個(gè)自變量進(jìn)一步尋求自變量的增量與函數(shù)值的增量之間的變化規(guī)律,判斷函數(shù)單調(diào)性。注意這里的“都有”是對應(yīng)于“任意”的。
〖設(shè)計(jì)意圖〗把對單調(diào)性的認(rèn)識由感性上升到理性認(rèn)識的高度,完成對概念的第二次認(rèn)識.事實(shí)上也給出了證明單調(diào)性的方法,為證明單調(diào)性做好鋪墊.3.抽象思維,形成概念問題:你能用準(zhǔn)確的數(shù)學(xué)符號語言表述出增函數(shù)的定義嗎?師生共同探究,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類比得出減函數(shù)的定義.
(1)板書定義設(shè)函數(shù)的定義域?yàn)閍,區(qū)間ma,如果取區(qū)間m中的任意兩個(gè)值,當(dāng)改變量時(shí),都有,那么就稱函數(shù)在區(qū)間m上是增函數(shù),如圖(1)當(dāng)改變量時(shí),都有,那么就稱函數(shù)在區(qū)間m上是減函數(shù),如圖(2)。
函數(shù)的奇偶性教案人教版篇四
一.多媒體使用的思考:
1.用:充分考慮多媒體的必用性和實(shí)用性,如實(shí)例引入,借助一些圖片,讓學(xué)生更形象的看到對稱。例題展現(xiàn)、問題展現(xiàn),節(jié)約了教師黑板抄題的時(shí)間,提高了課堂效率。當(dāng)然本節(jié)課不需要動畫展示,如果需要有動畫演示的可以做在課件上,把一些無法言傳的內(nèi)容呈現(xiàn)在課件上才能真正體現(xiàn)多媒體之“用”。
2.不用:如果要把課件帶入每一節(jié)新授課,那么在制作課件的時(shí)候就要效率高,有一些內(nèi)容就不用放入課件,如:例題的解題過程和在黑板上必須呈現(xiàn)的內(nèi)容不用再搬到課件上去,否則學(xué)生也不知道該看黑板還是課件,增大了學(xué)生學(xué)習(xí)負(fù)擔(dān),降低了學(xué)習(xí)效率。所以我在課件制作中,注重內(nèi)容與黑板板書不重疊。
在多媒體應(yīng)用上,我們要注重區(qū)分什么該用,什么不該用以確實(shí)提高課堂效率。
設(shè)計(jì)教學(xué)設(shè)計(jì)的過程中,充分考慮課程標(biāo)準(zhǔn)和教材的要求來確定教學(xué)目標(biāo),把握學(xué)生的學(xué)習(xí)水平,在教學(xué)中給學(xué)生充分思考的時(shí)間和空間,尊重學(xué)生的思想方法,點(diǎn)評優(yōu)化學(xué)生的學(xué)習(xí)收獲,充分調(diào)動學(xué)生探究的積極性,培養(yǎng)學(xué)生學(xué)習(xí)的興趣。在教學(xué)中不變的是先進(jìn)的教學(xué)理念和合理的教學(xué)設(shè)計(jì)。放手給學(xué)生們自主學(xué)和研究就是我們應(yīng)該大膽做的。從學(xué)生的角度設(shè)計(jì)教學(xué),才能體現(xiàn)以學(xué)生為本!
三.做到重點(diǎn)突出和難點(diǎn)突破。
如何重點(diǎn)突出和難點(diǎn)突破是教學(xué)技術(shù)、教學(xué)專業(yè)上挑戰(zhàn),我們在上每一節(jié)課面對這些問題時(shí)都必須精心設(shè)計(jì),那樣的課堂才能高效,學(xué)生才會喜歡。
在本節(jié)課中重點(diǎn)之一是函數(shù)奇偶性概念的理解,從實(shí)例引入,讓學(xué)生感到本節(jié)課研究的必要性與趣味性,從圖像對稱的本質(zhì)讓學(xué)生給出概念,老師總結(jié),再讓學(xué)生回頭感悟,有利于學(xué)生真正理解概念和應(yīng)用概念。如何理解0再定義域內(nèi)時(shí),奇函數(shù)在0處的值為0時(shí)本節(jié)課難點(diǎn)之一,從一條辨析題到處問題,在研究問題,自然!同時(shí)激發(fā)了學(xué)生探究的欲望,學(xué)得深刻。
總之,要上好每一節(jié)課才能真正鍛煉老師的教學(xué)素養(yǎng)、技術(shù),才能真正提高咱們的教學(xué)理念。
函數(shù)的奇偶性教案人教版篇五
1。了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法。
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。
(2)能從數(shù)和形兩個(gè)角度認(rèn)識單調(diào)性和奇偶性。
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。
2。通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想。
3。通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。
一、知識結(jié)構(gòu)。
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點(diǎn)難點(diǎn)分析。
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),掌握單調(diào)性的證明。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的'難點(diǎn)。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個(gè)過程當(dāng)中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來。
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象(如)說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
函數(shù)的奇偶性教案人教版篇六
一、內(nèi)容與解析(一)內(nèi)容:基本初等函數(shù)習(xí)題課(一)。
(二)解析:對數(shù)函數(shù)的性質(zhì)的掌握,要先根據(jù)其圖像來分析與記憶,這樣更形像更直觀,這是學(xué)習(xí)圖像與性質(zhì)的基本方法,在此基礎(chǔ)上,我們要對對數(shù)函數(shù)的兩種情況的性質(zhì)做一個(gè)比較,使之更好的'掌握.
二、目標(biāo)及其解析:
(一)教學(xué)目標(biāo)。
(1)掌握指數(shù)函數(shù)、對數(shù)函數(shù)的概念,會作指數(shù)函數(shù)、對數(shù)函數(shù)的圖象,并能根據(jù)圖象說出指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì),了解五個(gè)冪函數(shù)的圖象及性質(zhì)及其奇偶性.
(二)解析。
(1)基本初等函數(shù)的學(xué)習(xí)重要是學(xué)習(xí)其性質(zhì),要掌握好性質(zhì),從圖像上來理解與掌握是一個(gè)很有效的辦法.
(2)每類基本初類函數(shù)的性質(zhì)差別比較大,學(xué)習(xí)時(shí)要有一個(gè)有效的區(qū)分.
三、問題診斷分析。
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是不易區(qū)分各函數(shù)的圖像與性質(zhì),不容易抓住其各自的特點(diǎn)。
四、教學(xué)支持條件分析。
在本節(jié)課一次遞推的教學(xué)中,準(zhǔn)備使用p5。
函數(shù)的奇偶性教案人教版篇七
了解奇偶性的含義,會判斷函數(shù)的奇偶性。能證明一些簡單函數(shù)的奇偶性。弄清函數(shù)圖象對稱性與函數(shù)奇偶性的關(guān)系。
一、復(fù)習(xí)引入。
(1)奇函數(shù)。
(2)偶函數(shù)。
(3)與圖象對稱性的關(guān)系。
(4)說明(定義域的要求)。
二、例題分析。
例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)。
例2、證明函數(shù)在r上是奇函數(shù)。
三、隨堂練習(xí)。
1、函數(shù)()。
是奇函數(shù)但不是偶函數(shù)是偶函數(shù)但不是奇函數(shù)。
既是奇函數(shù)又是偶函數(shù)既不是奇函數(shù)又不是偶函數(shù)。
2、下列4個(gè)判斷中,正確的是_______.
(1)既是奇函數(shù)又是偶函數(shù);
(2)是奇函數(shù);
(3)是偶函數(shù);
(4)是非奇非偶函數(shù)。
3、函數(shù)的圖象是否關(guān)于某直線對稱?它是否為偶函數(shù)?
函數(shù)的奇偶性教案人教版篇八
【過程與方法】。
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題.
【情感態(tài)度與價(jià)值觀】。
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
二、教學(xué)重難點(diǎn)。
【重點(diǎn)】。
【難點(diǎn)】。
三、教學(xué)過程。
(一)導(dǎo)入新課。
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對稱;。
(2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.
(二)新課教學(xué)。
像上面實(shí)踐操作1中的圖象關(guān)于y軸對稱的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點(diǎn)對稱的函數(shù)即是奇函數(shù).
(1)偶函數(shù)(evenfunction)。
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(學(xué)生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的'一個(gè)必要條件是,對于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱).
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.
3.典型例題。
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。
解:(略)。
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱;。
2確定f(-x)與f(x)的關(guān)系;。
3作出相應(yīng)結(jié)論:
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
(三)鞏固提高。
1.教材p46習(xí)題1.3b組每1題。
解:(略)。
說明:函數(shù)具有奇偶性的一個(gè)必要條件是,定義域關(guān)于原點(diǎn)對稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.
(四)小結(jié)作業(yè)。
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對稱.單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì).
課本p46習(xí)題1.3(a組)第9、10題,b組第2題.
四、板書設(shè)計(jì)。
一、偶函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
二、奇函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.
函數(shù)的奇偶性教案人教版篇九
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個(gè)性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)打下了堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對知識起到了承上啟下的作用。
(二)重點(diǎn)、難點(diǎn)。
1、本課時(shí)的教學(xué)重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。
2、本課時(shí)的教學(xué)難點(diǎn)是:判斷函數(shù)的奇偶性的方法與格式。
(三)教學(xué)目標(biāo)。
1、知識與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運(yùn)用函數(shù)奇偶性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3、情感態(tài)度與價(jià)值觀:在奇偶性概念形成過程中,使學(xué)生體會數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
二、教法、學(xué)法分析。
1、教學(xué)方法:啟發(fā)引導(dǎo)式。
結(jié)合本章實(shí)際,教材簡單易懂,重在應(yīng)用、解決實(shí)際問題,本節(jié)課準(zhǔn)備采用“引導(dǎo)發(fā)現(xiàn)法”進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。使用多媒體輔助教學(xué),突出了知識的產(chǎn)生過程,又增加了課堂的趣味性。
2、學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會學(xué)習(xí)。
三、教輔手段。
四、教學(xué)過程。
為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個(gè)教學(xué)過程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個(gè)主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
(一)設(shè)疑導(dǎo)入,觀圖激趣。
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。
學(xué)生舉例生活中的對稱現(xiàn)象。
折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形。
問題:將第一象限和第二象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的.痕跡,然后將紙展開。觀察坐標(biāo)喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。
(二)指導(dǎo)觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個(gè)函數(shù)圖象的對稱性如何。
給出圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于軸對稱呢此時(shí)提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律。
借助課件演示,學(xué)生會回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對所有的x,都有類似的情況借助課件演示,學(xué)生會得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。
思考:由于對任一x,必須有一-x與之對應(yīng),因此函數(shù)的定義域有什么特征。
引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點(diǎn)對稱。根據(jù)以上特點(diǎn),請學(xué)生用完整的語言敘述定義,同時(shí)給出板書:
(1)函數(shù)f(x)的定義域?yàn)閍,且關(guān)于原點(diǎn)對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)。
提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
強(qiáng)調(diào)注意點(diǎn):“定義域關(guān)于原點(diǎn)對稱”的條件必不可少。
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識,歸納步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對稱。
(2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點(diǎn):既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)。
接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點(diǎn)對稱,二是定義域雖關(guān)于原點(diǎn)對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據(jù)前面引入知識中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
給出例2:書p63例3,再進(jìn)行當(dāng)堂鞏固,
1。書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。
(三)學(xué)生探索,發(fā)展思維。
思考:1,函數(shù)y=2是什么函數(shù)。
2,函數(shù)y=0有是什么函數(shù)。
(四)布置作業(yè):課本p39習(xí)題1、3(a組)第6題,b組第3。
五、板書設(shè)計(jì)。
函數(shù)的奇偶性教案人教版篇十
在本節(jié)課教學(xué)過程中,我讓學(xué)生通過圖象直觀獲得函數(shù)奇偶性的認(rèn)識,然后利用表格探究數(shù)量變化特征,通過代數(shù)運(yùn)算,驗(yàn)證發(fā)現(xiàn)的數(shù)量特征對定義域中的”任意”值都成立,最后在這個(gè)基礎(chǔ)上建立奇偶函數(shù)的概念。
在本節(jié)課的教學(xué)中我還要注意到以下幾個(gè)方面的問題:
1.幻燈片的設(shè)計(jì)。
幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動,但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計(jì),在出現(xiàn)某些字或者數(shù)字時(shí)應(yīng)直接出現(xiàn),而不要設(shè)計(jì)成動畫的形式,以免學(xué)生分散注意力。
2.學(xué)生練習(xí)。
在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的`考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
3.例題書寫。
在數(shù)學(xué)教學(xué)中我們都要對例題的解題過程進(jìn)行講解,并書寫解題過程,以便讓學(xué)生更好的模仿。在書寫解題過程或定義時(shí)要認(rèn)真板書,保證字跡清楚,便于學(xué)生仿照。
4.語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5.教學(xué)環(huán)節(jié)的完整。
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計(jì),我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時(shí)小結(jié)、布置作業(yè)等幾個(gè)重要的環(huán)節(jié),有時(shí)候可能因?yàn)榫o張等各種因素往往忽略小細(xì)節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計(jì)不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
6.教案設(shè)計(jì)的完整。
在本節(jié)課教學(xué)中我因?yàn)榭紤]到有幻燈片而沒有在教案中設(shè)計(jì)“板書設(shè)計(jì)”這個(gè)環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設(shè)計(jì)“板書設(shè)計(jì)”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯(cuò)誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
函數(shù)的奇偶性教案人教版篇十一
《函數(shù)的奇偶性》這節(jié)課采用的是我校712課堂模式,主要給老師們展示教學(xué)環(huán)節(jié)。
在《函數(shù)的奇偶性》這節(jié)課教學(xué)過程中,我讓學(xué)生通過圖象直觀獲得函數(shù)奇偶性的認(rèn)識,然后利用表格探究數(shù)量變化特征,通過代數(shù)運(yùn)算,驗(yàn)證發(fā)現(xiàn)的數(shù)量特征對定義域中的”任意”值都成立,最后在這個(gè)基礎(chǔ)上建立奇偶函數(shù)的概念。
在本節(jié)課的教學(xué)中我還要注意到以下幾個(gè)方面的問題:
1、幻燈片的設(shè)計(jì)。
幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動,但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計(jì),在出現(xiàn)某些字或者數(shù)字時(shí)應(yīng)直接出現(xiàn),而不要設(shè)計(jì)成動畫的形式,以免學(xué)生分散注意力。
2、學(xué)生練習(xí)。
在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
3、例題書寫。
在數(shù)學(xué)教學(xué)中我們都要對例題的解題過程進(jìn)行講解,并書寫解題過程,以便讓學(xué)生更好的模仿。在書寫解題過程或定義時(shí)要認(rèn)真板書,保證字跡清楚,便于學(xué)生仿照。
4、語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5、教學(xué)環(huán)節(jié)的完整。
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計(jì),我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時(shí)小結(jié)、布置作業(yè)等幾個(gè)重要的環(huán)節(jié),有時(shí)候可能因?yàn)榫o張等各種因素往往忽略小細(xì)節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計(jì)不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
6、教案設(shè)計(jì)的完整。
在本節(jié)課教學(xué)中我因?yàn)榭紤]到有幻燈片而沒有在教案中設(shè)計(jì)“板書設(shè)計(jì)”這個(gè)環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設(shè)計(jì)“板書設(shè)計(jì)”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯(cuò)誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
函數(shù)的奇偶性教案人教版篇十二
《函數(shù)的奇偶性》這節(jié)課的教學(xué)模式是采用循序漸進(jìn),由簡單的問題引入,然后在教師的引導(dǎo)下,探索結(jié)論,最后,在教師的指導(dǎo)下,對所學(xué)的實(shí)際結(jié)論進(jìn)行學(xué)生的實(shí)際應(yīng)用。
一、這種教學(xué)模式的教學(xué)程序是:
(一)實(shí)際練習(xí)引入課題,并能去發(fā)現(xiàn)生活中的相關(guān)信息,引起學(xué)生的興趣。
(二)看圖,具體引入函數(shù)進(jìn)行觀察探索,包括圖像觀察,自變量的變化,函數(shù)值的變化規(guī)律。
(三)明確這是函數(shù)的一種性質(zhì),明確定義,并強(qiáng)調(diào)定義中的注意事項(xiàng),怎樣理解定義中的規(guī)定。
(四)教師具體以例題進(jìn)行示范,學(xué)生們領(lǐng)會對函數(shù)奇偶性的認(rèn)識,并怎樣進(jìn)行判斷。
(五)同學(xué)們在領(lǐng)會的基礎(chǔ)上,進(jìn)行實(shí)際訓(xùn)練,達(dá)到對知識的理解和應(yīng)用。
二、這種教學(xué)模式的優(yōu)勢是:循序漸進(jìn),學(xué)生能夠?qū)嶋H參與,在教學(xué)中體現(xiàn)和諧,教師的導(dǎo)和學(xué)生的練保證教學(xué)的效果。
這種教學(xué)模式的`缺點(diǎn)與解決方法是:
還缺乏對學(xué)生更高層次的參與的調(diào)動,尤其是職業(yè)中學(xué)中部分在初中已經(jīng)放棄學(xué)習(xí)的同學(xué)的參與問題。對配套練習(xí)要進(jìn)一步細(xì)化,要對每一個(gè)知識點(diǎn)都要精心設(shè)計(jì)相應(yīng)知識點(diǎn)的訓(xùn)練,圖像的認(rèn)識上,要加大同學(xué)們對生活的感知和相關(guān)軟件的使用,并能在電腦上實(shí)際體驗(yàn)函數(shù)圖像的對稱情況。
函數(shù)的奇偶性教案人教版篇十三
正比例函數(shù)的概念.
2.內(nèi)容解析。
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn).
對正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對函數(shù)概念的理解,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對正比例函數(shù)基本特征的認(rèn)識,即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.
本節(jié)課主要是通過對生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進(jìn)行辨析,對實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式.
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念.
二、目標(biāo)和目標(biāo)解析。
1.目標(biāo)。
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;。
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想.
2.目標(biāo)解析。
達(dá)成目標(biāo)(1)的標(biāo)志是:通過對實(shí)際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會函數(shù)建模思想.
三、教學(xué)問題診斷分析。
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對函數(shù)基本概念理解未必深刻,在對實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認(rèn)識,要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度.
因此本節(jié)課的教學(xué)難點(diǎn)是:對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程.
四、教學(xué)過程設(shè)計(jì)。
1.情境引入,初步感知。
引言。
上一節(jié)我們已經(jīng)學(xué)習(xí)了關(guān)于函數(shù)的最基礎(chǔ)的知識,知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開始,我們將重點(diǎn)研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).
問題12011年開始運(yùn)營的京滬高速鐵路全長1318km.設(shè)列車的平均速度為300km/h.考慮以下問題:
師生活動:教師引導(dǎo)學(xué)生分析問題中的數(shù)量關(guān)系,這是典型的行程問題,數(shù)量關(guān)系是學(xué)生熟悉的“路程=速度×?xí)r間”.
設(shè)計(jì)意圖:讓學(xué)生真切感受數(shù)學(xué)與實(shí)際的聯(lián)系,即數(shù)學(xué)理論來源于實(shí)際又服務(wù)于實(shí)際.幫助學(xué)生逐步提高將實(shí)際問題抽象為函數(shù)模型的能力,初步體會函數(shù)建模思想.
設(shè)計(jì)意圖:由于自變量t是列車運(yùn)行時(shí)間,作為實(shí)際問題,自變量的取值是受限制的,應(yīng)對其取值范圍作出說明.
對問題(2)的分析解答過程讓學(xué)生回答下列問題:
追問1這個(gè)問題中兩個(gè)變量之間的對應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,試說明理由.
設(shè)計(jì)意圖:讓學(xué)生感受量與量之間的函數(shù)關(guān)系,體會函數(shù)關(guān)系蘊(yùn)涵在實(shí)際問題中,激發(fā)學(xué)生探究興趣.對理由的說明學(xué)生可能有障礙,此時(shí)教師要引導(dǎo)學(xué)生回顧函數(shù)概念的學(xué)習(xí)過程,用函數(shù)的概念來回答:問題中的兩個(gè)變量,當(dāng)其中的變量t變化時(shí),另一個(gè)變量y隨著t的變化而變化,并且對于變量t的每一個(gè)?定的值,另一個(gè)變量y都有唯一確定的值與之對應(yīng).
追問2請你寫出y與t之間的函數(shù)解析式,并分析解析式在結(jié)構(gòu)上是什么形式?
追問3對于自變量t和函數(shù)y的每一對對應(yīng)值,y與t的比值,
函數(shù)的奇偶性教案人教版篇十四
【過程與方法】。
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題。
【情感態(tài)度與價(jià)值觀】。
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【重點(diǎn)】。
【難點(diǎn)】。
(一)導(dǎo)入新課。
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對稱;。
(二)新課教學(xué)。
(1)偶函數(shù)(evenfunction)。
(學(xué)生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱)。
2.具有奇偶性的函數(shù)的圖象的特征。
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱。
3.典型例題。
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。
解:(略)。
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱;。
2確定f(-x)與f(x)的關(guān)系;。
3作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。
(三)鞏固提高。
1.教材p46習(xí)題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱。
(四)小結(jié)作業(yè)。
課本p46習(xí)題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的`圖象關(guān)于原點(diǎn)對稱。
函數(shù)的奇偶性教案人教版篇十五
11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時(shí)間的關(guān)系,小華八點(diǎn)離開家,十四點(diǎn)回到家,根據(jù)這個(gè)曲線圖,請回答下列問題:
(1)到達(dá)離家最遠(yuǎn)的地方是幾點(diǎn)?離家多遠(yuǎn)?
(2)何時(shí)開始第一次休息?休息多長時(shí)間?
(3)小華在往返全程中,在什么時(shí)間范圍內(nèi)平均速度最快?最快速度是多少?
(4)小華何時(shí)離家21千米?(寫出計(jì)算過程)。
函數(shù)的奇偶性教案人教版篇十六
講授新課前,做一份完美的教案,能夠更大程度的調(diào)動學(xué)生在上課時(shí)的積極性,以下是白話文為大家整理的人教版高一數(shù)學(xué)《指數(shù)函數(shù)》教案,希望可以幫助到有需要的朋友。
1。使學(xué)生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì)。
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象。
2。通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
3。通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。
(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分。
(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的.函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是。
(2)對底數(shù)的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個(gè)條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。
1。理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2。通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
3。通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
重點(diǎn)是理解的定義,把握圖象和性質(zhì)。
難點(diǎn)是認(rèn)識底數(shù)對函數(shù)值影響的認(rèn)識。
投影儀。
啟發(fā)討論研究式。
一。引入新課。
我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)———————。
1。6。(板書)。
這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:
由學(xué)生回答:與之間的關(guān)系式,可以表示為。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系。
由學(xué)生回答:。
在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
一。的概念(板書)。
1。定義:形如的函數(shù)稱為。(板書)。
教師在給出定義之后再對定義作幾點(diǎn)說明。
2。幾點(diǎn)說明(板書)。
(1)關(guān)于對的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會有什么問題?如,此時(shí),等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定且。
(2)關(guān)于的定義域(板書)。
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時(shí),也是一個(gè)確定的實(shí)數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)椤U(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。
(3)關(guān)于是否是的判斷(板書)。
剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
(1),?(2),?(3)。
(4),?(5)。
學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評,指出只有(1)和(3)是,其中(3)可以寫成,也是指數(shù)圖象。
最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
3。歸納性質(zhì)。
作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
函數(shù)。
1。定義域:
2。值域:
3。奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
4。截距:在軸上沒有,在軸上為1。
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于軸上方,且與軸不相交。)。
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對稱性,故的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。
此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線。
二。圖象與性質(zhì)(板書)。
1。圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。
2。草圖:
當(dāng)畫完第一個(gè)圖象之后,可問學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取為例。
此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單。即=與圖象之間關(guān)于軸對稱,而此時(shí)的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到的圖象。
最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學(xué)生仿照此例再列一個(gè)的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來分類,整理函數(shù)的性質(zhì)。
3。性質(zhì)。
(1)無論為何值,都有定義域?yàn)?,值域?yàn)?,都過點(diǎn)。
(2)時(shí),在定義域內(nèi)為增函數(shù),時(shí),為減函數(shù)。
(3)時(shí),,???時(shí),。
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三。簡單應(yīng)用??(板書)。
1。利用單調(diào)性比大小。?(板書)。
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1。比較下列各組數(shù)的大小。
(1)與;?(2)與;。
(3)與1。(板書)。
首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個(gè)特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:在上是增函數(shù),且。
(板書)。
教師最后再強(qiáng)調(diào)過程必須寫清三句話:
(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
(2)自變量的大小比較。
(3)函數(shù)值的大小比較。
后兩個(gè)題的過程略。要求學(xué)生仿照第(1)題敘述過程。
例2。比較下列各組數(shù)的大小。
(1)與;?(2)與?;。
(3)與。(板書)。
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
最后由學(xué)生說出1,1,。
解決后由教師小結(jié)比較大小的方法。
(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
(2)搭橋比較法:用特殊的數(shù)1或0。
三。鞏固練習(xí)。
練習(xí):比較下列各組數(shù)的大?。ò鍟?。
(1)與???(2)與;。
(3)與;(4)與。解答過程略。
四。小結(jié)。
1。的概念。
2。的圖象和性質(zhì)。
3。簡單應(yīng)用。
五。板書設(shè)計(jì)。
函數(shù)的奇偶性教案人教版篇十七
一次函數(shù)解析式的求法一般是采用待定系法,對于學(xué)生而言,如何理解這種方法是解決這一問題的關(guān)鍵。
為了解決這個(gè)問題,我舉了這樣一個(gè)例子:已知直線y=kx+b經(jīng)過點(diǎn)(1,2)和點(diǎn)(-2,3)試求這個(gè)函數(shù)關(guān)系式?學(xué)生們很容易想到列方程組解決這個(gè)問題,我卻提出了一個(gè)比較簡單的問題,為什么你要選擇列方程組解決這個(gè)問題,你的目的是什么?我教的那個(gè)班的學(xué)生沉默了好久,是啊,對于學(xué)生來說,他們習(xí)慣于如何做題,卻從不想為什么采用這種方法,這種方法的出發(fā)點(diǎn)是什么?經(jīng)過一段時(shí)間的思考,有的學(xué)生終于答出了這個(gè)問題:他們說這是為了確定k,b的值,只要k,b的值確定了,那么一次函數(shù)解析式就確定下來了。而實(shí)際他們回答的恰恰是待定系數(shù)法的精髓,學(xué)生們只有能理解到這一點(diǎn)才能領(lǐng)會到待定系數(shù)法的精髓。進(jìn)而我總結(jié),如果知道一次函數(shù)圖象上個(gè)點(diǎn)就能確定它的解析式。如上例是顯而易見的兩點(diǎn)。
接著我給出另一個(gè)例題:已知一次函數(shù)圖象過點(diǎn)(1,-2),且與直線y=3x+2交y軸于同一點(diǎn),試求該函數(shù)的解析式。這個(gè)題一個(gè)點(diǎn)顯而易見,另一個(gè)點(diǎn)是隱含的,學(xué)生們開始找到一個(gè)明線,通過分析找到了另一個(gè)暗線,最終大家一致認(rèn)為兩點(diǎn)確定一條直線,想求一次函數(shù)的解析式,只要找到兩個(gè)點(diǎn)的坐標(biāo)就行。
最后我出了一個(gè)例題:一個(gè)一次函數(shù)的圖象,與直線y=2x+1的交點(diǎn)m的橫坐標(biāo)為2,與直線y=-x+2的交點(diǎn)n的縱坐標(biāo)為1,求這個(gè)一次函數(shù)的解析式。學(xué)生們發(fā)現(xiàn)沒有一條明線,全是暗線,但只要理解找兩個(gè)點(diǎn)求一次函數(shù)解析式,看似難的問題就會迎刃而解。如果學(xué)生能理解透這三道其實(shí)是一類題,他們就會利用待定系數(shù)法求一次函數(shù)解析式了。
函數(shù)的奇偶性教案人教版篇十八
教學(xué)目標(biāo):了解奇偶性的含義,會判斷函數(shù)的奇偶性。能證明一些簡單函數(shù)的奇偶性。弄清函數(shù)圖象對稱性與函數(shù)奇偶性的關(guān)系。
難點(diǎn):函數(shù)圖象對稱性與函數(shù)奇偶性的關(guān)系。
一、復(fù)習(xí)引入。
(1)奇函數(shù)。
(2)偶函數(shù)。
(3)與圖象對稱性的關(guān)系。
(4)說明(定義域的要求)。
二、例題分析。
例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)。
例2、證明函數(shù)在r上是奇函數(shù)。
三、隨堂練習(xí)。
1、函數(shù)()。
是奇函數(shù)但不是偶函數(shù)是偶函數(shù)但不是奇函數(shù)。
既是奇函數(shù)又是偶函數(shù)既不是奇函數(shù)又不是偶函數(shù)。
2、下列4個(gè)判斷中,正確的是_______.
(1)既是奇函數(shù)又是偶函數(shù);
(2)是奇函數(shù);
(3)是偶函數(shù);
(4)是非奇非偶函數(shù)。
3、函數(shù)的圖象是否關(guān)于某直線對稱?它是否為偶函數(shù)?
函數(shù)的奇偶性教案人教版篇十九
活動1:觀察:
展示學(xué)生作圖作品(書p28例2),強(qiáng)調(diào)列表及圖象上的點(diǎn)的對應(yīng)關(guān)系。
課前一兩分鐘對學(xué)生上交的作圖作品進(jìn)行快速篩選,進(jìn)量多選出一部分,課上多肯定多表揚(yáng)多鼓勵(lì)。再從中選取一兩幅優(yōu)秀的作品上課為示例。
目的有四:
2、課上展示學(xué)生作品本身就是對學(xué)生完成作業(yè)情況的肯定,這又恰好給予了學(xué)生足夠的成功感和榮譽(yù)感,這便增加了學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,樂意學(xué)習(xí)數(shù)學(xué),激發(fā)了學(xué)習(xí)熱情,聽課更加專心。
3、學(xué)生經(jīng)歷畫圖象進(jìn)而感悟它的形狀及與正比例函數(shù)圖象的異同,為后面的發(fā)現(xiàn)規(guī)律作了準(zhǔn)備。
4、令教師對學(xué)生有了更深層次的了解,能更好地把握課堂。
(二)嘗試探索、體驗(yàn)新知:
活動1、觀察探索:
比較兩個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn)?
第一步;根據(jù)你的觀察結(jié)果回答問題。(書中原問題1、2、3)
目的:這樣在學(xué)生已經(jīng)知道正比例函數(shù)的圖象是一條直線的基礎(chǔ)上,通過對應(yīng)描點(diǎn)法來畫出了圖象,讓學(xué)生通過操作體驗(yàn)感悟兩者之間的關(guān)系,問題變得直觀形象,學(xué)生們非常容易地完成平移。
目的:這樣通過啟發(fā)學(xué)生視覺見到的兩點(diǎn),即與坐標(biāo)軸的交點(diǎn){(0,b),和(-b/k,0)兩點(diǎn)};此交點(diǎn)的求法(學(xué)生易從填表中的數(shù)據(jù)發(fā)現(xiàn)),再反之引導(dǎo)學(xué)生抓住這兩點(diǎn)畫圖象。就此題體驗(yàn)一次函數(shù)圖象的兩點(diǎn)確定;同時(shí)也教會了學(xué)生用兩點(diǎn)法畫一次函數(shù)圖象。
活動2:知識再體驗(yàn):在同一直角坐標(biāo)系中畫出四個(gè)k值不同的一次函數(shù)圖象,并觀察分析。
目的:進(jìn)一步鞏固兩點(diǎn)作圖法,為探究一次函數(shù)的性質(zhì)作準(zhǔn)備。
活動3:展示“上下坡”材料,解決象限問題。(多媒體展示)
目的:讓學(xué)生觸發(fā)漫畫中“上下坡”的情景,引導(dǎo)思考k、b對圖象的影響——設(shè)置化抽象為形象,化枯燥為生動,同時(shí)學(xué)生對這種直觀的知識易接受,易理解,記憶深刻。從而突出了重點(diǎn),攻破了難點(diǎn)。
活動4:師生互動(師生角色互換),提高拓展。(多媒體展出內(nèi)容)
目的:通過這種師生互動角色轉(zhuǎn)換形式,不但能盡快烘起課堂氣憤,而且復(fù)習(xí)了本課的重點(diǎn)內(nèi)容,對一次函數(shù)的性質(zhì)理解的更透徹。
(三)課堂小結(jié)
引導(dǎo)學(xué)生回憶所學(xué)知識。通過這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺?
目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識的習(xí)慣;有助于學(xué)生在剛剛理解了新知識的基礎(chǔ)上,及時(shí)把知識系統(tǒng)化、條理化。
(四)作業(yè)布置
加強(qiáng)“教、學(xué)”反思,進(jìn)一步提高“教與學(xué)”效果。
四、說板書設(shè)計(jì)
采用了如下板書,要點(diǎn)突出,簡明清晰。
一次函數(shù)
正比例函數(shù)圖像的畫法:確定兩點(diǎn)為(0,0)和(1,k)一次函數(shù)選擇的兩點(diǎn)為:(0,k)和(-b\k,0)
五、說課后小結(jié)
函數(shù)的奇偶性教案人教版篇二十
知識與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會運(yùn)用定義判斷函數(shù)的奇偶性。
過程與方法:通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推斷的能力。
情感態(tài)度與價(jià)值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學(xué)生的情操,通過組織學(xué)生分組討論,培養(yǎng)學(xué)生主動交流的合作精神,使學(xué)生學(xué)會認(rèn)識事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
難點(diǎn):函數(shù)奇偶性的判斷。
學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗(yàn)和理解。對于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。
1、復(fù)習(xí)在初中學(xué)習(xí)的軸對稱圖形和中心對稱圖形的定義:
2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
(1)對于函數(shù),其定義域關(guān)于原點(diǎn)對稱:
如果______________________________________,那么函數(shù)為偶函數(shù)。
(2)奇函數(shù)的圖象關(guān)于__________對稱,偶函數(shù)的圖象關(guān)于_________對稱。
(3)奇函數(shù)在對稱區(qū)間的增減性;偶函數(shù)在對稱區(qū)間的增減性。
(1)f(x)=x4;(2)f(x)=x5;。
(3)f(x)=x+(4)f(x)=。
a2、二次函數(shù)()是偶函數(shù),則b=___________。
b3、已知,其中為常數(shù),若,則。
_______。
b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。
(a)軸對稱(b)軸對稱(c)原點(diǎn)對稱(d)以上均不對。
b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。
c6、若函數(shù)是定義在r上的奇函數(shù),且當(dāng)時(shí),,那么當(dāng)。
時(shí),=_______。
d7、設(shè)是上的奇函數(shù),,當(dāng)時(shí),,則等于()。
(a)0.5(b)(c)1.5(d)。
d8、定義在上的奇函數(shù),則常數(shù)____,_____。
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。
函數(shù)的奇偶性教案人教版篇二十一
1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會反比例函數(shù)的含義,理解反比例函數(shù)的概念。
2、理解反比例函數(shù)的意義,根據(jù)題目條件會求對應(yīng)量的值,能用待定系數(shù)法求反比例函數(shù)關(guān)系。
3、讓學(xué)生經(jīng)歷在實(shí)際問題中探索數(shù)量關(guān)系的過程,養(yǎng)成用數(shù)學(xué)思維方式解決實(shí)際問題的習(xí)慣,體會數(shù)學(xué)在解決實(shí)際問題中的作用。
【學(xué)習(xí)難點(diǎn)】反比例函數(shù)的解析式的確定。
【學(xué)法指導(dǎo)】自主、合作、探究。
教學(xué)互動設(shè)計(jì)。
【自主學(xué)習(xí),基礎(chǔ)過關(guān)】。
一、自主學(xué)習(xí):
(一)復(fù)習(xí)鞏固。
1.在一個(gè)變化的過程中,如果有兩個(gè)變量x和y,當(dāng)x在其取值范圍內(nèi)任意取一個(gè)值時(shí),y,則稱x為,y叫x的.
2.一次函數(shù)的解析式是:;當(dāng)時(shí),稱為正比例函數(shù).
3.一條直線經(jīng)過點(diǎn)(2,3)、(4,7),求該直線的解析式.
以上這種求函數(shù)解析式的方法叫:
(二)自主探究。
提出問題:下列問題中,變量間的對應(yīng)關(guān)?可用怎樣的函數(shù)關(guān)系式表示?
(2)某住宅小區(qū)要。
函數(shù)的奇偶性教案人教版篇二十二
尊敬的各位老師:
大家好,我是1號考生。我說課的題目是《函數(shù)的'奇偶性》(板書課題),根據(jù)新課標(biāo)的理念,以教什么,怎么教,為什么這樣教為思路,我從6個(gè)方面進(jìn)行說課。
一、說設(shè)計(jì)理念。
根據(jù)新課程教學(xué)理念,在教學(xué)中,我以領(lǐng)悟?yàn)槟康模毩?xí)為主線,引導(dǎo)學(xué)生自主學(xué)習(xí),合作探究,在教學(xué)中,注重培養(yǎng)學(xué)生邏輯思維能力、創(chuàng)新能力、合作能力、歸納能力、及數(shù)學(xué)聯(lián)系生活的能力。即實(shí)現(xiàn)數(shù)學(xué)教學(xué)的知識目標(biāo),又實(shí)現(xiàn)育人的情感目標(biāo)。
二、說教材。
《函數(shù)的奇偶性》是人教版第一章集合與函數(shù)概念單元的重要知識點(diǎn)。全面介紹了偶函數(shù)的定義及判定,奇函數(shù)的定義及判定等兩部分知識。為后面學(xué)習(xí)指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)等知識奠定了基礎(chǔ)。
(一)教學(xué)目標(biāo):
依據(jù)本節(jié)課的知識特點(diǎn)及新課標(biāo)要求,本課的三維教學(xué)目標(biāo)是:
1.知識與技能目標(biāo)是:理解函數(shù)的奇偶性及其幾何意義,掌握判斷函數(shù)奇偶性的方法。
2.過程與方法目標(biāo)是:通過學(xué)生自主探索,合作學(xué)習(xí),培養(yǎng)學(xué)生的觀察、分析和歸納等數(shù)學(xué)能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。。
3.情感態(tài)度與價(jià)值觀目標(biāo)是:讓學(xué)生了解數(shù)學(xué)在生活中運(yùn)用的廣泛性和實(shí)用性,引發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識的興趣。
(二)重點(diǎn)、難點(diǎn):
(三)學(xué)情分析。
本課的授課對象是高一年級的學(xué)生,他們思維活躍,求知欲強(qiáng),他們已經(jīng)初步認(rèn)識了函數(shù)的概念,高一年級的學(xué)生有自主學(xué)習(xí)、合作探究的能力,但仍需要教師的指導(dǎo)。
三、教法學(xué)法。
教法:本節(jié)課采用自主探究法、啟發(fā)式教學(xué)法、討論交流法等。
學(xué)法:引導(dǎo)學(xué)生探究合作,歸納總結(jié),注重對學(xué)生自主探究問題能力的培養(yǎng),發(fā)揮學(xué)習(xí)小組的合作作用。
四、教學(xué)準(zhǔn)備。
教師制作多媒體課件,編印導(dǎo)學(xué)案;學(xué)生預(yù)習(xí)課文,觀察生活中具有對稱美的物體或圖像。
五、教學(xué)過程。
本節(jié)課我從導(dǎo)、研、練、拓、升五個(gè)環(huán)節(jié)進(jìn)行說課。
環(huán)節(jié)一:創(chuàng)設(shè)情境,導(dǎo)入新課。(導(dǎo)3)、
該環(huán)節(jié),用多媒體向?qū)W生展示現(xiàn)實(shí)生活中蝴蝶、太陽、湖面倒影等具有對稱性的圖像,再讓學(xué)生舉例函數(shù)圖像是否有類似的屬性?通過評價(jià)學(xué)生回答,引出本節(jié)課的標(biāo)題:函數(shù)的奇偶性。
環(huán)節(jié)二:合作探究,獲取新知(研20)。
該環(huán)節(jié),我分兩個(gè)模塊進(jìn)行。
模塊一:完成偶函數(shù)的定義。(板書知識點(diǎn)的小標(biāo)題)。該模塊中,讓學(xué)生觀察課本圖1.3.7并思考,兩個(gè)函數(shù)圖像有什么共同特征?相應(yīng)的對應(yīng)表是如何體現(xiàn)這些特征的?進(jìn)而讓學(xué)生觀察討論,得出結(jié)論:當(dāng)自變量x取一對相反數(shù)時(shí),相應(yīng)的函數(shù)值相同,并引導(dǎo)學(xué)生歸納總結(jié)出偶函數(shù)的定義:定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
模塊二:完成奇函數(shù)的定義。(板書知識點(diǎn)的小標(biāo)題)。該模塊中,學(xué)生已經(jīng)學(xué)習(xí)了偶函數(shù)的定義,根據(jù)偶函數(shù)相同的教學(xué)方法引導(dǎo)學(xué)生推導(dǎo)出奇函數(shù)的定義,即:定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
模塊三:完成例題5講解。在引導(dǎo)學(xué)生復(fù)述偶函數(shù)、奇函數(shù)的定義的基礎(chǔ)上,師生共同完成例題5中的1)2)小題。在這個(gè)過程中教師要提醒學(xué)生注意函數(shù)定義域的范圍,掌握函數(shù)奇偶性判定的方法。在完成1、2小題的基礎(chǔ)上,讓學(xué)生獨(dú)立完成3)4)兩個(gè)小題。然后在小組內(nèi)討論交流,教師巡視,以便發(fā)現(xiàn)問題,解決問題。
環(huán)節(jié)三:強(qiáng)化訓(xùn)練,目標(biāo)達(dá)成。(練12)。
該環(huán)節(jié),讓同學(xué)們拿出之前下發(fā)的練習(xí)題,每個(gè)小組選出一位同學(xué)到黑板板演。然后教師對板演情況進(jìn)行講評,其他同學(xué)小組內(nèi)互相批閱。
環(huán)節(jié)四:聯(lián)系生活,拓展延伸(拓5)。
這根據(jù)所學(xué)知識,讓學(xué)生聯(lián)系生活,列舉在教室中具有奇偶性的具體實(shí)物,提高學(xué)生將知識聯(lián)系生活的能力。
環(huán)節(jié)五:總結(jié)提升,布置作業(yè)(升5)。
教師對本節(jié)課知識點(diǎn)進(jìn)行梳理。完成課堂達(dá)標(biāo)測評試題,然后啟發(fā)學(xué)生思考這一課的收獲。最后布置兩種作業(yè)?;A(chǔ)型作業(yè)為總結(jié)本節(jié)課的所學(xué)知識完成相關(guān)練習(xí)。擴(kuò)展型作業(yè)為學(xué)生自主查詢函數(shù)奇偶性的相關(guān)資料。
本環(huán)節(jié)通過梳理總結(jié),使本課知識要點(diǎn)化,系統(tǒng)化,給學(xué)生以強(qiáng)化記憶。所布置的作業(yè),既可以鞏固所學(xué)知識,又能把課堂所學(xué)應(yīng)用于實(shí)踐當(dāng)中,從而達(dá)到教學(xué)的目的。
六、說板書設(shè)計(jì)。
我的板書直觀具體形象地將本節(jié)課的學(xué)生重點(diǎn)呈現(xiàn)在黑板之上,方便學(xué)生理解掌握。
我的說課到此結(jié)束,謝謝各位專家老師!
附:板書設(shè)計(jì)。
函數(shù)的奇偶性教案人教版篇二十三
本課的內(nèi)容是人教版八年級上冊第14章第2節(jié)第2課時(shí),就是課本115到116頁的內(nèi)容。在許多方面與正比例函數(shù)的圖象和性質(zhì)有著緊密聯(lián)系,是本章中的重點(diǎn)。本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點(diǎn)看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進(jìn)一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
(二)說教學(xué)目標(biāo)
基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會利用兩個(gè)合適的點(diǎn)畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質(zhì).
數(shù)學(xué)思考:
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)說教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):一次函數(shù)的圖象和性質(zhì)。
教學(xué)難點(diǎn):由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
函數(shù)的奇偶性教案人教版篇二十四
知識梳理:
1、軸對稱圖形:
2中心對稱圖形:
1、畫出函數(shù),與的圖像;并觀察兩個(gè)函數(shù)圖像的對稱性。
2、求出,時(shí)的函數(shù)值,寫出。
結(jié)論:
(1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。
(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對稱中心的中心對稱圖形,則這個(gè)函數(shù)是___________。
如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以軸為對稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于軸對稱,則這個(gè)函數(shù)是___________。
(1)(2)(3)。
(4)(5)。
練習(xí):教材第49頁,練習(xí)a第1題。
總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式。
例2:若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng)時(shí)f(x)的解析式。
練習(xí):若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。
已知定義在實(shí)數(shù)集上的奇函數(shù)滿足:當(dāng)x0時(shí),,求的表達(dá)式。
題型三:利用奇偶性作函數(shù)圖像。
例3研究函數(shù)的性質(zhì)并作出它的圖像。
練習(xí):教材第49練習(xí)a第3,4,5題,練習(xí)b第1,2題。
當(dāng)堂檢測。
1已知是定義在r上的奇函數(shù),則(d)。
a.b.c.d.
2如果偶函數(shù)在區(qū)間上是減函數(shù),且最大值為7,那么在區(qū)間上是(b)。
a.增函數(shù)且最小值為-7b.增函數(shù)且最大值為7。
c.減函數(shù)且最小值為-7d.減函數(shù)且最大值為7。
3函數(shù)是定義在區(qū)間上的偶函數(shù),且,則下列各式一定成立的是(c)。
a.b.c.d.
4已知函數(shù)為奇函數(shù),若,則-1。
5若是偶函數(shù),則的單調(diào)增區(qū)間是。
6下列函數(shù)中不是偶函數(shù)的是(d)。
abcd。
7設(shè)f(x)是r上的偶函數(shù),切在上單調(diào)遞減,則f(-2),f(-),f(3)的大小關(guān)系是(a)。
abf(-)f(-2)f(3)cf(-)。
8奇函數(shù)的圖像必經(jīng)過點(diǎn)(c)。
a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。
9已知函數(shù)為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是(a)。
a0b1c2d4。
11若f(x)在上是奇函數(shù),且f(3)_f(-1)。
12、解答題。
已知函數(shù)在區(qū)間d上是奇函數(shù),函數(shù)在區(qū)間d上是偶函數(shù),求證:是奇函數(shù)。
已知分段函數(shù)是奇函數(shù),當(dāng)時(shí)的解析式為,求這個(gè)函數(shù)在區(qū)間上的解析表達(dá)式。
【本文地址:http://mlvmservice.com/zuowen/8341372.html】