2023年勾股定理活動(dòng)課教案(熱門(mén)16篇)

格式:DOC 上傳日期:2023-11-03 13:57:07
2023年勾股定理活動(dòng)課教案(熱門(mén)16篇)
時(shí)間:2023-11-03 13:57:07     小編:靈魂曲

教案可以作為課堂教學(xué)的指導(dǎo)和評(píng)價(jià)標(biāo)準(zhǔn),對(duì)教師進(jìn)行教學(xué)活動(dòng)的規(guī)范和指導(dǎo)。編寫(xiě)教案時(shí)需要靈活運(yùn)用不同的教學(xué)方法和手段,提高學(xué)生的學(xué)習(xí)效果。以下是小編為大家收集的教案范文,僅供參考,希望能給大家?guī)?lái)一些啟示。

勾股定理活動(dòng)課教案篇一

1、知識(shí)目標(biāo):

(2)會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;

(3)知道什么叫勾股數(shù),記住一些覺(jué)見(jiàn)的勾股數(shù).

2、能力目標(biāo):

(1)通過(guò)勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;

(2)通過(guò)勾股定理及以前的知識(shí)聯(lián)合起來(lái)綜合運(yùn)用,提高綜合運(yùn)用知識(shí)的能力.

3、情感目標(biāo):

(1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;

(2)通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征.。

教學(xué)用具:直尺,微機(jī)。

教學(xué)方法:以學(xué)生為主體的討論探索法。

勾股定理活動(dòng)課教案篇二

教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線(xiàn)來(lái)判定平行四邊形的方法.

2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題

教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用

教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用

二.探

閱讀教材p44至p45

利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?

(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

(3)你能說(shuō)出你的做法及其道理嗎?

(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?

(5)你還能找出其他方法嗎?

從探究中得到:

平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2對(duì)角線(xiàn)互相平分的四邊形是平行四邊形。

證一證

平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。

證明:(畫(huà)出圖形)

平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。

證明:(畫(huà)出圖形)

三.結(jié)

兩組對(duì)邊分別相等的四邊形是平行四邊形。

對(duì)角線(xiàn)互相平分的四邊形是平行四邊形。

四.用

勾股定理活動(dòng)課教案篇三

教學(xué)目標(biāo):

1、知識(shí)目標(biāo):

(1)掌握勾股定理;

(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;

(3)了解有關(guān)勾股定理的歷史。

2、能力目標(biāo):

(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;

(2)通過(guò)問(wèn)題的解決,提高學(xué)生的運(yùn)算能力

3、情感目標(biāo):

(1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;

(2)通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

教學(xué)重點(diǎn):勾股定理及其應(yīng)用

教學(xué)難點(diǎn):通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

教學(xué)用具:直尺,微機(jī)

教學(xué)方法:以學(xué)生為主體的討論探索法

教學(xué)過(guò)程:

1、新課背景知識(shí)復(fù)習(xí)

(1)三角形的三邊關(guān)系

(2)問(wèn)題:(投影顯示)

直角三角形的三邊關(guān)系,除了滿(mǎn)足一般關(guān)系外,還有另外的特殊關(guān)系嗎?

2、定理的獲得

讓學(xué)生用文字語(yǔ)言將上述問(wèn)題表述出來(lái)。

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。

強(qiáng)調(diào)說(shuō)明:

(1)勾――最短的邊、股――較長(zhǎng)的直角邊、弦――斜邊

(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問(wèn)題(待定)

3、定理的證明方法

方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形。

方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形。

方法三:“總統(tǒng)”法、如圖所示將兩個(gè)直角三角形拼成直角梯形。

以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說(shuō)明

4、定理與逆定理的應(yīng)用

5、課堂小結(jié):

(1)勾股定理的內(nèi)容

(2)勾股定理的作用

已知直角三角形的兩邊求第三邊

已知直角三角形的一邊,求另兩邊的關(guān)系

6、布置作業(yè):

a、書(shū)面作業(yè)p130#1、2、3

b、上交作業(yè)p132#1、3

勾股定理活動(dòng)課教案篇四

1.理解勾股定理的逆定理的證明方法和證明過(guò)程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角形;

二數(shù)學(xué)思考

1.通過(guò)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生發(fā)展與形成的過(guò)程;

2.通過(guò)三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合法的應(yīng)用.

三解決問(wèn)題

通過(guò)勾股定理的逆定理的證明及其應(yīng)用,體會(huì)數(shù)形結(jié)合法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題.

四情感態(tài)度

2.在探究勾股定理的逆定理的證明及應(yīng)用的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流合作的意識(shí)和探究精神.

勾股定理活動(dòng)課教案篇五

勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.

即直角三角形兩直角的平方和等于斜邊的平方.

因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):

(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);

2.學(xué)會(huì)用拼圖法驗(yàn)證勾股定理

如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.

請(qǐng)讀者證明.

請(qǐng)同學(xué)們自己證明圖(2)、(3).

3.在數(shù)軸上表示無(wú)理數(shù)

二、典例精析

解:由勾股定理,得

132-52=144,所以另一條直角邊的長(zhǎng)為12.

所以這個(gè)直角三角形的面積是×12×5=30(cm2).

例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)a爬到

頂點(diǎn)b,則它走過(guò)的最短路程為

a.b.c.3ad.分析:本題顯然與例2屬同種類(lèi)型,思路相同.但正方體的

各棱長(zhǎng)相等,因此只有一種展開(kāi)圖.

解:將正方體側(cè)面展開(kāi)

勾股定理活動(dòng)課教案篇六

【知識(shí)與技能】

理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

【過(guò)程與方法】

經(jīng)歷得出猜想、推理證明的過(guò)程,提升自主探究、分析問(wèn)題、解決問(wèn)題的能力。

【情感、態(tài)度與價(jià)值觀】

體會(huì)事物之間的聯(lián)系,感受幾何的魅力。

【重點(diǎn)】勾股定理的逆定理及其證明。

【難點(diǎn)】勾股定理的逆定理的證明。

(一)導(dǎo)入新課

復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。

提問(wèn)學(xué)生畫(huà)直角三角形的方法(可用尺類(lèi)工具),然后要求不能用繩子以外的工具。

出示古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫(huà)直角三角形的方法,以其中蘊(yùn)含何道理為切入點(diǎn)引出課題。

(二)講解新知

請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確

出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿(mǎn)足上述平方和關(guān)系,并畫(huà)出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。

學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿(mǎn)足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫(huà)出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。

勾股定理活動(dòng)課教案篇七

(一)知識(shí)與技能目標(biāo):

1、掌握勾股定理及其證明

2、會(huì)利用勾股定理進(jìn)行直角三角形的簡(jiǎn)單計(jì)算。

3、了解有關(guān)勾股定理的歷史知識(shí)

(二)過(guò)程與方法目標(biāo)

經(jīng)歷課前預(yù)習(xí)和課上觀察、分析、歸納、猜想、驗(yàn)證并運(yùn)用實(shí)踐的過(guò)程,了解數(shù)學(xué)知識(shí)的生成與發(fā)展過(guò)程。通過(guò)了解勾股定理的幾個(gè)著名證法(趙爽證法、歐幾里得證法等),使學(xué)生感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內(nèi)涵。使學(xué)生自主學(xué)習(xí)能力和分析問(wèn)題解決問(wèn)題的能力得到提高。培養(yǎng)與人合作的意識(shí)。

(三)情感、態(tài)度和價(jià)值觀

1、通過(guò)自主學(xué)習(xí)培養(yǎng)學(xué)生探究、發(fā)現(xiàn)問(wèn)題的能力,體驗(yàn)獲取數(shù)學(xué)知識(shí)的過(guò)程。

2、通過(guò)小組合作、探索培養(yǎng)學(xué)生的團(tuán)隊(duì)精神,以及不畏艱難,實(shí)事求是的學(xué)習(xí)態(tài)度和嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣。

3、通過(guò)了解有關(guān)勾股定理的中西歷史知識(shí),激發(fā)學(xué)生的愛(ài)國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感。

勾股定理活動(dòng)課教案篇八

教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。

學(xué)生分析:

1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。

2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線(xiàn)貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

教學(xué)目標(biāo):

1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。

3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。

4、欣賞設(shè)計(jì)圖形美。

教學(xué)準(zhǔn)備階段:

學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

(一)引入

同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書(shū)課題:探索直角三角形三邊關(guān)系)

(二)實(shí)驗(yàn)探究

設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫(xiě)下表:

(討論難點(diǎn):以斜邊為邊的正方形的面積找法)

交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)

(三)探索所得結(jié)論的正確性

當(dāng)直角三角形的直角邊分別為a 、b,斜邊為c時(shí), 是否一定成立?

1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)

在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:

如圖2(用補(bǔ)的方法說(shuō)明)

師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門(mén)就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫(huà),他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線(xiàn)為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2—1,欣賞圖片)

如圖3(用割的方法去探索)

師介紹: (出示圖片) 中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)

20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。(見(jiàn)課本50頁(yè)彩圖,欣賞圖片)

如圖4(構(gòu)造新圖形的方法去探索)

本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。

2、探索勾股定理的運(yùn)用。

勾股定理活動(dòng)課教案篇九

一、整個(gè)課堂設(shè)計(jì)完整、結(jié)構(gòu)緊湊、邏輯嚴(yán)密、前后呼應(yīng),準(zhǔn)備得比較充分,能引導(dǎo)學(xué)生循序漸進(jìn),思路很清晰,講解也很到位。

二、不搞題海戰(zhàn)術(shù),精講精練,舉一反三、觸類(lèi)旁通。題型設(shè)計(jì)選題有針對(duì)性、典型性、層次性,亦有梯度,兩位老師都設(shè)計(jì)了分層練習(xí),作業(yè)分層設(shè)計(jì)精巧,適合滿(mǎn)足不同層次學(xué)生的要求。

三、兩位老師引入新課都很自然,兩位老師都能從學(xué)生的實(shí)際水平出發(fā),面向全體學(xué)生,因材施教,分層次開(kāi)展教學(xué)工作,全面提高學(xué)習(xí)效率。

教師在整個(gè)教學(xué)過(guò)程中老師敢于讓學(xué)生探索、體驗(yàn),給了學(xué)生以最大的自由運(yùn)用和探索規(guī)律的開(kāi)闊的地帶。特別是新塘三中的曾老師在教學(xué)中,通過(guò)教師有序的導(dǎo)、學(xué)生積極的學(xué)習(xí)參與、體驗(yàn)、討論與交流,培養(yǎng)學(xué)生具有主動(dòng)、負(fù)責(zé)、開(kāi)拓、創(chuàng)新的個(gè)性特征和科學(xué)的思維方式。將知識(shí)與技能,過(guò)程與方法,情感態(tài)度和價(jià)值觀完美結(jié)合。在整個(gè)教學(xué)活動(dòng)中始終面對(duì)全體學(xué)生,讓每一個(gè)學(xué)生都有收獲,都得到成功的體驗(yàn),充分體現(xiàn)了全面育人的新課標(biāo)精神。建議新塘二中老師盡量少講,讓學(xué)生多思,多想,多做。......

勾股定理活動(dòng)課教案篇十

從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。

從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;

勾股定理又是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。

根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國(guó)數(shù)學(xué)文化為主線(xiàn),激發(fā)學(xué)生熱愛(ài)祖國(guó)悠久文化的情感。

(二)重點(diǎn)與難點(diǎn)

為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。

勾股定理活動(dòng)課教案篇十一

即直角三角形兩直角的平方和等于斜邊的平方.。

因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):

(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);

如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.。

請(qǐng)讀者證明.。

請(qǐng)同學(xué)們自己證明圖(2)、(3).。

132-52=144,所以另一條直角邊的長(zhǎng)為12.。

所以這個(gè)直角三角形的面積是×12×5=30(cm2).。

例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)a爬到。

頂點(diǎn)b,則它走過(guò)的最短路程為()。

a.b.c.3ad.分析:本題顯然與例2屬同種類(lèi)型,思路相同.但正方體的。

各棱長(zhǎng)相等,因此只有一種展開(kāi)圖.。

解:將正方體側(cè)面展開(kāi)。

勾股定理活動(dòng)課教案篇十二

教學(xué)目標(biāo):

1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

2、過(guò)程與方法目標(biāo):通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛(ài)國(guó)熱情;學(xué)生通過(guò)自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

教學(xué)難點(diǎn):

用面積法方法證明勾股定理

課前準(zhǔn)備:

多媒體ppt,相關(guān)圖片

教學(xué)過(guò)程:

(一)情境導(dǎo)入

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹(shù),國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過(guò)圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。

已知一直角三角形的兩邊,如何求第三邊?

學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了

(二)學(xué)習(xí)新課

勾股定理活動(dòng)課教案篇十三

1、知識(shí)與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過(guò)探究能夠發(fā)現(xiàn)直角三角形中兩個(gè)直角邊的平方和等于斜邊的平方和。

2、過(guò)程與方法目標(biāo):經(jīng)歷用測(cè)量和數(shù)格子的辦法探索勾股定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。

3、情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)本節(jié)課的學(xué)習(xí),培養(yǎng)主動(dòng)探究的習(xí)慣,并進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

勾股定理活動(dòng)課教案篇十四

隨著社會(huì)的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識(shí)的學(xué)習(xí),更重要的是體現(xiàn)知識(shí)的認(rèn)知發(fā)展過(guò)程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實(shí)踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動(dòng)進(jìn)行觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿(mǎn)足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動(dòng)不能單純的依賴(lài)模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。

八年級(jí)數(shù)學(xué)勾股定理教案(教材、學(xué)情分析與處理)

本節(jié)知識(shí)是在學(xué)生掌握了直角三角形的三個(gè)性質(zhì):直角三角形兩銳角互余和30°所對(duì)的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為30°的基礎(chǔ)上展開(kāi)的。勾股定理是直角三角形的一個(gè)非常重要的性質(zhì),它揭示了一個(gè)直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計(jì)算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個(gè)幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過(guò)程中,無(wú)論是課前準(zhǔn)備和課上交流以及課下活動(dòng)都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實(shí)際生活中的重要作用,是進(jìn)行愛(ài)國(guó)教育的重要題材!

本節(jié)課的教育對(duì)象是初二下的學(xué)生,共性是思維活躍,參與意識(shí)較強(qiáng)。而且一般家庭都有電腦,對(duì)教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡(jiǎn)單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

勾股定理活動(dòng)課教案篇十五

教學(xué)內(nèi)容:教科書(shū)第92~93頁(yè)。

教學(xué)目的:在學(xué)生對(duì)退位減已經(jīng)有一定的基礎(chǔ)上,通過(guò)學(xué)生自己計(jì)算來(lái)掌握這部分內(nèi)容的。

教學(xué)課時(shí):1課時(shí)。

教學(xué)準(zhǔn)備:教學(xué)掛圖、數(shù)字卡片、表格等。

教學(xué)過(guò)程:

一、創(chuàng)設(shè)情境、導(dǎo)入課題。(揭示課題)。

二、探索新知。

1、教學(xué)例題。出示掛圖,讓學(xué)生理解圖意,列出算式。

教學(xué)時(shí),要讓學(xué)生選擇算法自己計(jì)算。然后小組內(nèi)交流自己的算法,再在班內(nèi)交流。要讓學(xué)生體會(huì)到不同的算法,更要讓學(xué)生體會(huì)到哪種算法既算的快又適合自己使用,引導(dǎo)學(xué)生優(yōu)化自己的算法,但要注意,說(shuō)某種算法最好,不是由老師說(shuō)了算,而是讓學(xué)生在親身感受、體驗(yàn)的基礎(chǔ)上,自覺(jué)地去進(jìn)行比較和選擇。優(yōu)化算法仍然要尊重學(xué)生的選擇,倡導(dǎo)算法多樣化。

2、教學(xué)“試一試”。

讓學(xué)生自己算一算,再組織學(xué)生與同伴交流,在成功計(jì)算的過(guò)程中,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。

三、鞏固新知。

1、做“想想做做”的第1題和第2題。

在做第1、2題時(shí)可以讓學(xué)生感受相應(yīng)算式間的聯(lián)系,以利于學(xué)好減法計(jì)算。

2、做“想想做做”的第3、4、5、6題。

學(xué)生分組練習(xí),讓學(xué)生分別把各組題算一算、比一比,說(shuō)說(shuō)自己有什么發(fā)現(xiàn)??梢越M織游戲,或者用線(xiàn)連一連等。

第6題可以讓學(xué)生看看填好后的統(tǒng)計(jì)表,說(shuō)說(shuō)從表中能知道些什么,還可以想到什么。

四、課堂總結(jié)。

勾股定理活動(dòng)課教案篇十六

教學(xué)方法葉圣陶說(shuō)過(guò)“教師之為教,不在全盤(pán)授予,而在相機(jī)誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問(wèn)題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。

學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過(guò)程。

【本文地址:http://mlvmservice.com/zuowen/7242321.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔