語文學(xué)習(xí)不僅僅是為了應(yīng)付考試,更是為了提升我們的思維能力和綜合素質(zhì)。完美的總結(jié)需要我們善于提煉,將繁雜的內(nèi)容歸納到幾個(gè)關(guān)鍵的觀點(diǎn)中。在讀完這些總結(jié)范文后,我們可以自己動手寫一篇總結(jié),將自己的成長和經(jīng)驗(yàn)進(jìn)行梳理和總結(jié)。
數(shù)學(xué)竟賽建模論文篇一
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過程中進(jìn)行了分析。
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問題。
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個(gè)問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實(shí)際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過程中要利用多鼓勵(lì)的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題。
對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運(yùn)用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例。
在數(shù)學(xué)建模過程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動進(jìn)行數(shù)學(xué)建模。
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
數(shù)學(xué)竟賽建模論文篇二
摘要:高校課程改革要求培養(yǎng)具有適應(yīng)性和創(chuàng)新性的高素質(zhì)人才,培養(yǎng)大學(xué)生的創(chuàng)造能力和實(shí)踐能力已經(jīng)引起了廣泛關(guān)注。數(shù)學(xué)建模是提高學(xué)生應(yīng)用意識和數(shù)學(xué)素質(zhì)的重要途徑之一。學(xué)校結(jié)合各學(xué)科特點(diǎn)及學(xué)生情況,開設(shè)數(shù)學(xué)建模課程,改變傳統(tǒng)的數(shù)學(xué)教學(xué)方式,在各科教學(xué)中穿插數(shù)學(xué)建模思想,通過課內(nèi)、課外數(shù)學(xué)教學(xué)的有機(jī)結(jié)合,培養(yǎng)大學(xué)生的數(shù)學(xué)建模思想,能夠使學(xué)生應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的能力增強(qiáng),有利于提高大學(xué)生的創(chuàng)新思維能力和綜合素質(zhì)。
關(guān)鍵詞:數(shù)學(xué)建模;科技創(chuàng)新;實(shí)踐能力。
一、引言。
加強(qiáng)大學(xué)生的創(chuàng)新精神和創(chuàng)新思維能力的培養(yǎng),已是世界各國教學(xué)改革的共同趨勢,也是我國實(shí)現(xiàn)“科教興國”戰(zhàn)略的基本要求。新的課程改革強(qiáng)調(diào)數(shù)學(xué)與實(shí)際生活的聯(lián)系,多年來的教育實(shí)踐證明,數(shù)學(xué)建模的教學(xué)在大學(xué)生的創(chuàng)新教學(xué)中的地位和意義已是舉足輕重。學(xué)??梢酝ㄟ^數(shù)學(xué)建模,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識的能力、分析解決問題的能力以及交流與合作的能力。數(shù)學(xué)教育本質(zhì)上是一種素質(zhì)教育,從開始受教育,就接觸數(shù)學(xué)學(xué)科,數(shù)學(xué)的重要性可見一斑,不僅僅是要掌握這門課的知識這么簡單,現(xiàn)實(shí)生活中的很多實(shí)際問題都能用數(shù)學(xué)語言來描述,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,再來描述、解決問題的過程就是建立數(shù)學(xué)模型、求解數(shù)學(xué)模型的過程。在數(shù)學(xué)教學(xué)中,就不能和現(xiàn)實(shí)完全脫離,這種和現(xiàn)實(shí)脫軌的傳統(tǒng)教學(xué)狀態(tài)使學(xué)生雖然掌握了技術(shù),卻不能學(xué)以致用,填鴨式的教育并不能使學(xué)生真正成為現(xiàn)在社會需要的有用人才,數(shù)學(xué)建模就是將數(shù)學(xué)和外界聯(lián)系起來的一個(gè)通道。通過數(shù)學(xué)建模培養(yǎng)大學(xué)生對于新問題在短時(shí)間之內(nèi)的解決問題的能力,有利于培養(yǎng)大學(xué)生的創(chuàng)新思想。
二、制約大學(xué)生創(chuàng)新能力發(fā)展的問題。
目前,數(shù)學(xué)教育主要還是關(guān)注在題目上,學(xué)習(xí)的目的大部分都是為了獲取高分。如果高校的教育從公式、定理展開,學(xué)生的作業(yè)、學(xué)習(xí)也依葫蘆畫瓢的積分微分,這種方式訓(xùn)練出來的學(xué)生,往往知其然而不知其所以然,雖然按教材中規(guī)中矩、按部就班地授課,可以使學(xué)生在短時(shí)間內(nèi)掌握知識,也能獲得暫時(shí)的效果,然而當(dāng)學(xué)生走向社會時(shí),這樣學(xué)習(xí)到的知識往往不能給他們帶來更多的幫助,這種情況顯然不是在數(shù)學(xué)教育中理想的狀態(tài)。書本上看起來或晦澀難懂或明了清楚的概念理論應(yīng)該不僅僅帶給學(xué)生在校時(shí)的分?jǐn)?shù)、獎(jiǎng)學(xué)金,應(yīng)該了解精髓,懂得他們背后的思想和生命力才是數(shù)學(xué)帶給我們遠(yuǎn)比學(xué)習(xí)成績更重要的東西。
無論是以后從事什么崗位,接受過的數(shù)學(xué)教育鍛煉過思維、邏輯,使學(xué)生在面對實(shí)際問題時(shí)更能明白事情的問題所在,更能有邏輯、更有方法的解決問題。這就是要培養(yǎng)學(xué)生的自主思考、發(fā)散創(chuàng)新的能力。傳統(tǒng)的教學(xué)過程既然很難做到,那么就要通過別的方法訓(xùn)練大學(xué)生面對問題、解決問題的能力。在高校中推廣數(shù)學(xué)建模是一種能實(shí)施、易實(shí)施又有效的方法。
三、高校大學(xué)生數(shù)學(xué)建模創(chuàng)新活動的建設(shè)內(nèi)容。
針對現(xiàn)狀問題,我們以培養(yǎng)大學(xué)生的創(chuàng)新能力及實(shí)踐能力為目的,通過建設(shè)高效的數(shù)學(xué)建模創(chuàng)新活動,激發(fā)大學(xué)生的創(chuàng)新活力和運(yùn)用數(shù)學(xué)方法解決復(fù)雜實(shí)際問題的綜合能力,拓寬學(xué)生的知識面,培養(yǎng)學(xué)生的創(chuàng)新精神和團(tuán)隊(duì)合作意識。
1.從全校相關(guān)專業(yè)中選拔有實(shí)戰(zhàn)經(jīng)驗(yàn)的教師進(jìn)行培訓(xùn)根據(jù)不同專業(yè)的特色,從全校范圍內(nèi)選拔優(yōu)秀的數(shù)學(xué)建模指導(dǎo)教師團(tuán)隊(duì);根據(jù)數(shù)學(xué)建模特點(diǎn),對指導(dǎo)教師進(jìn)行專業(yè)培訓(xùn)和學(xué)術(shù)交流。比如,參加數(shù)學(xué)建模培訓(xùn)班,與其他高校優(yōu)秀建模教師進(jìn)行學(xué)術(shù)交流。邀請有實(shí)戰(zhàn)經(jīng)驗(yàn)的專家做數(shù)學(xué)建模的學(xué)術(shù)報(bào)告。根據(jù)指導(dǎo)教師特點(diǎn)進(jìn)行分工,研究不同領(lǐng)域的數(shù)學(xué)建模問題,通過專兼結(jié)合達(dá)到知識結(jié)構(gòu)的優(yōu)勢互補(bǔ)。
2.將數(shù)學(xué)建模思想融入學(xué)生的認(rèn)知當(dāng)中現(xiàn)代認(rèn)知心理學(xué)家布魯納說:“探索是數(shù)學(xué)教學(xué)的生命線。”moor教學(xué)法提出學(xué)習(xí)數(shù)學(xué)最好的方式是“在做數(shù)學(xué)中學(xué)習(xí)數(shù)學(xué)”。因此,在教學(xué)中調(diào)動學(xué)生積極參與數(shù)學(xué)建模過程中,探索建模方法。在選題時(shí)老師應(yīng)引導(dǎo)學(xué)生,開發(fā)學(xué)生的開放性、探索性,開拓更廣闊的探索空間。講解建模環(huán)節(jié),教師要善于把建模材料組織成一個(gè)體系,為學(xué)生創(chuàng)造探索環(huán)境。數(shù)學(xué)建模環(huán)節(jié),教師應(yīng)尊重學(xué)生的主體地位,激勵(lì)學(xué)生獨(dú)立思考,出錯(cuò)環(huán)節(jié)協(xié)助其自主分析出錯(cuò)原因,并從錯(cuò)誤中尋出思維的合理之處。教師引導(dǎo)學(xué)生建模主要從兩個(gè)方面入手:一將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力;二對轉(zhuǎn)化過來的問題,應(yīng)用數(shù)學(xué)解決的能力。在教學(xué)過程中,教師可以將實(shí)際問題還原成所學(xué)數(shù)學(xué)知識,使學(xué)生可以借助自己的認(rèn)知結(jié)構(gòu)主動構(gòu)建數(shù)學(xué)模型;從數(shù)學(xué)問題原型出發(fā),引導(dǎo)學(xué)生觀察、分析、概括得到數(shù)學(xué)概念、公式、定理、法則的教學(xué)方式符合知識的發(fā)生發(fā)展的過程,體現(xiàn)教學(xué)中解決問題的心理過程。
3.在全校根據(jù)文理科專業(yè)開設(shè)數(shù)學(xué)建模通識課大一上學(xué)期,全校范圍內(nèi)開設(shè)數(shù)學(xué)建模通識課,結(jié)合各學(xué)科的特點(diǎn),分別開設(shè)文科班和理科班,不僅理科生可以受到數(shù)學(xué)建模思想的熏陶,文科生也可以根據(jù)自身的認(rèn)知體驗(yàn)到數(shù)學(xué)建模帶來的樂趣。邀請有經(jīng)驗(yàn)的數(shù)學(xué)建模指導(dǎo)教師進(jìn)行講授,要結(jié)合學(xué)生感興趣的問題入手。
比如,20xx年高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目b題“拍照賺錢”的任務(wù)定價(jià),通過學(xué)生感興趣的“拍照賺錢”等實(shí)際問題讓學(xué)生切身體會到數(shù)學(xué)建模思想與生活息息相關(guān),讓學(xué)生帶著問題學(xué)習(xí)。對一些同學(xué)難以理解的數(shù)學(xué)模型的講解時(shí),教師可以將數(shù)學(xué)問題轉(zhuǎn)化為學(xué)生已有的認(rèn)知當(dāng)中,既通俗易懂,又能夠讓學(xué)生通過數(shù)學(xué)建模產(chǎn)生樂趣。比如,學(xué)生在學(xué)習(xí)難理解的貝葉斯模型時(shí),先驗(yàn)概率對后驗(yàn)概率的影響,不知其意而死記硬背,教學(xué)中可以用原型引出貝葉斯模型:已知外界的環(huán)境變化影響最終決策者的判斷;高等數(shù)學(xué)中的矩陣,矩陣分解可通過數(shù)學(xué)建模應(yīng)用于人臉圖像識別、矩陣的特征值及特征向量可以用于數(shù)據(jù)降維等。通過模型學(xué)習(xí)概念,強(qiáng)化數(shù)學(xué)來源于生活的思想教育,理論聯(lián)系實(shí)際的數(shù)學(xué)課堂教學(xué)模式讓學(xué)生看到問題的提出,有利于學(xué)生的創(chuàng)造性思維能力的培養(yǎng),以此激發(fā)學(xué)生對數(shù)學(xué)建模的學(xué)習(xí)興趣。學(xué)期結(jié)束時(shí),要求學(xué)生根據(jù)教師提供的數(shù)學(xué)問題提交一份數(shù)學(xué)建模論文。
4.成立數(shù)學(xué)建模興趣小組成立數(shù)學(xué)建模課外興趣小組群,通過qq、微信等社交平臺,充分發(fā)揮大學(xué)生的主觀能動性,形成良好的學(xué)習(xí)氛圍。學(xué)生通過數(shù)學(xué)建模學(xué)習(xí)如何在團(tuán)隊(duì)中發(fā)揮自己的長處,如何合作完成共同的任務(wù)。在數(shù)學(xué)建模課外興趣小組中,學(xué)生互相討論時(shí),不同的思維碰撞會產(chǎn)生不同的想法,能激勵(lì)大學(xué)生養(yǎng)成勤于動腦、善于思考的能力,能在一定程度上鍛煉學(xué)生的靈活性和思考問題的多面性。課外小組中,學(xué)校舉辦數(shù)學(xué)建模系列講座,可以邀請有經(jīng)驗(yàn)的專家教師給大家講解數(shù)學(xué)在實(shí)際中的不同應(yīng)用,宣傳數(shù)學(xué)建?;舅枷耄箤W(xué)生全面理解模型的適用范圍、典型特征、建模及求解過程。通過對模型深入的理解,學(xué)生了解數(shù)學(xué)建模全過程,進(jìn)而舉一反三。此外,根據(jù)學(xué)生的不同特點(diǎn),分配給學(xué)生不同的學(xué)習(xí)任務(wù),既激起大學(xué)生對數(shù)學(xué)建模的興趣,又保證個(gè)性化的培養(yǎng)教育,學(xué)生們在小組中能體會到團(tuán)隊(duì)協(xié)作的重要性。學(xué)??梢蚤_展數(shù)學(xué)文化節(jié),依托豐富多彩的數(shù)學(xué)課外閱讀活動,使學(xué)生感受數(shù)學(xué)文化,學(xué)會用數(shù)學(xué)的眼光看待世界,用數(shù)學(xué)的頭腦解決身邊的問題,以此提升學(xué)生的數(shù)學(xué)素養(yǎng),重點(diǎn)培養(yǎng)學(xué)生的發(fā)散思維,以及以新穎獨(dú)特的方式解決問題的思維方式。
5.參賽人員層級選拔及實(shí)訓(xùn)。
(1)校內(nèi)選拔。全校選拔人員采取自愿報(bào)名的方式。自愿參加的成員能積極、主動地學(xué)習(xí),積極地思考問題,將他們的能力最大限度地發(fā)揮出來。指導(dǎo)教師給定幾個(gè)經(jīng)典題目,按照全國大學(xué)生數(shù)學(xué)建模競賽的所有規(guī)則進(jìn)行模擬競賽,通過賽前鼓勵(lì)調(diào)動學(xué)生的創(chuàng)造性思維能力,讓學(xué)生積極參與。賽中指導(dǎo)教師根據(jù)每一位參賽隊(duì)員的特點(diǎn)進(jìn)行有針對性的指導(dǎo),發(fā)揚(yáng)每個(gè)學(xué)生的優(yōu)點(diǎn),提高每一位參賽隊(duì)員的學(xué)業(yè)素質(zhì)及水平。賽后根據(jù)每位學(xué)生在活動中的表現(xiàn),評出各個(gè)學(xué)生的等級獎(jiǎng)(一、二、三等獎(jiǎng)及優(yōu)秀獎(jiǎng))。根據(jù)成績及學(xué)生在比賽中的表現(xiàn),選拔出前20組優(yōu)秀學(xué)生團(tuán)隊(duì)。
(2)優(yōu)秀學(xué)生培訓(xùn)。學(xué)校有針對地對在校內(nèi)選拔的優(yōu)秀創(chuàng)新人才進(jìn)行集中培訓(xùn)和實(shí)訓(xùn),從實(shí)際出發(fā),以學(xué)校培養(yǎng)創(chuàng)新性人才的目標(biāo)為指導(dǎo)思想。在數(shù)學(xué)建模過程中,邀請往屆參賽得獎(jiǎng)的學(xué)生進(jìn)行交流,介紹經(jīng)驗(yàn)。教師帶領(lǐng)學(xué)生觀摩其他學(xué)校的數(shù)學(xué)建模培養(yǎng)方式,促進(jìn)大學(xué)生中優(yōu)秀人才的脫穎而出、健康快速成長,加強(qiáng)各高校之間以及高校與企業(yè)之間的研究,讓大學(xué)生從中獲得知識,并讓學(xué)生有競爭意識。學(xué)院設(shè)立數(shù)學(xué)建模暑期培訓(xùn),主要涉及有建模所需數(shù)學(xué)知識講解、建模案例分析、建模案例練習(xí)、全國大學(xué)生優(yōu)秀作品分析、最終的建??荚嚈z測。
(3)基于理論方法和具體實(shí)戰(zhàn)的培訓(xùn)。理論課方面,主要介紹數(shù)學(xué)建?;舅枷?、常用建模方法,以及較為經(jīng)典的建模案例。在教學(xué)方法上,教師可以采用啟發(fā)式教學(xué),引領(lǐng)學(xué)生參與建模的全過程,使學(xué)生領(lǐng)悟數(shù)學(xué)建模的精髓,激發(fā)對數(shù)學(xué)建模的興趣。實(shí)驗(yàn)課方面,為提高學(xué)生分析解決問題、設(shè)計(jì)實(shí)現(xiàn)算法的能力,介紹主要軟件(matlab、spss、r和python)及其軟件包,教學(xué)生直接利用軟件編程求解一些簡單的數(shù)學(xué)模型。實(shí)驗(yàn)課中,教師給出建模案例,讓學(xué)生練習(xí),包括(分析問題、提出假設(shè)、建立模型、算法設(shè)計(jì)、實(shí)驗(yàn)操作、結(jié)果檢驗(yàn)、撰寫論文),最后帶領(lǐng)學(xué)生參加全國大學(xué)生數(shù)學(xué)建模競賽。英語基礎(chǔ)比較好的學(xué)生可以參加美國大學(xué)生數(shù)學(xué)建模競賽。
四、結(jié)束語。
創(chuàng)新人才的培養(yǎng)是時(shí)代發(fā)展的需要,是時(shí)代對教育提出的新要求。數(shù)學(xué)建模競賽對大學(xué)生的實(shí)踐創(chuàng)新能力十分有效,因此學(xué)校改變傳統(tǒng)數(shù)學(xué)方式的局限性,要結(jié)合最新的科學(xué)前沿問題,通過課堂數(shù)學(xué)教學(xué)、課外活動將數(shù)學(xué)建模融入學(xué)生的認(rèn)知當(dāng)中,通過數(shù)學(xué)建模思想的培養(yǎng),提高當(dāng)代大學(xué)生的創(chuàng)造性思維能力,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識的能力、分析解決問題的能力以及交流與合作的能力。
參考文獻(xiàn):
[1]楊艷琦.基于數(shù)學(xué)建模培訓(xùn)大學(xué)生創(chuàng)新能力[j].產(chǎn)業(yè)與科技論壇,20xx。
[4]姜啟源,謝金星.數(shù)學(xué)模型(第三版)[m].北京:高等教育出版社,20xx。
數(shù)學(xué)竟賽建模論文篇三
【論文關(guān)鍵詞】空氣管理系統(tǒng);信號驅(qū)動;控制邏輯建模。
0引言。
空氣管理系統(tǒng)是民用飛機(jī)上非常重要的機(jī)載系統(tǒng)之一,負(fù)責(zé)控制飛機(jī)引氣、座艙壓力調(diào)節(jié)、機(jī)翼防冰、溫度控制等功能[1-5]??諝夤芾硐到y(tǒng)控制是以兩個(gè)綜合空氣管理系統(tǒng)控制器(iasc)為控制中樞,以各種傳感器發(fā)來的監(jiān)控信號、外部系統(tǒng)發(fā)來的通訊信號為輸入,經(jīng)iasc內(nèi)部邏輯運(yùn)算后,驅(qū)動各種受控設(shè)備,如風(fēng)扇、活門、加熱器等,來實(shí)現(xiàn)飛機(jī)空氣溫度、壓力、流量等控制功能,并將系統(tǒng)狀態(tài)信息發(fā)送給外部系統(tǒng)實(shí)現(xiàn)顯示、告警及記錄功能。
空氣管理系統(tǒng)控制功能需求是以系統(tǒng)需求為依據(jù),結(jié)合所采用的控制架構(gòu)細(xì)化而來。各控制功能由若干個(gè)控制邏輯組成。在空氣管理系統(tǒng)研制過程中需要進(jìn)行控制功能的確認(rèn)與驗(yàn)證。仿真的方式能有效提高效率,降低成本,而建立各種控制邏輯模型則是進(jìn)行仿真確認(rèn)與驗(yàn)證的基礎(chǔ)。本文研究了一種信號驅(qū)動的空氣管理系統(tǒng)控制邏輯建模方法。
1信號驅(qū)動的控制邏輯建模方法。
信號驅(qū)動是指由各種信號作為基本單元來進(jìn)行控制邏輯建模。各個(gè)信號表示著不同的狀態(tài)變量,空氣管理系統(tǒng)控制器根據(jù)不同的輸入狀態(tài)變量的值來決定發(fā)出的指令信號。通過基本信號來表述邏輯能從最底層關(guān)系開始,逐步向上搭建整套控制邏輯。具體的建模過程包括構(gòu)建信號庫、搭建邏輯樹以及驅(qū)動功能驗(yàn)證邏輯3個(gè)步驟。
1.1構(gòu)建信號庫。
構(gòu)建信號庫是為了方便在構(gòu)建邏輯時(shí)隨時(shí)調(diào)用而將一些基本的輸入信號信息收集并按照一定的編碼方式存儲起來??諝夤芾硐到y(tǒng)邏輯運(yùn)算中需要用到的信號屬性包括信號名稱、信號功能范圍、信號有效性、信號設(shè)備源。所以可將每條信號按照[id|name,range(min,max),valid,source]的方式進(jìn)行整理,例如由控制器iasc1的a通道發(fā)出的座艙高度告警信號可表示為[00001|cab_alt_w,(0,1),true,iasc1a]。集合所有控制器接收的信號,從而形成空氣管理系統(tǒng)信號庫。
1.2搭建邏輯樹。
邏輯樹的根節(jié)點(diǎn)一般是各個(gè)基本信號組成的關(guān)系式,例如cab_alt_w=1,表示座艙告警為真。這些關(guān)系式通過基本的與/或邏輯算子連接,從而形成基本的邏輯樹,這些邏輯樹的輸出結(jié)果為ture或者false。在搭建邏輯樹的過程中,當(dāng)一條邏輯鏈比較長時(shí),可將一棵邏輯樹的輸出作為另外一棵邏輯樹的輸入而形成邏輯嵌套,建模論文這種方式能簡化邏輯樹的搭建過程。邏輯樹的表達(dá)可用邏輯方程來記錄。例如座艙高度告警邏輯可按以下兩種方式表達(dá)。
將所有的邏輯按照邏輯樹的方式搭建起來,可形成一個(gè)邏輯庫,在后續(xù)定義功能時(shí)即可直接調(diào)用來構(gòu)建功能。
1.3驅(qū)動功能驗(yàn)證邏輯。
若干條邏輯合在一起,可以驅(qū)動復(fù)雜的功能。通過功能的仿真即可驗(yàn)證各種邏輯的正確性。從功能層面進(jìn)行驗(yàn)證因?yàn)橐饬x更明確更方便實(shí)施,且一條功能的驗(yàn)證即可驗(yàn)證多條邏輯,功能驗(yàn)證的方式是選擇功能相關(guān)的所有信號,設(shè)定各信號的狀態(tài)值,作為組成功能的所有邏輯的輸入,計(jì)算得到功能輸出值,觀察是否與預(yù)期一致。
2空氣管理系統(tǒng)cas與簡圖頁邏輯建模與驗(yàn)證。
cas與簡圖頁是供飛行員了解各系統(tǒng)狀態(tài)的重要頁面,由系統(tǒng)負(fù)責(zé)提供信號,指示系統(tǒng)按照指定的cas與簡圖頁邏輯進(jìn)行顯示?;诒疚牡乃枷?,進(jìn)行空氣管理系統(tǒng)cas與簡圖頁邏輯建模與功能驗(yàn)證,開發(fā)了相應(yīng)的軟件平臺。
2.1空氣管理系統(tǒng)cas邏輯建模。
定義cas主要需要定義cas等級、cas顯示內(nèi)容以及cas顯示邏輯。cas等級按照嚴(yán)重程度可分為waring,caution,advisory,status四種,分別用紅色、黃色、青色、白色來表示。本文定義的cas邏輯是由系統(tǒng)發(fā)出cas相關(guān)信號后,由這些信號運(yùn)算后顯示在cas頁面的邏輯,空氣管理系統(tǒng)cas消息主要顯示系統(tǒng)工作狀態(tài)以及在一些危險(xiǎn)狀態(tài)如座艙高度過高、機(jī)翼防冰失效等情況下告警。
cas定義模塊主要提供cas名稱、內(nèi)容、等級的編輯頁面,cas邏輯的指定可直接調(diào)用邏輯庫中的邏輯。
2.2空氣管理系統(tǒng)簡圖頁邏輯建模。
空氣管理系統(tǒng)簡圖頁功能是通過簡要示意圖顯示系統(tǒng)主要設(shè)備與管路內(nèi)空氣的狀態(tài),管路的空氣狀態(tài)信息需要根據(jù)上下游的設(shè)備狀態(tài)來判斷,這些判斷關(guān)系組成了簡圖頁的邏輯??諝夤芾硐到y(tǒng)簡圖頁的主要圖形元素是活門與管路流線,其邏輯定義可分為活門與流線顯示邏輯定義。簡圖頁定義模塊設(shè)計(jì)了自定義活門與管路繪制工具,通過活門與流線顯示邏輯定義指定顯示顏色的驅(qū)動邏輯,構(gòu)成整體的簡圖頁顯示邏輯。
2.3空氣管理系統(tǒng)cas與簡圖頁功能驗(yàn)證。
前面構(gòu)建了空氣管理系統(tǒng)cas與簡圖頁的邏輯,通過指定各功能相關(guān)輸入信號的值,在邏輯運(yùn)算后再直觀地顯示在頁面上,從而可以確認(rèn)功能是否正確實(shí)現(xiàn)。在驗(yàn)證時(shí)只需根據(jù)場景需要,設(shè)定各信號的模擬值,由系統(tǒng)后臺運(yùn)算得到功能輸出信號值,并驅(qū)動頁面上的顯示元素顯示相應(yīng)的狀態(tài)。
通過上述幾個(gè)步驟,能對空氣管理系統(tǒng)cas與簡圖頁功能進(jìn)行整體的驗(yàn)證,有效提高了cas與簡圖頁功能的設(shè)計(jì)與確認(rèn)效率,也能為后續(xù)系統(tǒng)排故提供支持。
3結(jié)論。
本文結(jié)合空氣管理系統(tǒng)控制架構(gòu)特點(diǎn),提出了信號驅(qū)動的邏輯建模方法。本文方法具有如下特點(diǎn):
1)構(gòu)建了空氣管理系統(tǒng)基礎(chǔ)信號庫,能支持在邏輯層、功能層隨時(shí)調(diào)用相關(guān)的信號信息;。
2)構(gòu)建了空氣管理系統(tǒng)邏輯庫,支持上層功能的搭建與驗(yàn)證;。
3)開發(fā)了控制邏輯建模工具,能模擬各種場景下的功能驗(yàn)證,提高了設(shè)計(jì)效率。
【參考文獻(xiàn)】。
[1]程立嘉,程曉忠,左彥聲.大型客機(jī)空氣管理系統(tǒng)現(xiàn)狀與發(fā)展趨勢[j].航空科學(xué)技術(shù),20xx.3:7-8.
[2]徐紅專,崔文君,張惠娟.電子電動式座艙壓力調(diào)節(jié)系統(tǒng)研究[j].江蘇航空,20xx,3:8-13.
數(shù)學(xué)竟賽建模論文篇四
摘要:以文獻(xiàn)綜述法為主要策略,查閱知網(wǎng)和萬方數(shù)據(jù)庫中有關(guān)高職數(shù)學(xué)建模教學(xué)的相關(guān)文獻(xiàn),對高職數(shù)學(xué)建模教學(xué)現(xiàn)狀,存在問題以及優(yōu)化發(fā)展對策的文獻(xiàn)研究成果進(jìn)行梳理,通過研究綜述發(fā)現(xiàn):以建模思維構(gòu)建課堂情境已成為國內(nèi)眾多高職院校數(shù)學(xué)課程教學(xué)的重要方法,對數(shù)學(xué)教學(xué)效果的提升也起到了積極的作用,但在教學(xué)方法創(chuàng)新和學(xué)生有效引導(dǎo)等方面仍存在一些問題,希望各級高職院校能夠針對凸顯出的問題進(jìn)行有效整改。
關(guān)鍵詞:高職數(shù)學(xué);建模教學(xué);現(xiàn)狀與發(fā)展;綜述分析。
(一)數(shù)學(xué)模型。
數(shù)學(xué)模型是一種使用數(shù)學(xué)語言對現(xiàn)實(shí)問題的抽象化表達(dá)形式。它是人們用數(shù)學(xué)方法解決現(xiàn)實(shí)問題的工具,基于數(shù)學(xué)模型的現(xiàn)實(shí)問題表達(dá)往往有著量化的表現(xiàn)形式,再通過數(shù)學(xué)方法的推演和求解,將現(xiàn)實(shí)問題中蘊(yùn)含的數(shù)學(xué)含義表達(dá)出來。在數(shù)學(xué)、經(jīng)濟(jì)、物理等研究領(lǐng)域,有很多經(jīng)典的數(shù)學(xué)模型,例如:,馬爾薩斯人口增長理論模型、馬爾維次投資組合選擇模型等,這些數(shù)學(xué)模型的構(gòu)建幫助人們解決了很多現(xiàn)實(shí)的問題,提升了相關(guān)領(lǐng)域量化分析的精確度。
數(shù)學(xué)建模教學(xué)是一種基于數(shù)學(xué)模型的教學(xué)方法,在高職院校數(shù)學(xué)教學(xué)中被普遍應(yīng)用,具體來說數(shù)學(xué)建模教學(xué)的一般步驟為:
(1)模型理論依據(jù)分析。在教學(xué)中倘若需要以某一個(gè)知識點(diǎn)為基礎(chǔ)建設(shè)數(shù)學(xué)模型時(shí),教師應(yīng)該以前人的研究成果為依據(jù),找尋模型建設(shè)的理論支撐點(diǎn),切忌假大空似的模型構(gòu)建思路。
(2)以教學(xué)內(nèi)容為基礎(chǔ)假設(shè)模型。根據(jù)教學(xué)內(nèi)容的需要,對待研究問題進(jìn)行模型化假設(shè),提出因變量、自變量等模型語言。
(3)建立模型。在假設(shè)的基礎(chǔ)上建立模型。
(4)解析模型。將待求解的數(shù)學(xué)數(shù)據(jù)代入模型進(jìn)行解析計(jì)算。
(5)模型應(yīng)用效果檢驗(yàn)。將模型解析的結(jié)果與實(shí)際情況進(jìn)行比較,以檢驗(yàn)?zāi)P徒馕龅臏?zhǔn)確性和實(shí)效性。
二、高職數(shù)學(xué)建模教學(xué)現(xiàn)狀與問題研究綜述。
(一)教學(xué)現(xiàn)狀綜述。
施寧清等人(20xx)采用試驗(yàn)法研究了建模教學(xué)在高職數(shù)學(xué)課程教學(xué)中的效果,試驗(yàn)的過程以對照班和實(shí)驗(yàn)班對比教學(xué)的形式展開,針對試驗(yàn)班的教學(xué)采用數(shù)學(xué)建模的方法,而對照班的教學(xué)則采用傳統(tǒng)的講授法展開,通過一段時(shí)間的教學(xué)實(shí)踐后設(shè)置評估變量對兩個(gè)班級學(xué)生的數(shù)學(xué)學(xué)習(xí)效果進(jìn)行了總結(jié),結(jié)果顯示:試驗(yàn)班學(xué)生的數(shù)學(xué)考試成績、建模應(yīng)用能力等均優(yōu)于對照班,說明建模法對高職數(shù)學(xué)教學(xué)質(zhì)量的提升效益明顯。危子青等人(20xx)項(xiàng)目教學(xué)法與建模思想融合的高職數(shù)學(xué)教學(xué)形式,指出:該種教學(xué)的特色在于將高職數(shù)學(xué)課程的教學(xué)內(nèi)容劃分為若干個(gè)子項(xiàng)目,對每一個(gè)項(xiàng)目都進(jìn)行模型化構(gòu)建,并以模型為素材設(shè)計(jì)和組織項(xiàng)目化教學(xué),通過教學(xué)應(yīng)用后發(fā)現(xiàn)學(xué)生不僅掌握了項(xiàng)目教學(xué)的學(xué)習(xí)精髓,也掌握了數(shù)學(xué)模型的構(gòu)建解析技能,教學(xué)效益獲得了雙豐收。馮寧(20xx)肯定了建模思想對高職數(shù)學(xué)教學(xué)帶來的效益,指出:通過引入建模教學(xué),能夠最大化鍛煉學(xué)生的發(fā)散性思維,以及數(shù)學(xué)邏輯應(yīng)用能力,對教學(xué)效果的促進(jìn)效益明顯。
(二)存在問題綜述。
盡管建模法對高職數(shù)學(xué)教學(xué)帶來的效益十分明顯,但在多年的教學(xué)實(shí)踐中一些問題也不斷凸顯出來有待進(jìn)一步整改,為此國內(nèi)一些學(xué)者也將研究的視角放在建模法在高職數(shù)學(xué)教學(xué)中存在問題的研究上,例如:孟玲(20xx)從教學(xué)方法的教學(xué)分析了高職數(shù)學(xué)建模教學(xué)中的問題,指出:很多高職生對數(shù)學(xué)學(xué)習(xí)的興趣不足,加之傳統(tǒng)的數(shù)學(xué)模型又十分抽象,學(xué)生理解起來比較困難,一些高職數(shù)學(xué)教師采用傳統(tǒng)的建模教學(xué)思路組織教學(xué)并不利于學(xué)生學(xué)習(xí)興趣的激發(fā),而抽象的數(shù)學(xué)模型與陳舊的教學(xué)方法結(jié)合反而降低的教學(xué)的效果。曹曉軍(20xx)則認(rèn)為:很多數(shù)學(xué)教師并不注重引導(dǎo)學(xué)生科學(xué)地理解數(shù)學(xué)模型,并在此基礎(chǔ)上有效地接受學(xué)習(xí)內(nèi)容,而是一味地采用灌輸法設(shè)計(jì)教學(xué)過程,不利于數(shù)學(xué)模型在課程教學(xué)中的應(yīng)用效益提升。
三、高職數(shù)學(xué)建模教學(xué)發(fā)展對策綜述。
針對建模法在高職數(shù)學(xué)教學(xué)中凸顯出的問題,一些學(xué)者也提出了對策。例如,齊松茹(20xx)認(rèn)為應(yīng)創(chuàng)新建模教學(xué)的形式和方法,如引入游戲教學(xué)法,將深奧的數(shù)學(xué)模型趣味化,通過組織多元化的教學(xué)游戲激發(fā)起學(xué)生參與建模學(xué)習(xí)的興趣。谷志元(20xx)則認(rèn)為教師應(yīng)該加大對學(xué)生的引導(dǎo),通過課前、中、后期的有效引導(dǎo),幫助學(xué)生有效地建立起對數(shù)學(xué)模型的認(rèn)知,逐步教會學(xué)生利用模型解決實(shí)際問題,達(dá)到學(xué)以致用的教學(xué)效果,以提升數(shù)學(xué)模型在課程教學(xué)中的價(jià)值。周瑋(20xx)則提出了結(jié)合網(wǎng)絡(luò)課堂建立研討式課堂的建模教學(xué)新思路,不失為一種高職數(shù)學(xué)建模教學(xué)的創(chuàng)新教法。
四、結(jié)語。
通過對已有文獻(xiàn)的查閱和梳理發(fā)現(xiàn),高職數(shù)學(xué)課程教學(xué)中引入建模方法對于課程教學(xué)實(shí)效性提升的效果已經(jīng)得到了國內(nèi)眾多學(xué)者的肯定,但在應(yīng)用中也存在一些問題,比如:教學(xué)方法的創(chuàng)新度不夠,學(xué)生引導(dǎo)的活動不多等,為此國內(nèi)一些學(xué)者也提出了針對性的教學(xué)優(yōu)化思路。本文的研究認(rèn)為:建模法對于高職數(shù)學(xué)教學(xué)效益的提升有著積極的價(jià)值,在今后的教學(xué)實(shí)踐中各級高職院校教師應(yīng)該結(jié)合教學(xué)的實(shí)際情況開展科學(xué)的建模教學(xué)活動,以不斷提升高職數(shù)學(xué)建模教學(xué)的實(shí)效性。
參考文獻(xiàn):
數(shù)學(xué)竟賽建模論文篇五
摘要:所謂數(shù)學(xué)建模,即借助數(shù)學(xué)模型,處理所遇到的具體問題的課程,在本文中,分別就教學(xué)、模型建立以及相應(yīng)的信息檢索來進(jìn)行研究,通過將這三面進(jìn)行相應(yīng)的糅合從而證明可以將計(jì)算機(jī)技術(shù)引入到相應(yīng)的建模實(shí)踐中,從而有效促進(jìn)數(shù)學(xué)建模的發(fā)展,使得教學(xué)質(zhì)量得以有效提升。
關(guān)鍵詞:數(shù)學(xué)建模;計(jì)算機(jī)應(yīng)用;融合。
目前計(jì)算機(jī)在生活中應(yīng)用極為廣泛,借助于計(jì)算機(jī)能夠使得先前較為復(fù)雜繁瑣的問題得以簡化,有效提升計(jì)算速率。就數(shù)學(xué)建模來看,計(jì)算機(jī)在此方面的作用不言而喻。對于此,人們普遍認(rèn)為,能夠借助于計(jì)算機(jī)將任何一個(gè)數(shù)學(xué)問題進(jìn)行簡化處理。而對于生活中所遇到的任意一個(gè)實(shí)際問題,均能夠借助于相應(yīng)的數(shù)學(xué)模型來進(jìn)行表示,在建模過程中,也可以根據(jù)實(shí)際情況來做出一些相應(yīng)的簡化處理,從而將其歸屬于完全的數(shù)學(xué)問題,最終建立起能夠用變量所描述的數(shù)學(xué)模型。之后,借助于相應(yīng)的計(jì)算機(jī)、軟件以及編程方面的知識,來對此模型進(jìn)行相應(yīng)的求解計(jì)算。
2.計(jì)算機(jī)技術(shù)在數(shù)學(xué)建模中的應(yīng)用。
計(jì)算機(jī)在數(shù)學(xué)建模中的應(yīng)用面非常的廣泛,限于筆者的水平,本文主要就兩個(gè)方面展開討論:第一,確定建模思想;第二,對數(shù)學(xué)模型進(jìn)行求解計(jì)算。
2.1計(jì)算機(jī)技術(shù)輔助確立數(shù)學(xué)建模思想。
對于數(shù)學(xué)建模,其最為重要的目的便是為了能夠提升學(xué)生對于數(shù)學(xué)知識的使用性,借助于相關(guān)的數(shù)學(xué)思想來對實(shí)際問題進(jìn)行解決,同時(shí),還能夠促進(jìn)學(xué)生數(shù)學(xué)思想的發(fā)展、建模能力發(fā)展以及相關(guān)數(shù)學(xué)知識的完善,最終提升其對于數(shù)學(xué)知識的使用能力。培養(yǎng)數(shù)學(xué)思維重在將學(xué)生所思所想以最快最佳的方式展示出來,計(jì)算機(jī)技術(shù)在數(shù)學(xué)建模中的應(yīng)用使得這個(gè)設(shè)想變得可能。因?yàn)閿?shù)學(xué)模型的計(jì)算和設(shè)計(jì)工作量大,傳統(tǒng)的計(jì)算辦法不能迅速解決某個(gè)問題,但是在建模的輔助下一切問題迎刃而解。
2.2計(jì)算機(jī)技術(shù)促進(jìn)數(shù)學(xué)建模結(jié)果求解。
對于數(shù)學(xué)建模,其屬于一項(xiàng)系統(tǒng)性工程,整個(gè)過程工作量較多。在前期,對于模型的構(gòu)想與建立需要不斷完善,此后,對于模型的求解也是極為困難的,這主要因?yàn)槠渖婕暗椒浅6嗟臄?shù)據(jù)處理與計(jì)算。在計(jì)算數(shù)學(xué)模型時(shí),不僅速度快,準(zhǔn)確度也很高,如表1給出了手動解30維線性方程組和計(jì)算機(jī)解30維方程組的時(shí)間,手動所用時(shí)間是計(jì)算所用時(shí)間的1200倍。
同時(shí),對于一些借助紙和筆而無法實(shí)現(xiàn)的計(jì)算,通過計(jì)算機(jī)能夠較快實(shí)現(xiàn),其中主要涉及到相關(guān)的編程、繪圖等操作。
計(jì)算機(jī)在數(shù)學(xué)建模領(lǐng)域擁有極為重要的優(yōu)勢與作用。如計(jì)算機(jī)的計(jì)算速度快、可以輔助作圖,甚至可以輔助做立體圖形。同時(shí),借助于計(jì)算機(jī)也能夠使得模型得以進(jìn)一步完善,也就是說兩者彼此之間相輔相成。
數(shù)學(xué)建模的出現(xiàn),主要是為了便于處理同工程或者科研相關(guān)的問題的,和試題類有著較大區(qū)別。其所處理問題具有一定的特性,即圍繞日常具體問題展開,科研背景突出,需要的知識結(jié)構(gòu)復(fù)雜,涉及的范圍龐大,因素多且難,非常規(guī)特征明顯,缺乏有效的處理措施,涉及數(shù)據(jù)多,要選擇的算法亦十分繁瑣,得出的結(jié)果存在波動性,要有限定的前提,通常僅可獲取近似解。而計(jì)算機(jī)的出現(xiàn),則在一定程度上使這種情況得到緩解。是數(shù)學(xué)建模多樣化,令設(shè)計(jì)領(lǐng)域更加寬泛,如數(shù)學(xué)建??梢阅7度祟惔竽X的記憶功能。
3.2計(jì)算機(jī)使數(shù)學(xué)模型求解更為簡單。
計(jì)算機(jī)在數(shù)學(xué)建模中的應(yīng)用使得數(shù)學(xué)模型求解更為簡單體現(xiàn)在以下幾個(gè)方面:
(1)計(jì)算量問題得到解決。以前計(jì)算量大是制約數(shù)學(xué)建模發(fā)展的主要因素之一,現(xiàn)在在計(jì)算機(jī)的幫助下,只要模型完善,計(jì)算量大已經(jīng)不是問題。如德國的神威計(jì)算機(jī),計(jì)算速度達(dá)到了12.5億億次/秒。
(2)可視化功能使抽象問題具體化?,F(xiàn)代計(jì)算機(jī)都有強(qiáng)大的作圖功能,會使數(shù)學(xué)模型中的一些抽象概念、問題解決過程都變得可視化。圖表的制作更是非常簡單。
3.3計(jì)算機(jī)利用數(shù)學(xué)建模尋求最優(yōu)解成為可能。
在3.1節(jié)中已經(jīng)提到,在計(jì)算機(jī)沒有應(yīng)用到數(shù)學(xué)建模中之前,很多數(shù)學(xué)模型的解只是近似解,連精確解都談不上,更不用說是最優(yōu)解。其主要原因是模型本身的計(jì)算量太大,筆和紙這兩樣工具更不能在短時(shí)間內(nèi)攻下數(shù)學(xué)模型計(jì)算這塊,此外筆和紙根本不可能完成某些圖表的制作也是原因之一。計(jì)算機(jī)有效的解決了這兩個(gè)問題,這就會使得數(shù)學(xué)模型得到精確解。在求得精確解的基礎(chǔ)之上還可以進(jìn)一步尋求最優(yōu)解,因?yàn)閿?shù)學(xué)模型的解往往是多解的,不是唯一解。
4.總結(jié)。
數(shù)學(xué)模型,其主要是通過使用相應(yīng)的數(shù)學(xué)語言來對實(shí)際問題進(jìn)行相應(yīng)的表示,也就是說,模型的實(shí)質(zhì)主要是為了有效解決生活中的實(shí)際問題。通過借助于計(jì)算機(jī)能夠使得復(fù)雜問題得以有效簡化,對于促進(jìn)社會發(fā)展起到了重要作用。因而,在未來發(fā)展中數(shù)學(xué)建模也將會像計(jì)算機(jī)一樣得到廣泛重視。目前,對于教育界而言,其主要問題在于理論與實(shí)踐相脫節(jié)。我們的教學(xué)越來越形式、抽象。在教材中,充斥著大量的定理、理論證明等等,但是并沒有將其與實(shí)際生活相結(jié)合,而對于借助相應(yīng)的數(shù)學(xué)教學(xué)來實(shí)現(xiàn)腦力發(fā)展的系統(tǒng)化更是微乎其微。將計(jì)算機(jī)與數(shù)學(xué)建模相結(jié)合,這是未來數(shù)學(xué)領(lǐng)域發(fā)展所必須經(jīng)歷的一個(gè)過程。
參考文獻(xiàn):
數(shù)學(xué)竟賽建模論文篇六
概率論與數(shù)理統(tǒng)計(jì)是一門研究隨機(jī)現(xiàn)象及其統(tǒng)計(jì)規(guī)律的數(shù)學(xué)學(xué)科,它是高等院校各專業(yè)開設(shè)的重要的基礎(chǔ)數(shù)學(xué)課程之一。以下是“概率統(tǒng)計(jì)中融入數(shù)學(xué)建模思想的教學(xué)探索論文”,希望能夠幫助的到您!
如何運(yùn)用該課程的理論知識解決實(shí)際問題具有非常重要的研究意義。每年一次的全國大學(xué)生數(shù)學(xué)建模競賽是目前各高校的規(guī)模較大的課外科技活動之一。數(shù)學(xué)建模是一門運(yùn)用數(shù)學(xué)工具和計(jì)算機(jī)技術(shù),通過建立數(shù)學(xué)模型來解決現(xiàn)實(shí)中各種實(shí)際問題的新學(xué)科。它通過調(diào)查,收集數(shù)據(jù)、資料,觀察和研究其固有的內(nèi)在規(guī)律,提出假設(shè),經(jīng)過抽象簡化,建立反映實(shí)際問題的數(shù)學(xué)模型,即將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題。縱觀歷年數(shù)學(xué)建模競賽試題,像高等教育的學(xué)費(fèi)問題、北京奧運(yùn)會人流分布、dna序列分類問題、dvd在線租賃問題及醫(yī)院病床的合理安排等問題都不同程度地涉及到了概率論與數(shù)理統(tǒng)計(jì)的相關(guān)知識。筆者多年來一直為理工科的本科生講授概率論與數(shù)理統(tǒng)計(jì)課程,并每年輔導(dǎo)和指導(dǎo)全國大學(xué)生數(shù)學(xué)建模競賽,所以與同事們一直都在探索如何深化概率論與數(shù)理統(tǒng)計(jì)這門課程的教學(xué)改革,使其與數(shù)學(xué)建模思想能有機(jī)結(jié)合。本文將從以下幾方面進(jìn)行探討研究。
一、概率統(tǒng)計(jì)教學(xué)中融入數(shù)學(xué)建模思想的重要性。
傳統(tǒng)的概率論與數(shù)理統(tǒng)計(jì)課程的教學(xué),可以簡單地歸納為:數(shù)學(xué)知識+例子說明+解題+考試。這種模式雖然使學(xué)生在一定程度上掌握了基礎(chǔ)知識,提高了計(jì)算能力,也學(xué)會了運(yùn)用所學(xué)知識解決課后作業(yè)和應(yīng)付考試。但也不難看出,這種教學(xué)方式與實(shí)際嚴(yán)重脫節(jié),學(xué)生學(xué)會了書本知識,但卻不知在所學(xué)專業(yè)中該如何運(yùn)用,這不僅與素質(zhì)教育的宗旨相違背,也極大地削弱了學(xué)生學(xué)習(xí)這門課程的能動性,從而也影響了教學(xué)效果。數(shù)學(xué)建模的指導(dǎo)思想恰恰在于培養(yǎng)學(xué)生運(yùn)用所學(xué)理論知識來解決現(xiàn)實(shí)實(shí)際問題。這不僅僅是這門課程對學(xué)生的教育問題,更是順應(yīng)當(dāng)前素質(zhì)教育和教學(xué)改革的需要問題。
二、在課堂教學(xué)中融入數(shù)學(xué)建模思想。
對于講授概率論與數(shù)理統(tǒng)計(jì)這門課程的教師來說,有著非常重要的任務(wù),那就是如何教好這門課程,即如何使學(xué)生通過對這門課程的學(xué)習(xí)而增強(qiáng)其對概率統(tǒng)計(jì)方法的理解與實(shí)際應(yīng)用能力。
1.教學(xué)內(nèi)容上數(shù)學(xué)建模思想的滲透。眾所周知,教師對教學(xué)內(nèi)容的把握起著不容忽視的作用。有效的教學(xué)是依賴于教師對該課程的內(nèi)容有著全面的和深刻的理解。概率統(tǒng)計(jì)中的一些概念、性質(zhì)、模型的應(yīng)用確實(shí)有些難度,在日常教學(xué)中可以通過精選例題、切近現(xiàn)實(shí)生活,使學(xué)生逐漸深化對相關(guān)知識的理解,即講課的內(nèi)容生活化、趣味化,生活中的概率統(tǒng)計(jì)問題模型化。在概率統(tǒng)計(jì)里這些趣味性的例子比比皆是!比如摸球、投擲骰子等常見的游戲,“父母的身高對子女的影響”、“男女生人數(shù)的均衡對一個(gè)班級學(xué)習(xí)效果的影響”等發(fā)生在身邊的事。在概率統(tǒng)計(jì)這門課程中數(shù)學(xué)模型的影子也隨處可見!比如像降雨概率、人體舒適度指數(shù)、超市銀臺處的等待服務(wù)時(shí)間等這樣的隨機(jī)現(xiàn)象問題都需要將實(shí)際問題數(shù)量化,然后對研究對象做出判斷,從而解決問題。教學(xué)內(nèi)容中也可插入一些反映社會經(jīng)濟(jì)生活的背景與熱點(diǎn)問題,使課堂教育跟上時(shí)代步伐。如有獎(jiǎng)促銷問題、保險(xiǎn)賠償金確定問題、交通事故問題等,這樣的內(nèi)容都旨在培養(yǎng)學(xué)生利用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,也就是培養(yǎng)學(xué)生的建模能力。
2.教學(xué)方法中融入數(shù)學(xué)建模思想。在教學(xué)中,教師的責(zé)任更大地體現(xiàn)在對學(xué)生的引導(dǎo)能力,通過引導(dǎo)使學(xué)生運(yùn)用自己的能力來解決相關(guān)的問題。這樣使學(xué)生不但能夠?qū)W到嚴(yán)謹(jǐn)?shù)睦碚撝R,同時(shí)也提高了學(xué)生分析問題和解決問題的能力。在教學(xué)中,我們主要采用精講與導(dǎo)學(xué)相結(jié)合的方法,同時(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié)中也可恰當(dāng)運(yùn)用討論式、啟發(fā)式、歸納類比式等教學(xué)方法。在運(yùn)用各種教學(xué)方法中都要充分關(guān)注學(xué)生的參與性,在與學(xué)生的互動中挖掘出課本內(nèi)容中的數(shù)學(xué)建模思想,使其“顯化”出來。比如在講解隨機(jī)事件和古典概型中,可以講解摸球問題、生日巧合及配對問題、確診率及血清化驗(yàn)問題等,這樣既活躍了課堂氛圍,又培養(yǎng)了學(xué)生愛思考的習(xí)慣。必須提及的是“案例教學(xué)法”,它是概率統(tǒng)計(jì)課程融入數(shù)學(xué)建模思想的有效而常用的教學(xué)方法之一。在教學(xué)中可以直接給出案例,然后從求解具體問題中找出相應(yīng)的理論和方法。此方法縮短了數(shù)學(xué)理論與實(shí)際應(yīng)用的距離,不僅可以提高學(xué)生學(xué)習(xí)的積極性,同時(shí)也使學(xué)生明白概率統(tǒng)計(jì)是建立在現(xiàn)實(shí)生活基礎(chǔ)上的一門課程。比如在隨機(jī)變量的數(shù)字特征中,可以給出“報(bào)童的收益問題”案例;在參數(shù)估計(jì)中,可以給出“湖中魚的數(shù)量估計(jì)”案例;在大數(shù)定律和中心極限定理中,可以給出“保險(xiǎn)公司的收益問題”案例;等等。由于受到課時(shí)限制,可能不能充分有效地對案例進(jìn)行完整講解,通常將“案例分析法”和“現(xiàn)代教育技術(shù)法”相結(jié)合進(jìn)行教學(xué),利用多媒體教學(xué)手段可以將案例中出現(xiàn)的大量統(tǒng)計(jì)計(jì)算均由統(tǒng)計(jì)軟件(如spss,sas,r等)來實(shí)現(xiàn)。這樣既易于被學(xué)生接受,也有助于學(xué)生掌握統(tǒng)計(jì)方法和實(shí)際操作能力。
三、發(fā)揮課后作業(yè)作為課堂教學(xué)的補(bǔ)充與延伸作用。
作為數(shù)學(xué)課程,課后作業(yè)是十分重要的組成部分,是進(jìn)一步理解、消化和鞏固課堂教學(xué)內(nèi)容的重要環(huán)節(jié)。
1.課后試驗(yàn)。在概率統(tǒng)計(jì)這門課程中有很多隨機(jī)試驗(yàn),并且很多統(tǒng)計(jì)規(guī)律也都是在隨機(jī)試驗(yàn)中獲得的。比如通過投擲均勻的硬幣和均勻的六面體骰子,可以很好地理解頻率與概率之間的關(guān)系;雙色球的有(無)放回抽樣,有助于理解隨機(jī)事件的相互獨(dú)立性;統(tǒng)計(jì)某書上的錯(cuò)別字,并判斷是否服從泊松分布等。通過讓學(xué)生們親自做實(shí)驗(yàn),不僅使他們能夠探索隨機(jī)現(xiàn)象的統(tǒng)計(jì)規(guī)律性,還能幫助他們更深刻的理解、鞏固和深化理論。
2.課后作業(yè)。除常規(guī)概率統(tǒng)計(jì)練習(xí)題目外,可以增加一些有趣的、與日常生活中密切相關(guān)的概率統(tǒng)計(jì)題目。比如在給出了摸彩票規(guī)則和中獎(jiǎng)規(guī)則后,解決下面三個(gè)問題:
(1)中獎(jiǎng)概率與摸彩票的次序有關(guān)系嗎?
(2)假設(shè)發(fā)行了100萬張彩票,中一、二等獎(jiǎng)的概率是多少?
(3)若你打算摸彩票,在什么條件下中獎(jiǎng)概率會大一些?
3.課外實(shí)踐。針對概率統(tǒng)計(jì)實(shí)用性強(qiáng)的特點(diǎn),有目的地組織學(xué)生參加社會實(shí)踐活動,深入實(shí)際,調(diào)查研究,收集數(shù)學(xué)建模的素材。只有將某種思想方法應(yīng)用到實(shí)踐中去,實(shí)際解決幾個(gè)問題,才能達(dá)到理解、深化、鞏固和提高的效果。教師可以從現(xiàn)實(shí)中尋找素材,選擇具有豐富現(xiàn)實(shí)背景的學(xué)習(xí)材料,可以讓學(xué)生自由組隊(duì),深入實(shí)際,運(yùn)用統(tǒng)計(jì)方法調(diào)查、觀察和收集一些數(shù)據(jù),在教師指導(dǎo)下運(yùn)用所學(xué)知識和計(jì)算機(jī)技術(shù),分析解決一些實(shí)際問題,寫出書面報(bào)告。比如利用閑暇時(shí)間觀察校門口某路公交車各時(shí)段乘車人數(shù),根據(jù)觀察數(shù)據(jù),為該線路設(shè)計(jì)一個(gè)便于操作的公交車調(diào)度方案:包括發(fā)車時(shí)刻表;共需多少輛車;以怎樣的程度能夠照顧乘客和公交公司雙方的利益。
四、改變傳統(tǒng)單一的考核方式。
考核是教學(xué)過程中不可缺少的一個(gè)教學(xué)環(huán)節(jié),是檢驗(yàn)學(xué)生學(xué)習(xí)情況,評估教師教學(xué)質(zhì)量的手段。傳統(tǒng)的概率論與數(shù)理統(tǒng)計(jì)課程均采用期末閉卷考試,教師通常都會按照固定的內(nèi)容和格式出題,學(xué)生為了應(yīng)付考試,往往把過多的精力花費(fèi)在對公式和概念的死記硬背上,而忽略了所學(xué)知識在實(shí)際中的應(yīng)用。雖然綜合成績是由平時(shí)成績和期末成績的各占比例計(jì)算而成,但平時(shí)成績的考核主要看課后習(xí)題所做的作業(yè),而學(xué)生的學(xué)習(xí)積極性對作業(yè)的態(tài)度差異性是很大的。為此,有必要改革傳統(tǒng)單一的考核方式,培養(yǎng)學(xué)生綜合運(yùn)用知識的能力??己私Y(jié)果包括兩部分:一部分是閉卷考試,占60%,主要考察學(xué)生對概率統(tǒng)計(jì)的基本知識、基本運(yùn)算和基本理論的掌握程度;另一部分是開放性考核,由各占20%的平時(shí)成績和課后試驗(yàn)、課外實(shí)踐構(gòu)成,其中平時(shí)成績主要考查學(xué)生的作業(yè)情況、考勤情況、課堂表現(xiàn)情況等方面;課后試驗(yàn)、課外實(shí)踐主要考核學(xué)生對概率統(tǒng)計(jì)知識的應(yīng)用能力,可以給學(xué)生一些實(shí)際問題,或者讓學(xué)生參加社會實(shí)踐調(diào)查收集數(shù)據(jù),學(xué)生可以自由組隊(duì)也可單獨(dú)完成,通過運(yùn)用概率統(tǒng)計(jì)知識建立數(shù)學(xué)模型并借助計(jì)算機(jī)處理大量數(shù)據(jù)對實(shí)際問題得到解決,最后提交一份書面研究報(bào)告。如此靈活多變的考核機(jī)制,才能充分調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,才有利于學(xué)生應(yīng)用能力的培養(yǎng)。
通過在各個(gè)環(huán)節(jié)中融入數(shù)學(xué)建模思想,不但充分體現(xiàn)了概率統(tǒng)計(jì)的實(shí)用價(jià)值,搭建起概率統(tǒng)計(jì)知識與實(shí)際應(yīng)用的橋梁,而且也使得工科類學(xué)生對概率統(tǒng)計(jì)這門課程的理解、認(rèn)識增強(qiáng)了,數(shù)學(xué)的應(yīng)用能力也得到了提高。
數(shù)學(xué)竟賽建模論文篇七
計(jì)算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實(shí)際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實(shí)的,還包括對未來的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強(qiáng)國,科教興國的戰(zhàn)略推向一個(gè)新的高度。
1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過認(rèn)識教學(xué)內(nèi)容從而認(rèn)識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿足時(shí)代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認(rèn)識科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過這個(gè)數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。
2.數(shù)學(xué)建模對當(dāng)代大學(xué)生的作用。
2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個(gè)單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計(jì)算機(jī)科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
3.數(shù)學(xué)建模對大學(xué)數(shù)學(xué)及其他學(xué)科教師的作用。
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時(shí)代的進(jìn)步,是時(shí)代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問題。在這個(gè)過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時(shí)間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計(jì)算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時(shí)代發(fā)展,數(shù)學(xué)建模成為各個(gè)高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計(jì)算機(jī)學(xué)家等多個(gè)學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動力。
參考文獻(xiàn):
[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,.
數(shù)學(xué)竟賽建模論文篇八
摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識解決日常問題的一個(gè)重要手段。本文通過簡述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問題解決中的重要作用。
經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟(jì)形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。
數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡稱,實(shí)際上數(shù)學(xué)建模可以稱之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個(gè)中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個(gè)方面,運(yùn)用數(shù)學(xué)的語言和方法進(jìn)行問題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個(gè)反復(fù)驗(yàn)證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實(shí)際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對象的特性,對復(fù)雜問題進(jìn)行簡化,提取主要因素,提煉精確的數(shù)學(xué)語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個(gè)量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問題為數(shù)學(xué)語言;4.模型求解:對上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟(jì)問題數(shù)學(xué)模型的建立。
經(jīng)濟(jì)類問題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險(xiǎn)評估、最優(yōu)產(chǎn)量計(jì)算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟(jì)問題的建模計(jì)算實(shí)際上是一個(gè)從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對實(shí)際經(jīng)濟(jì)問題和情況有一個(gè)較為深入的認(rèn)識,然后通過細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問題簡化提煉為一個(gè)較為理想的自然模型,然后基于這個(gè)原始模型應(yīng)用數(shù)學(xué)知識建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。
三、建模舉例。
四、結(jié)語。
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開支等各個(gè)方面。上文只提供了一個(gè)簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
數(shù)學(xué)竟賽建模論文篇九
數(shù)學(xué)核心素養(yǎng)是數(shù)學(xué)課程的基本理念和總體目標(biāo)的體現(xiàn),可以有效地指導(dǎo)數(shù)學(xué)教學(xué)實(shí)踐?!镀胀ǜ咧袛?shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》修訂稿提出了數(shù)學(xué)學(xué)科的六種核心素養(yǎng),即數(shù)學(xué)抽象、直觀想象、數(shù)學(xué)建模、邏輯推理、數(shù)學(xué)運(yùn)算和數(shù)據(jù)分析。其中,數(shù)學(xué)建模是六大數(shù)學(xué)核心素養(yǎng)之一。提升數(shù)學(xué)核心素養(yǎng),要求數(shù)學(xué)教師在課堂教學(xué)中強(qiáng)化學(xué)生的建模意識。教師在教學(xué)中通過設(shè)置數(shù)學(xué)建?;顒?,培養(yǎng)學(xué)生的建模能力。
數(shù)學(xué)建模是將實(shí)際問題中的因素進(jìn)行簡化,抽象變成數(shù)學(xué)中的參數(shù)和變量,運(yùn)用數(shù)學(xué)理論進(jìn)行求解和驗(yàn)證,并確定最終是否能夠用于解決問題的多次循環(huán)。數(shù)學(xué)建模能力包括轉(zhuǎn)化能力、數(shù)學(xué)知識應(yīng)用能力、創(chuàng)造力和溝通與合作能力。
1.精心設(shè)計(jì)導(dǎo)學(xué)案,引導(dǎo)學(xué)生通過自主探究進(jìn)行建模。
在新授課前,教師設(shè)計(jì)前置性學(xué)習(xí)導(dǎo)學(xué)案,為學(xué)生掃除知識性和方向性的障礙。通過導(dǎo)學(xué)案,引導(dǎo)學(xué)生去探究問題的關(guān)鍵,對模型的構(gòu)建先有一個(gè)初步的自主學(xué)習(xí)過程。通過自主學(xué)習(xí)探究,讓學(xué)生充分暴露問題,提高模型教學(xué)的針對性。在前置性學(xué)習(xí)導(dǎo)學(xué)案設(shè)計(jì)的問題的啟發(fā)與引導(dǎo)下,學(xué)生會逐步學(xué)習(xí)、研究和應(yīng)用數(shù)學(xué)模型,形成解決問題的新方法,強(qiáng)化建模意識和參與實(shí)踐的意識。例如,教師在引導(dǎo)學(xué)生構(gòu)建關(guān)于測量類模型時(shí),設(shè)計(jì)的導(dǎo)學(xué)案應(yīng)提醒學(xué)生對測量物體進(jìn)行抽象化理解,并掌握基本常識。教師應(yīng)鼓勵(lì)學(xué)生采用多種不同的測量方式,分析并優(yōu)化所得數(shù)據(jù)。通過引導(dǎo)學(xué)生自主探究,讓學(xué)生探索并歸納不同條件下的模型建立的方法,培養(yǎng)學(xué)生的建模維能力。
2.在教學(xué)環(huán)節(jié)中融入數(shù)學(xué)模型教學(xué)。
教師在教學(xué)的各個(gè)環(huán)節(jié)都可以融入數(shù)學(xué)模型教學(xué)。例如,教師在新課教學(xué)時(shí),應(yīng)注意滲透數(shù)學(xué)建模思想,讓學(xué)生將新授課中的數(shù)學(xué)知識點(diǎn)與實(shí)際生活相聯(lián)系,將實(shí)際生活中與數(shù)學(xué)相關(guān)的案例引入課堂教學(xué),引導(dǎo)學(xué)生將案例內(nèi)化為數(shù)學(xué)應(yīng)用模型,以此激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的興趣。在不同教學(xué)環(huán)節(jié),教師通過聯(lián)系現(xiàn)實(shí)生活中熟悉的事例,將教材上的內(nèi)容生動地展示給學(xué)生,從而強(qiáng)化學(xué)生運(yùn)用數(shù)學(xué)模型解決實(shí)際問題的能力。
教師通過描述數(shù)學(xué)問題產(chǎn)生的背景,以問題背景為導(dǎo)向,開展新授課的學(xué)習(xí)。教師在復(fù)習(xí)課教學(xué)環(huán)節(jié),注重提煉和總結(jié)解題模型,培養(yǎng)學(xué)生的轉(zhuǎn)換能力,讓學(xué)生多方位認(rèn)識和運(yùn)用數(shù)學(xué)模型。相對而言,高中階段的數(shù)學(xué)問題更加注重知識的綜合考查,對思維的靈活性要求較高。高中階段考查的數(shù)學(xué)知識、解題方法以及數(shù)學(xué)思想基本不變,設(shè)置的題目形式相對穩(wěn)定。因此,教師應(yīng)適當(dāng)引導(dǎo),合理啟發(fā),對答題思路進(jìn)行分析,逐步系統(tǒng)地構(gòu)建重點(diǎn)題型的解題模型。
3.結(jié)合教學(xué)實(shí)驗(yàn),開展數(shù)學(xué)建?;顒?。
教師在開展數(shù)學(xué)建?;顒訒r(shí),應(yīng)結(jié)合教學(xué)實(shí)驗(yàn)。開展活動課和實(shí)踐課,可以促使學(xué)生進(jìn)行合作學(xué)習(xí)。教師要適時(shí)進(jìn)行數(shù)學(xué)實(shí)驗(yàn)教學(xué),可以每周布置一個(gè)教學(xué)實(shí)驗(yàn)課例,讓學(xué)生主動地從數(shù)學(xué)建模的角度解決問題。在教學(xué)實(shí)驗(yàn)中,以小組合作的形式,讓學(xué)生寫出實(shí)驗(yàn)報(bào)告。教師讓學(xué)生在課堂上進(jìn)行小組交流,并對各組的交流進(jìn)行總結(jié)。教學(xué)實(shí)驗(yàn)可以促使學(xué)生在探索中增強(qiáng)數(shù)學(xué)建模意識,提升數(shù)學(xué)核心素養(yǎng)。
4.在數(shù)學(xué)建模教學(xué)中,注重相關(guān)學(xué)科的聯(lián)系。
教師在數(shù)學(xué)建模教學(xué)中,應(yīng)注重選用數(shù)學(xué)與化學(xué)、物理、生物等科目相結(jié)合的跨學(xué)科問題進(jìn)行教學(xué)。教師可以從這些科目中選擇相關(guān)的應(yīng)用題,引導(dǎo)學(xué)生通過數(shù)學(xué)建模,應(yīng)用數(shù)學(xué)工具,解決其他學(xué)科的難題。例如,有些學(xué)生以為學(xué)好生物是與數(shù)學(xué)沒有關(guān)系的,因?yàn)楦咧猩飳W(xué)科是以描述性的語言為主的。這些學(xué)生缺乏理科思維,尚未樹立理科意識。例如,學(xué)生可以用數(shù)學(xué)上的概率的相加和相乘原理來解決生物上的一些遺傳病概率的計(jì)算問題,也可以用數(shù)學(xué)上的排列與組合分析生物上的減數(shù)分裂過程和配子的基因組成問題。又如,在學(xué)習(xí)正弦函數(shù)時(shí),教師可以引導(dǎo)學(xué)生運(yùn)用模型函數(shù),寫出在物理學(xué)科中學(xué)到的交流圖像的數(shù)學(xué)表達(dá)式。這就需要教師在課堂教學(xué)中引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模。因此,教師在數(shù)學(xué)建模教學(xué)中,應(yīng)注意與其他學(xué)科的聯(lián)系。通過數(shù)學(xué)建模,幫助學(xué)生理解其他學(xué)科知識,強(qiáng)化學(xué)生的學(xué)習(xí)能力。注重?cái)?shù)學(xué)與其他學(xué)科的聯(lián)系,是培養(yǎng)學(xué)生建模意識的重要途徑。
總之,教師在數(shù)學(xué)教學(xué)過程中,應(yīng)以學(xué)生為本,精心設(shè)計(jì)導(dǎo)學(xué)案,鼓勵(lì)學(xué)生自主探究和應(yīng)用數(shù)學(xué)模型。通過建模教學(xué),讓學(xué)生形成數(shù)學(xué)問題和實(shí)際問題相互轉(zhuǎn)化的數(shù)學(xué)應(yīng)用意識和建模意識。教師通過強(qiáng)化數(shù)學(xué)建模意識,讓學(xué)生掌握數(shù)學(xué)模型應(yīng)用的方法,可以使學(xué)生奠定堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ),提升數(shù)學(xué)核心素養(yǎng)。
參考文獻(xiàn):
[1]鄭蘭,肖文平.基于問題驅(qū)動的數(shù)學(xué)建模教學(xué)理念的探索與時(shí)間[j].武漢船舶職業(yè)技術(shù)學(xué)院學(xué)報(bào),20xx(4).
[2]王國君.高中數(shù)學(xué)建模教學(xué)[j].教育科學(xué)(引文版),20xx(8).
[3]李明振,齊建華.中學(xué)數(shù)學(xué)教師數(shù)學(xué)建模能力的培養(yǎng)[j].河南教育學(xué)院學(xué)報(bào)(自然科學(xué)版),20xx(2).
數(shù)學(xué)竟賽建模論文篇十
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
一、新課的引入需要發(fā)揮教師的作用。
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時(shí),新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進(jìn)行情感教育的最佳時(shí)刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價(jià)值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時(shí)要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計(jì)上需要發(fā)揮教師的作用。
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計(jì)質(zhì)量的高低。教師應(yīng)通過設(shè)計(jì)一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用。
建構(gòu)主義強(qiáng)調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)。
教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
數(shù)學(xué)竟賽建模論文篇十一
大學(xué)數(shù)學(xué)包含微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)三門基礎(chǔ)課程,這是高校經(jīng)管類專業(yè)必修課程;更高級的數(shù)學(xué)課程還有運(yùn)籌學(xué)、最優(yōu)化理論,這些在中高級西方經(jīng)濟(jì)學(xué)中會經(jīng)常用到?,F(xiàn)實(shí)經(jīng)濟(jì)中存在很多問題都與數(shù)學(xué)緊密相關(guān),都需要嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)方法去解決,因此數(shù)學(xué)的學(xué)習(xí)是非常重要的。數(shù)學(xué)的學(xué)習(xí),一方面能夠培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,另一方面,數(shù)學(xué)的系統(tǒng)學(xué)習(xí)為經(jīng)管專業(yè)后續(xù)課程(如西方經(jīng)濟(jì)學(xué)、計(jì)量經(jīng)濟(jì)學(xué))提供了數(shù)學(xué)分析工具和計(jì)算方法。除了需要掌握數(shù)學(xué)分析和計(jì)算能力,經(jīng)管專業(yè)應(yīng)該更加注重培養(yǎng)學(xué)生的經(jīng)濟(jì)直覺和數(shù)學(xué)建模能力,讓學(xué)生形象地理解數(shù)學(xué)定義和經(jīng)濟(jì)現(xiàn)象。雖然現(xiàn)在高校中經(jīng)管類專業(yè)的數(shù)學(xué)教育過程融合了一些本專業(yè)的知識,但仍存在很多問題。筆者根據(jù)自己以及同行的教學(xué)經(jīng)驗(yàn),提出相應(yīng)的改革措施以更好挖掘數(shù)學(xué)方法在經(jīng)管中的有效作用。
一、經(jīng)管類專業(yè)大學(xué)數(shù)學(xué)的特點(diǎn)。
每個(gè)專業(yè)都有其獨(dú)特的學(xué)習(xí)內(nèi)容和方法。經(jīng)管專業(yè)作為我國培養(yǎng)經(jīng)濟(jì)工作人員的特殊專業(yè)而成為國家重視、社會關(guān)注的專業(yè)。大學(xué)數(shù)學(xué)是社會科學(xué)和自然科學(xué)的基礎(chǔ),因此其在經(jīng)濟(jì)學(xué)理論中有著舉足輕重的地位,數(shù)學(xué)可以為經(jīng)濟(jì)學(xué)中的很多問題提供思想和方法的支持。經(jīng)管類專業(yè)數(shù)學(xué)的學(xué)習(xí)有如下特點(diǎn)。
1.經(jīng)管專業(yè)的數(shù)學(xué)和經(jīng)濟(jì)學(xué)問題緊密相關(guān)。
經(jīng)管專業(yè)要學(xué)習(xí)和解決經(jīng)濟(jì)相關(guān)內(nèi)容,因此,經(jīng)濟(jì)類的數(shù)學(xué)教育要圍繞著經(jīng)濟(jì)問題展開討論,例如簡單的經(jīng)濟(jì)問題有價(jià)格函數(shù)、需求函數(shù)、供給函數(shù)以及邊際成本的分析,復(fù)雜一些的還有競爭性市場分析、壟斷競爭和寡頭壟斷、博弈論和競爭策略、生產(chǎn)和交換的帕累托最優(yōu)條件、信息不對稱的市場,這些都需要用微積分的知識理解。把數(shù)學(xué)知識融入經(jīng)濟(jì)學(xué),能夠給解決經(jīng)濟(jì)學(xué)問題提供有效的技術(shù)支持。例如通過畫出各種函數(shù)的圖像,可以讓學(xué)生更直觀地了解價(jià)格、需求、供給的關(guān)系,可以更形象地看出它們之間的依賴關(guān)系。微積分中導(dǎo)數(shù)的學(xué)習(xí)應(yīng)用到經(jīng)濟(jì)中為經(jīng)濟(jì)利益最大化提供了分析方法,例如需求理論可以轉(zhuǎn)化成一個(gè)約束最優(yōu)化問題,用拉格朗日乘數(shù)法進(jìn)行求導(dǎo)計(jì)算,從而求出目標(biāo)函數(shù)的最優(yōu)值。另外,消費(fèi)者剩余可以轉(zhuǎn)化成定積分進(jìn)行計(jì)算,人口阻滯增長模型可以用微分方程解釋。
2.經(jīng)管專業(yè)的數(shù)學(xué)學(xué)習(xí)注重經(jīng)濟(jì)直覺培養(yǎng)。
數(shù)學(xué)的學(xué)習(xí)可以訓(xùn)練和培養(yǎng)學(xué)生的邏輯思維能力,一般自然科學(xué)專業(yè)的數(shù)學(xué)學(xué)習(xí)注重于各種問題的來源以及證明。然而經(jīng)管專業(yè)的數(shù)學(xué)主要為學(xué)生培養(yǎng)經(jīng)濟(jì)直覺并引導(dǎo)其進(jìn)行有效計(jì)算,因此需要著重培養(yǎng)經(jīng)管專業(yè)學(xué)生的數(shù)學(xué)計(jì)算能力。例如,在講最值問題時(shí)可以讓學(xué)生計(jì)算利潤最大化的例子,利用微積分的知識計(jì)算出最大利潤,這樣既培養(yǎng)了學(xué)生的數(shù)學(xué)計(jì)算能力,又讓學(xué)生理解了經(jīng)濟(jì)學(xué)概念。
二、經(jīng)管類專業(yè)學(xué)習(xí)數(shù)學(xué)的過程中出現(xiàn)的問題。
近年來,大學(xué)數(shù)學(xué)教育改革取得了一定效果,但是還存在很多問題。例如,有些學(xué)校不重視大學(xué)數(shù)學(xué)課程的學(xué)習(xí),只注重專業(yè)課的學(xué)習(xí)。實(shí)際上數(shù)學(xué)學(xué)習(xí)的效果直接影響后續(xù)專業(yè)課的學(xué)習(xí)。還有部分院校教師教授經(jīng)管課程時(shí)還停留在純粹的數(shù)學(xué)理論上,雖然有的高校在高等數(shù)學(xué)教育中很大程度上融入了經(jīng)濟(jì)中的各類問題,但是由于高校教師都是數(shù)學(xué)專業(yè)出身,對經(jīng)濟(jì)類專業(yè)中的數(shù)學(xué)問題不甚了解,因此不能很好地解釋相應(yīng)的經(jīng)濟(jì)現(xiàn)象。另外,經(jīng)管類招生一般同時(shí)招收了文科和理科生,從而學(xué)生的數(shù)學(xué)基礎(chǔ)大相徑庭,使得大學(xué)數(shù)學(xué)的教學(xué)存在一定困難。還有大學(xué)的學(xué)習(xí)任務(wù)重而老師授課時(shí)間有限,對于基礎(chǔ)較差的學(xué)生,教師又不能非常詳細(xì)地復(fù)習(xí)學(xué)生高中學(xué)過的知識,因而造成基礎(chǔ)好的學(xué)生學(xué)起來輕松自如,學(xué)習(xí)效果較好,而基礎(chǔ)差的學(xué)生學(xué)起來吃力,學(xué)習(xí)的效果也不盡如人意。
三、改革措施。
培養(yǎng)學(xué)生經(jīng)濟(jì)直覺和數(shù)學(xué)建模能力。
1.優(yōu)化教學(xué)內(nèi)容,根據(jù)專業(yè)特點(diǎn)選取相關(guān)實(shí)例來理解數(shù)學(xué)定義。
由于大學(xué)課程任務(wù)重,使得大學(xué)數(shù)學(xué)的學(xué)習(xí)課時(shí)相對變少,這就要求教師上課時(shí)要優(yōu)化教學(xué)內(nèi)容,適當(dāng)刪減純數(shù)學(xué)理論的學(xué)習(xí),在不影響后續(xù)課程的條件下,可以刪除一些難度較大的純理論性的內(nèi)容,擴(kuò)充一些和經(jīng)管專業(yè)知識相關(guān)的內(nèi)容。教師在上課時(shí),要根據(jù)學(xué)生所學(xué)專業(yè)的特點(diǎn),選取相關(guān)概念、相關(guān)實(shí)例,讓學(xué)生更直觀、更形象地學(xué)習(xí)數(shù)學(xué)知識,從而培養(yǎng)學(xué)生的經(jīng)濟(jì)直覺。例如,在學(xué)習(xí)微積分中導(dǎo)數(shù)的相關(guān)概念時(shí),可選取有關(guān)成本函數(shù)、收入函數(shù)和利潤函數(shù)的例題來求邊際成本、邊際收入和邊際利潤,從而讓學(xué)生了解導(dǎo)數(shù)在本專業(yè)中的應(yīng)用。在講線性代數(shù)的矩陣概念時(shí),可以給學(xué)生講解經(jīng)濟(jì)學(xué)中投入產(chǎn)出模型。在講股票投資的時(shí)候可以和概率論聯(lián)系在一起,通過概率論的理論解釋可以說明股票投資是具有隨機(jī)性的,在股票市場沒有絕對的贏家。在講拉格朗日方法的時(shí)候可以引入影子價(jià)格的概念,從而理解影子價(jià)格的經(jīng)濟(jì)現(xiàn)象解釋。只有讓數(shù)學(xué)和學(xué)生所學(xué)專業(yè)掛鉤,才能讓學(xué)生輕松地學(xué)習(xí)數(shù)學(xué)定義,并了解一些經(jīng)濟(jì)學(xué)專業(yè)名詞,達(dá)到讓數(shù)學(xué)更好的為專業(yè)知識服務(wù)的目的。
2.教學(xué)過程中要注重學(xué)生數(shù)學(xué)建模思想的培養(yǎng)。
經(jīng)管類專業(yè)學(xué)生學(xué)習(xí)數(shù)學(xué)課程,一方面是為了解決專業(yè)內(nèi)容中的問題,另一方面是還需要培養(yǎng)學(xué)生的邏輯思維能力和分析問題、解決問題的能力。因此,在講授經(jīng)濟(jì)中的數(shù)學(xué)問題時(shí),還要教會學(xué)生根據(jù)經(jīng)濟(jì)問題建立相應(yīng)的數(shù)學(xué)模型。建模就是把經(jīng)濟(jì)學(xué)中一些現(xiàn)象或者問題用數(shù)學(xué)語言表述出來,然后進(jìn)行模型求解,從而解釋經(jīng)濟(jì)現(xiàn)象或者解決相應(yīng)的經(jīng)濟(jì)問題。通過建立數(shù)學(xué)模型把經(jīng)管專業(yè)中的經(jīng)濟(jì)學(xué)問題轉(zhuǎn)化成數(shù)學(xué)問題,然后通過求解數(shù)學(xué)模型得出相應(yīng)答案,從而解決該經(jīng)濟(jì)問題。因此,建立數(shù)學(xué)模型非常重要。例如求解最大利潤問題、最小成本問題可以引導(dǎo)學(xué)生通過建立利潤和成本函數(shù),從而轉(zhuǎn)化成一個(gè)最優(yōu)化問題,并且在求解該問題時(shí),需要用到導(dǎo)數(shù)(偏導(dǎo)數(shù))的知識,這樣既加深了學(xué)生對數(shù)學(xué)知識的理解,又體會到數(shù)學(xué)知識在經(jīng)濟(jì)學(xué)中的重要作用。在學(xué)習(xí)統(tǒng)計(jì)學(xué)的f檢驗(yàn)和t檢驗(yàn)時(shí),可以引導(dǎo)學(xué)生建立計(jì)量經(jīng)濟(jì)學(xué)中要學(xué)習(xí)的回歸模型,一開始可以引入一元線性回歸模型,再過渡到二元線性回歸模型,對于二元線性回歸模型可以形象地借助二維圖像進(jìn)行說明,最后分析多元線性回歸模型,特別地,還可以指出,在回歸模型的建立中本質(zhì)上用到了微積分中學(xué)習(xí)的最小二乘法。在線性回歸模型學(xué)習(xí)完以后,還要進(jìn)一步學(xué)習(xí)更加復(fù)雜的非線性模型,以便讓學(xué)生掌握由簡單到復(fù)雜的數(shù)學(xué)建模過程。總之,在整個(gè)數(shù)學(xué)的學(xué)習(xí)過程中,要經(jīng)常讓學(xué)習(xí)練習(xí)如何正確地建立模型,以提高學(xué)生分析問題和解決問題的能力。
3.教師要不斷了解經(jīng)管專業(yè)知識,以適應(yīng)學(xué)生學(xué)習(xí)的需要。
教授經(jīng)管類專業(yè)的任課教師要不斷閱讀經(jīng)管類專業(yè)相關(guān)書籍,充分了解經(jīng)管類專業(yè)知識要用到的數(shù)學(xué)知識和數(shù)學(xué)思想,把經(jīng)濟(jì)學(xué)和數(shù)學(xué)融會貫通。只有這樣,教師在上課時(shí)才能做到有的放矢,才能時(shí)刻圍繞學(xué)生所學(xué)所需的專業(yè)知識來講授數(shù)學(xué)知識,真正做到數(shù)學(xué)為專業(yè)服務(wù)。整個(gè)教學(xué)過程中,教師要對經(jīng)管類專業(yè)知識有深入的理解,才能結(jié)合數(shù)學(xué)給學(xué)生解釋清楚經(jīng)濟(jì)學(xué)概念和經(jīng)濟(jì)學(xué)原理,才不至于讓所學(xué)內(nèi)容與專業(yè)知識脫軌。教師要了解經(jīng)濟(jì)學(xué)的前沿進(jìn)展,從而可以在上課過程中引入生動而形象的經(jīng)濟(jì)實(shí)例,做到學(xué)教結(jié)合,真正成為學(xué)生學(xué)習(xí)的引路人。
4.教學(xué)方法要多元化,以提高學(xué)生學(xué)習(xí)興趣。
目前,經(jīng)濟(jì)數(shù)學(xué)的教學(xué)依然是傳統(tǒng)的教學(xué)模式,即教師講授、學(xué)生被動接受的模式。這種教學(xué)方法嚴(yán)重挫傷了學(xué)生學(xué)習(xí)的積極性和主動性。因此,教學(xué)方法的選擇至關(guān)重要。這就要求教師要根據(jù)學(xué)生的特點(diǎn),做到因材施教。講課過程中也不能一味羅列一些數(shù)學(xué)定義和數(shù)學(xué)定理,而要注重與學(xué)生的互動,以提高學(xué)生學(xué)習(xí)的積極性。教師在上課過程中還要注重學(xué)生興趣的培養(yǎng),可以講一些獲得諾貝爾獎(jiǎng)的經(jīng)濟(jì)學(xué)家的事跡,很多獲得諾貝爾獎(jiǎng)的經(jīng)濟(jì)學(xué)家都有很好的數(shù)學(xué)基礎(chǔ),在這些基礎(chǔ)上他們進(jìn)一步在學(xué)習(xí)的過程中加強(qiáng)了自己的經(jīng)濟(jì)直覺培養(yǎng),最后取得學(xué)術(shù)的成功。通過經(jīng)濟(jì)學(xué)家的故事可以啟發(fā)引導(dǎo)學(xué)生去接觸最新的經(jīng)濟(jì)學(xué)理念,從而逐步探索新知識,然后啟發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)和經(jīng)濟(jì)學(xué)的興趣。同時(shí)要讓學(xué)生多獨(dú)立思考,布置一些有趣的課后習(xí)題,特別是可布置一些結(jié)合生活中的經(jīng)濟(jì)實(shí)例的數(shù)學(xué)習(xí)題,通過解答這些習(xí)題,學(xué)生不但可以學(xué)習(xí)數(shù)學(xué)知識,還可以讓學(xué)生體會數(shù)學(xué)和經(jīng)濟(jì)學(xué)的生動結(jié)合,最后引導(dǎo)學(xué)生思考一些更加復(fù)雜的經(jīng)濟(jì)問題并用數(shù)學(xué)知識解決問題。只有老師生動講解、引導(dǎo)和學(xué)生快樂、輕松學(xué)習(xí)的完美結(jié)合,才能激發(fā)學(xué)生的學(xué)習(xí)興趣,起到事半功倍的學(xué)習(xí)效果。
四、結(jié)語。
在高校數(shù)學(xué)教學(xué)中,應(yīng)根據(jù)經(jīng)管專業(yè)特點(diǎn)采取有效的教學(xué)方法教授數(shù)學(xué)知識,特別要注意學(xué)生經(jīng)濟(jì)直覺的培養(yǎng),這就要求在教學(xué)過程中可以適當(dāng)減少數(shù)學(xué)的嚴(yán)格證明,注重?cái)?shù)學(xué)概念在經(jīng)濟(jì)學(xué)中的應(yīng)用,從而讓學(xué)生形象生動的理解數(shù)學(xué)知識在經(jīng)濟(jì)學(xué)中的重要作用。另外,教學(xué)過程中還需要培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,并培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,引導(dǎo)學(xué)生將所學(xué)數(shù)學(xué)知識應(yīng)用到實(shí)際工作中,真正做到學(xué)有所用,從而培養(yǎng)優(yōu)秀的經(jīng)濟(jì)類人才。
數(shù)學(xué)竟賽建模論文篇十二
1培養(yǎng)創(chuàng)造性思維學(xué)生在學(xué)習(xí)數(shù)學(xué)知識的過程中,雖然其接受的知識和經(jīng)驗(yàn)是前人研究和發(fā)現(xiàn)的成果,但對于學(xué)生來說,其處于知識再發(fā)現(xiàn)的地位。教師向?qū)W生教授數(shù)學(xué)發(fā)現(xiàn)的思維和方法,換言之就是重點(diǎn)引導(dǎo)學(xué)生重溫?cái)?shù)學(xué)經(jīng)驗(yàn)和知識的研究道路,進(jìn)而保證學(xué)生的再發(fā)現(xiàn)能夠順利實(shí)現(xiàn)。這也是培養(yǎng)學(xué)生創(chuàng)新思維和能力的一個(gè)重要途徑。利用數(shù)學(xué)建模能夠有效地彌補(bǔ)數(shù)學(xué)教學(xué)過程中存在的缺陷,使學(xué)生充分體會到數(shù)學(xué)發(fā)現(xiàn)過程中的樂趣,進(jìn)而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和積極性,培養(yǎng)其創(chuàng)造性思維。
2選擇經(jīng)典案例開展數(shù)學(xué)建模討論、分析教師在實(shí)際的數(shù)學(xué)課堂教學(xué)中,可選擇一些社會實(shí)際案例為講授分析的主要對象,如實(shí)際生活和高科技的熱點(diǎn)話題。教師可對此類實(shí)例進(jìn)行必要的分析與講解,在此過程中,積極引導(dǎo)學(xué)生獨(dú)立鉆研和研究問題,并培養(yǎng)學(xué)生主動查閱相關(guān)資料、自主討論的能力。與此同時(shí),教師還要及時(shí)與學(xué)生進(jìn)行交流,答疑釋難,并要求學(xué)生在自己實(shí)際能力的基礎(chǔ)上構(gòu)建恰當(dāng)?shù)哪P?,由易到難,循序漸進(jìn)。除此之外,還要使學(xué)生充分發(fā)揮其主觀能動性,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,思考問題以及處理問題的能力。以微積分方程為例,教師在課堂教學(xué)中,可以“經(jīng)濟(jì)增長”作為主要案例,向?qū)W生系統(tǒng)地闡述微積分方程的實(shí)際應(yīng)用過程,進(jìn)一步加深學(xué)生對知識的理解、掌握和應(yīng)用。
3同時(shí)開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程在職業(yè)院校數(shù)學(xué)教學(xué)過程中,同時(shí)開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程,能夠有效提高學(xué)生對基礎(chǔ)知識的理解能力和掌握程度,促進(jìn)學(xué)生實(shí)踐動手能力的培養(yǎng)。在數(shù)學(xué)建模課程的開設(shè)中,應(yīng)該在教師的指導(dǎo)下,充分利用教學(xué)軟件,引導(dǎo)學(xué)生動手實(shí)驗(yàn)和計(jì)算,加深學(xué)生對知識的掌握。在此過程中,使學(xué)生充分了解到運(yùn)用數(shù)學(xué)理論和方法去分析和解決實(shí)際問題的全過程,進(jìn)一步提高學(xué)生的積極性和思維意識能力,使他們意識到數(shù)學(xué)在實(shí)際生活應(yīng)用中的關(guān)鍵作用。同時(shí),促使學(xué)生將計(jì)算機(jī)技術(shù)融入數(shù)學(xué)學(xué)習(xí)中去,以現(xiàn)代化的高新科技為媒介,著手實(shí)際社會問題的解決。
4創(chuàng)新教學(xué)模式根據(jù)職業(yè)院校學(xué)生學(xué)習(xí)的特點(diǎn)和知識水平,重點(diǎn)提高學(xué)生運(yùn)用數(shù)學(xué)的技能和思維方式來處理實(shí)際生活和專業(yè)問題的能力。要想從根本上培養(yǎng)學(xué)生的創(chuàng)新能力,一定要改變原來單一固定的教學(xué)模式,嘗試和探索基于學(xué)生實(shí)際情況的教學(xué)措施和方式。經(jīng)過長期的實(shí)踐經(jīng)驗(yàn)研究,討論式教學(xué)和雙向教學(xué)方式對培養(yǎng)學(xué)生的能力非常有效。這兩種教學(xué)模式能夠加深學(xué)生參與課堂教學(xué)的程度,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的'主動性,最終達(dá)到提高教學(xué)效率的目的。所以,數(shù)學(xué)建??梢砸跃唧w問題為媒介,采用小組集體討論解決問題的方法,培養(yǎng)學(xué)生的創(chuàng)新能力和意識,進(jìn)一步加快職業(yè)技術(shù)院校數(shù)學(xué)教學(xué)模式的創(chuàng)新。
5組建數(shù)學(xué)建模團(tuán)隊(duì)在實(shí)際的數(shù)學(xué)教學(xué)中,教師可引導(dǎo)學(xué)生構(gòu)建數(shù)學(xué)建模團(tuán)隊(duì)。在教師對數(shù)學(xué)建模的深入分析為基礎(chǔ),充分調(diào)動學(xué)生參與問題解決的主動性,師生積極互動,最終完成數(shù)學(xué)建模。如此一來,不僅能夠有效培養(yǎng)學(xué)生積極進(jìn)取的良好學(xué)習(xí)態(tài)度,而且還能夠促進(jìn)學(xué)生數(shù)學(xué)邏輯思維能力的提高。
6搭建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺在職業(yè)技術(shù)院校中構(gòu)建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺,積極宣傳與數(shù)學(xué)建模有關(guān)的知識經(jīng)驗(yàn),為學(xué)生主動獲取數(shù)學(xué)建模信息提供各種數(shù)據(jù)資料。數(shù)學(xué)建模網(wǎng)絡(luò)平臺的搭建,能夠有效促進(jìn)教師和學(xué)生,學(xué)生與學(xué)生之間的交流與溝通,大大縮短學(xué)生和數(shù)學(xué)建模之間的距離,進(jìn)而促進(jìn)學(xué)生自主學(xué)習(xí)能力的提高和培養(yǎng)。
總而言之,數(shù)學(xué)建模思想是學(xué)生將基礎(chǔ)理論知識與實(shí)際解決問題的方法相結(jié)合的最佳途徑。將數(shù)學(xué)建模融入職業(yè)院校數(shù)學(xué)中,全面培養(yǎng)學(xué)生的創(chuàng)新意識和數(shù)學(xué)應(yīng)用能力,進(jìn)一步使數(shù)學(xué)為達(dá)成學(xué)院的教學(xué)和培養(yǎng)計(jì)劃奠定基礎(chǔ),為培養(yǎng)更多更優(yōu)秀的現(xiàn)代化社會人才服務(wù)。
數(shù)學(xué)竟賽建模論文篇十三
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個(gè)大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級中已經(jīng)實(shí)際應(yīng)用過幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個(gè)連著一個(gè);極限、連續(xù)、可導(dǎo)可積一個(gè)涵蓋另一個(gè)[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識點(diǎn)太多,記不住了),而對思維的要求卻提高了。對大學(xué)生來說,每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長久下去學(xué)生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學(xué)生,剛開始時(shí),興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應(yīng)對。怪學(xué)生嗎?誠然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對學(xué)生提的這些問題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會用到高等數(shù)學(xué)的知識,那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問題不及時(shí)解決,時(shí)間長了一定會影響到大學(xué)生對高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實(shí)際問題反推解決問題時(shí)我們需要的高等數(shù)學(xué)知識。
有這樣一個(gè)實(shí)際問題:報(bào)童每天清晨從報(bào)社購進(jìn)報(bào)紙零售,晚上將沒賣掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有abc。這就是說,報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購進(jìn)的報(bào)紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進(jìn)的報(bào)紙?zhí)?,那么會賣不完,將要賠錢。請為報(bào)童規(guī)劃一下,他該如何確定每天購進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來反推該問題涉及到的高等數(shù)學(xué)的知識:首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個(gè)關(guān)鍵問題的知識我們早就掌握了,分別是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
二、利用高等數(shù)學(xué)的解決實(shí)際問題。
f(r)[4]。如果求出了f(r),那么。
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。
現(xiàn)在我們來求f(r),假定報(bào)童已經(jīng)通過自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)。
其中k表示為賣出r份的天數(shù)。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。
通過上面的分析,可知實(shí)際問題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。
令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)。
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。
三、利用現(xiàn)實(shí)問題,讓學(xué)生學(xué)會思考,給他們提供創(chuàng)造成就感的機(jī)會。
通過上面碰到的實(shí)際問題,可以很容易地說服同學(xué)們靜下心來好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^實(shí)際問題的求解,學(xué)生們了解到了,要想解決一個(gè)實(shí)際問題(哪怕是很小的問題),也需要大量的高等數(shù)學(xué)知識的儲備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡單、直接,勝過老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們在解決實(shí)際問題中學(xué)會思考,掌握知識,提高能力。
通過訓(xùn)練后,碰到實(shí)際問題,同學(xué)們會自然的想到我們的教學(xué)方法:(1)這些實(shí)際問題涉及到的高等數(shù)學(xué)知識?那些自己掌握了,那些還沒有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實(shí)際問題,能否用高等數(shù)學(xué)的知識去解決?通過思考、分析、解決這些問題,學(xué)生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會大大提高了。
數(shù)學(xué)竟賽建模論文篇十四
運(yùn)籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動手實(shí)踐能力.
數(shù)學(xué)竟賽建模論文篇十五
將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過程中去,是我們當(dāng)前開展應(yīng)用數(shù)學(xué)教育的未來發(fā)展趨勢,怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會經(jīng)濟(jì)的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實(shí)際問題解決中的重要作用,是我們當(dāng)前進(jìn)行應(yīng)用數(shù)學(xué)研究的核心問題,而建模思想在應(yīng)用數(shù)學(xué)中的運(yùn)用則能夠很好的解決這一問題。
數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實(shí)際問題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機(jī)地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問題的有效方法。事實(shí)上,數(shù)學(xué)發(fā)展的根本原動力,它的最初的根源,是來自客觀實(shí)際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來龍去脈,揭示數(shù)學(xué)概念和公式的實(shí)際來源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會生產(chǎn)力的不斷發(fā)展,多個(gè)學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運(yùn)用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會經(jīng)濟(jì)發(fā)展的各個(gè)行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應(yīng)用數(shù)學(xué)發(fā)展的新機(jī)遇。
數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計(jì)算機(jī)網(wǎng)絡(luò)在社會生活中的廣泛運(yùn)用,人們對于實(shí)踐問題的解決要求越來越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運(yùn)用帶來了前所未有的機(jī)遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個(gè)重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識,開展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識,而且還能夠?qū)I(yè)知識同建模密切結(jié)合在一起,對于專業(yè)知識的有效掌握是非常有益的。
3.1充分重視建模的橋梁作用。
建模是實(shí)現(xiàn)數(shù)學(xué)知識與現(xiàn)實(shí)問題相聯(lián)系的橋梁與紐帶,通過進(jìn)行建模能夠有效的`將實(shí)際問題進(jìn)行簡化。在這一轉(zhuǎn)化的過程中,應(yīng)當(dāng)深入實(shí)際進(jìn)行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對象的獨(dú)特特征及規(guī)律,構(gòu)建起反映實(shí)際問題的數(shù)學(xué)關(guān)系,運(yùn)用數(shù)學(xué)理論進(jìn)行問題的解決。這正是各個(gè)學(xué)科之間進(jìn)行有效聯(lián)系的結(jié)合點(diǎn),通過引進(jìn)建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實(shí)踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。
3.2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來。
我國當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等幾個(gè)部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的建設(shè)以及其他學(xué)科對這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進(jìn)行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們在課堂上就能夠獲得更多的思考和討論的機(jī)會,能夠充分調(diào)動學(xué)生們的積極性,使其能夠立足實(shí)際進(jìn)行思考,這樣一來就形成了以實(shí)際問題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。
3.3積極參加數(shù)學(xué)模型課等相關(guān)課程與活動。
數(shù)學(xué)應(yīng)用綜合性的實(shí)驗(yàn),要求我們掌握數(shù)學(xué)知識的綜合性運(yùn)用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實(shí)例,然后學(xué)生上機(jī)實(shí)踐,強(qiáng)調(diào)學(xué)生的動手實(shí)踐。數(shù)學(xué)實(shí)驗(yàn)課應(yīng)該說是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。
上述幾個(gè)部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強(qiáng)建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過程中認(rèn)真掌握數(shù)學(xué)理論知識,還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實(shí)際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實(shí)踐過程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來看,加強(qiáng)創(chuàng)新意識以及將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題能力的培養(yǎng),提升綜合運(yùn)用本專業(yè)知識以來解決實(shí)踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
[1]余荷香,趙益民.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].出國與就業(yè)(就業(yè)版),20xx(10).
[2]關(guān)淮海.培養(yǎng)數(shù)學(xué)建模思想與方法高職高專數(shù)學(xué)教改之趨勢[j].職大學(xué)報(bào),20xx(02).
[3]李傳欣.數(shù)學(xué)建模在工程類專業(yè)數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].中國科教創(chuàng)新導(dǎo)刊,20xx(35).
[4]李秀林.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的探討[j].吉林省教育學(xué)院學(xué)報(bào)(學(xué)科版),20xx(08).
[5]吳健輝,黃志堅(jiān),汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教.學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報(bào),20xx(04).
數(shù)學(xué)竟賽建模論文篇十六
摘要:數(shù)學(xué)作為很多學(xué)科的計(jì)算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點(diǎn)的基礎(chǔ)上,從計(jì)算機(jī)軟件、實(shí)際生活中的應(yīng)用等方面,對其應(yīng)用的發(fā)展進(jìn)行了分析,最后從分析問題、建立模型、校驗(yàn)?zāi)P腿齻€(gè)階段,對數(shù)學(xué)建模的方法,進(jìn)行了深入的研究。
引言。
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實(shí)際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實(shí)際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進(jìn),很多理論都無法付諸實(shí)踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實(shí)際問題,成為了很多專家和學(xué)者研究的問題。通過實(shí)際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實(shí)際的問題轉(zhuǎn)化成數(shù)學(xué)符號的表達(dá)方式,這樣才能夠通過數(shù)學(xué)計(jì)算,來解決一些實(shí)際問題,從某種意義上來說,計(jì)算機(jī)就是由若干個(gè)數(shù)學(xué)模型組成的,計(jì)算機(jī)軟件之所以能夠解決實(shí)際問題,就是根據(jù)實(shí)際應(yīng)用的需要,建立了一個(gè)相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計(jì)算機(jī)來解決。
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時(shí)候,由于實(shí)際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實(shí)際問題,但是受到當(dāng)時(shí)技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進(jìn)行計(jì)數(shù)等,隨著經(jīng)濟(jì)和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對于利用自然科學(xué)來解決實(shí)際問題,也成為了人們研究的重點(diǎn),在市場經(jīng)濟(jì)的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計(jì)算機(jī)就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進(jìn)制相結(jié)合,這樣就能夠讓計(jì)算機(jī)來處理實(shí)際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計(jì)算機(jī)出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計(jì)算機(jī)軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實(shí)際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實(shí)際問題,利用特定的數(shù)學(xué)符號進(jìn)行描述,這樣實(shí)際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計(jì)算方法來解決。
如何解決實(shí)際問題,從有人類文明開始,就成為了人們研究的重點(diǎn),隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實(shí)際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個(gè)計(jì)算的工具,由此可以看出數(shù)學(xué)的重要性,進(jìn)入到信息時(shí)代后,計(jì)算機(jī)得到了普及應(yīng)用,無論是日常生活中還是工作中,計(jì)算機(jī)都有非常重要的應(yīng)用,而在信息時(shí)代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨(dú)立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實(shí)際問題的能力,我國每年都會舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對學(xué)生們的數(shù)學(xué)建模能力進(jìn)行考驗(yàn),而大賽的題目,很多都是一些實(shí)際問題,對于比賽的結(jié)果,每個(gè)參賽隊(duì)伍的建模方式都有一定的差異,其中選出一個(gè)最有效的方式成為冠軍。由此可以看出,對于一個(gè)實(shí)際的問題,可以建立多個(gè)數(shù)學(xué)模型進(jìn)行解決,但是執(zhí)行的效率具有一定的差異,如有些計(jì)算的步驟較少,而有些計(jì)算的過程比較簡單,而如何評價(jià)一個(gè)模型的效率,必須從各個(gè)方面進(jìn)行綜合的考慮。
2.1計(jì)算機(jī)軟件中數(shù)學(xué)建模思想的應(yīng)用。
通過深入的分析可以知道,計(jì)算機(jī)之所以能夠解決實(shí)際問題,很大程度上依賴與計(jì)算機(jī)軟件,而計(jì)算機(jī)軟件自身就是一個(gè)或幾個(gè)數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進(jìn)行需求的分析,這其實(shí)就是數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),對問題進(jìn)行分析,在了解到問題之后,就要通過計(jì)算機(jī)語言,對問題進(jìn)行描述,而計(jì)算機(jī)語言是人與計(jì)算機(jī)進(jìn)行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進(jìn)制的方式,這樣計(jì)算機(jī)才能夠進(jìn)行具體的計(jì)算。由此可以看出,計(jì)算機(jī)就是依靠數(shù)學(xué)來解決實(shí)際問題,而每個(gè)計(jì)算機(jī)軟件,都可以認(rèn)為是一個(gè)數(shù)學(xué)模型,如在早期的計(jì)算機(jī)程序設(shè)計(jì)中,受到當(dāng)時(shí)計(jì)算機(jī)技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個(gè)數(shù)學(xué)模型,然后將這個(gè)模型轉(zhuǎn)化成相應(yīng)的計(jì)算機(jī)語言,這樣計(jì)算機(jī)就可以解決實(shí)際的問題,由于計(jì)算機(jī)能夠自行計(jì)算的特點(diǎn),只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計(jì)算。
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設(shè)置的也比較靈活,會有多個(gè)題目提供給隊(duì)員選擇,學(xué)生可以根據(jù)自己的實(shí)際情況,來選擇一個(gè)最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實(shí)際問題,在學(xué)習(xí)數(shù)學(xué)知識的過程中,很多學(xué)生會認(rèn)為,數(shù)學(xué)與實(shí)踐的距離很遠(yuǎn),學(xué)習(xí)的都是純理論的知識,學(xué)習(xí)的興趣很低,與一些實(shí)踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時(shí)間封,閉發(fā)展,與西方發(fā)達(dá)國家之間的交流比較少,因此對于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時(shí)間比較短,導(dǎo)致目前我國很少會利用數(shù)學(xué)建模來解決實(shí)際問題,相比之下,發(fā)達(dá)國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學(xué)建模的知識,如在企業(yè)日常運(yùn)營中,需要進(jìn)行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進(jìn)行之前都會建立一個(gè)數(shù)學(xué)模型,然后按照這個(gè)建立的模型來處理。
從本質(zhì)上來說,數(shù)學(xué)是在實(shí)際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時(shí)技術(shù)水平的限制,雖然人們已經(jīng)懂得去計(jì)算,卻并知道自己使用的是數(shù)學(xué)知識,隨著自然科學(xué)的發(fā)展,對數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠(yuǎn)遠(yuǎn)超過了實(shí)際應(yīng)用的范圍,同時(shí)隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計(jì)算的工具,因此數(shù)學(xué)應(yīng)用的第一個(gè)階段中,主要是作為一種工具。隨著電子計(jì)算機(jī)的出現(xiàn),對數(shù)學(xué)的應(yīng)用達(dá)到了一個(gè)極限,人們在數(shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動計(jì)算的機(jī)器,在計(jì)算機(jī)出現(xiàn)的早期,受到性能和體積上的限制,只能進(jìn)行一些簡單的數(shù)學(xué)計(jì)算,還不能解決實(shí)際的問題,但是計(jì)算機(jī)語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計(jì)算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實(shí)就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計(jì)算機(jī)等電子設(shè)備的方式,來解決實(shí)際的問題。
3.1分析問題。
數(shù)學(xué)模型的應(yīng)用都是為了解決實(shí)際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實(shí)際問題時(shí),首先要對問題進(jìn)行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號,如果能夠直接用數(shù)學(xué)語言來進(jìn)行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實(shí)際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟(jì)和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),也是最重要的一個(gè)環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時(shí)對數(shù)學(xué)模型的建立也具有非常重要的影響,通過實(shí)際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對問題分析的比較徹底,甚至有些獨(dú)特的理解,只有這樣才能夠采用建立一個(gè)最簡單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個(gè)實(shí)際的問題,經(jīng)常需要建立多個(gè)模型,這樣通過多個(gè)數(shù)學(xué)模型協(xié)同來解決一個(gè)問題。
在分析實(shí)際問題后,就要用數(shù)學(xué)符號來描述要解決的問題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來解決實(shí)際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計(jì)算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達(dá)式,通常情況下,在分析問題時(shí),都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個(gè)規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無法找到這個(gè)規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達(dá)式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個(gè)規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識外,也可以結(jié)合其他學(xué)科的知識,尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對于以往簡單的問題,只需要建立一個(gè)簡單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個(gè)模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實(shí)際問題的解決提供了良好的參考,目前我國對數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達(dá)國家相比,實(shí)踐的機(jī)會還比較少。
在數(shù)學(xué)模型建立之后,對于這個(gè)模型是否能夠解決實(shí)際問題,具體的執(zhí)行效率如何,都需要進(jìn)行校驗(yàn),因此檢驗(yàn)是數(shù)學(xué)模型建立最后的一個(gè)環(huán)節(jié),也是非常重要的一個(gè)步驟,通常情況下,經(jīng)過校驗(yàn)都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進(jìn)行完善,這樣才能夠保證嚴(yán)謹(jǐn)性,在實(shí)際校驗(yàn)的過程中,要對數(shù)學(xué)模型的每個(gè)部分進(jìn)行驗(yàn)證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實(shí)際問題。除了檢驗(yàn)?zāi)P偷臏?zhǔn)確外,校驗(yàn)還有另外一個(gè)作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計(jì)算的整個(gè)過程,這時(shí)就可以對具體的細(xì)節(jié)進(jìn)行優(yōu)化,如哪部分可以減少計(jì)算的步驟,或者簡化計(jì)算的方式等,這樣可以使整個(gè)模型更加科學(xué)、合理,由此可以看出,校驗(yàn)工作對于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語。
通過全文的分析可以知道,對于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計(jì)算機(jī)技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計(jì)算機(jī)的出現(xiàn),在很大程度上改變了處理事情的方式,利用計(jì)算機(jī)軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計(jì)算機(jī)的出現(xiàn),省略了中間的計(jì)算過程,因此計(jì)算機(jī)軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
數(shù)學(xué)竟賽建模論文篇十七
走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡稱。
“走進(jìn)美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇是中國少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動。20xx年,由國際數(shù)學(xué)家大會組委會、中國數(shù)學(xué)會、中國教育學(xué)會、中國少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國三十多個(gè)城市近三十萬人參與了此項(xiàng)活動,在全國青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇活動是一項(xiàng)面對小學(xué)三年級至初中二年級學(xué)生的綜合性數(shù)學(xué)活動。通過“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對抗賽”等一系列內(nèi)容豐富的活動提高廣大中小學(xué)生的數(shù)學(xué)建模意識和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過程的轉(zhuǎn)變,從而進(jìn)一步推動我國數(shù)學(xué)文化的傳播與普及。
“走美”活動已連續(xù)舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊(duì)輔導(dǎo)員工作綱要(試行)》,向全國少年兒童推廣。
“走美”作為數(shù)學(xué)競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發(fā)展,近年來在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注??陀^地說“走美”一、二等獎(jiǎng)對小升初作用非常大,三等獎(jiǎng)作用不大。
1、活動對象。
全國各地小學(xué)三年級至初中二年級學(xué)生。
2、總成績計(jì)算。
筆試獲獎(jiǎng)率:
一等獎(jiǎng)5%,二等獎(jiǎng)10%,三等獎(jiǎng)15%。
3、筆試時(shí)間。
每年3月上、中旬。
報(bào)名截止時(shí)間:每年12月底。
走美杯比賽流程。
1、全國組委會下發(fā)通知,各地組委會開始組織工作。
2、學(xué)生到當(dāng)?shù)亟M委會報(bào)名,填寫《報(bào)名表》。
3、各地組委會將報(bào)名學(xué)生名單全部匯總至全國組委會。
4、全國“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國統(tǒng)一筆試)。
6、全國組委會公布初賽獲獎(jiǎng)名單并頒發(fā)獲獎(jiǎng)證書。
7、獲得初賽一、二、三等獎(jiǎng)選手有資格報(bào)名參加暑期赴英國劍橋大學(xué)數(shù)學(xué)交流活動。
8、各地按照組委會要求提交數(shù)學(xué)建模小論文。
9、前各地組委會上報(bào)參加全國總論壇學(xué)生名單。
10、全國總論壇和表彰活動。
數(shù)學(xué)竟賽建模論文篇十八
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問題能力的培養(yǎng)。
數(shù)學(xué)知識來源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學(xué)生利用所學(xué)知識來解決實(shí)際問題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會公式的應(yīng)用過程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識應(yīng)用到實(shí)踐中來解決數(shù)學(xué)問題是一個(gè)首要問題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識實(shí)際學(xué)習(xí)情況,有針對性地整合數(shù)學(xué)知識,了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)。
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識理論性較強(qiáng),知識較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數(shù)學(xué)模型,提問學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問題同所學(xué)知識相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問題。學(xué)生整合所學(xué)知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
(二)定積分。
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國大學(xué)生數(shù)學(xué)建模競賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據(jù)上級主管部門的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開采量來堆放煤矸石。通過數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會大大提升。
(三)最值問題。
在高等數(shù)學(xué)中,最值問題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識可以解決實(shí)際生活中的最值問題,這就需要提高對導(dǎo)數(shù)知識實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識后,通過建立關(guān)于天空的采空模型,提問學(xué)生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識來計(jì)算得出太陽光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問題,加深對知識的理解和記憶,提升數(shù)學(xué)知識學(xué)習(xí)成效。
(四)微分方程。
微分方程知識同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問題。這就需要學(xué)生在了解微分方程知識的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來解決問題。如,在當(dāng)前社會進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關(guān)注和重視。通過問題精簡化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
(五)矩陣。
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問題之前,應(yīng)該根據(jù)知識點(diǎn)來創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動。通過引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過數(shù)學(xué)建模思想來引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動性和創(chuàng)新能力,提升學(xué)生解決問題的能力,將所學(xué)知識靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
數(shù)學(xué)竟賽建模論文篇十九
對于高職院校的學(xué)生來講,數(shù)學(xué)在其教學(xué)過程中起著基礎(chǔ)性的作用,對于學(xué)生后續(xù)的學(xué)習(xí)相當(dāng)關(guān)鍵。但是從現(xiàn)階段高職院校數(shù)學(xué)教學(xué)的基本情況來看,數(shù)學(xué)教師的教學(xué)方法以及教學(xué)策略都相當(dāng)落后,對于學(xué)生數(shù)學(xué)興趣的提升造成了不同程度的影響。在這樣的背景下,相關(guān)專家提出了數(shù)學(xué)建模的方式,希望以此提升高職院校高等數(shù)學(xué)的教學(xué)效率。本文結(jié)合數(shù)學(xué)建模在高職高專人才培養(yǎng)當(dāng)中的意義和作用入手,對于其中的應(yīng)用策略進(jìn)行全面的分析,希望為相關(guān)單位提供一個(gè)全面的參考。
隨著我國社會的發(fā)展,經(jīng)濟(jì)產(chǎn)業(yè)結(jié)構(gòu)日益升級,因此高等院校的人才需求日益擴(kuò)大,對于高職教育的發(fā)展提供了前所未有的契機(jī)。在這樣的背景下,從數(shù)學(xué)建模入手,將其思想融入到高等教育的數(shù)學(xué)教學(xué)當(dāng)中,對于其中的策略和方法進(jìn)行全面的研究應(yīng)該是一項(xiàng)具有普遍現(xiàn)實(shí)意義的工作。
從近些年的發(fā)展來看,參加過數(shù)學(xué)競賽的學(xué)生在科研能力等方面都具有比其他同學(xué)更強(qiáng)的優(yōu)勢,因此數(shù)學(xué)建模在提升學(xué)生創(chuàng)新能力、提高學(xué)生知識水平以及調(diào)動學(xué)生的.學(xué)習(xí)興趣都具有十分重要的意義。比如在解決實(shí)際問題的時(shí)候,數(shù)學(xué)建模通過利用各種技巧,可以使得學(xué)生分析問題、創(chuàng)造能力得以全面的提升,進(jìn)而使得學(xué)生在摒棄原始思考問題方式的基礎(chǔ)上,敢于向傳統(tǒng)的知識發(fā)出挑戰(zhàn),對于學(xué)生的綜合能力的全面提升相當(dāng)關(guān)鍵。其次,數(shù)學(xué)知識本就源于生活,因此在建模的基礎(chǔ)上學(xué)生就可以帶著問題去思考,這對于數(shù)學(xué)知識整體性的發(fā)揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統(tǒng)數(shù)學(xué)的解決方式,很多學(xué)生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數(shù)學(xué)建模方式,學(xué)生會發(fā)現(xiàn)數(shù)學(xué)方法的靈活性,進(jìn)而使得他們解決問題的能力得以全面的提升。
3.1制定切實(shí)可行的教學(xué)大綱,從而使得教學(xué)進(jìn)度得以保障。教學(xué)大綱在高職教學(xué)當(dāng)中起著十分重要的作用,這對于教學(xué)內(nèi)容的合理性以及提升學(xué)生學(xué)習(xí)的針對性都具有十分重要的意義[1]。比如在教學(xué)高等數(shù)學(xué)(一)的選修模塊時(shí),教學(xué)大綱的制定應(yīng)該結(jié)合學(xué)生的專業(yè),從而使得學(xué)生的數(shù)學(xué)學(xué)習(xí)真正取得實(shí)效。比如可以為理工類的學(xué)生選擇無窮級數(shù)以及傅里葉變換的內(nèi)容;機(jī)械類的學(xué)生選擇線性代數(shù)以及解析幾何作為教學(xué)內(nèi)容,從而使得學(xué)生的綜合能力得以全面的提升。3.2開展“三段式”的教學(xué)模式。數(shù)學(xué)建模在以解決實(shí)際問題為核心的過程中,使得學(xué)生分析問題以及組織問題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學(xué)模式分割開來,這就需要相關(guān)部門開展“三段式”的教學(xué)模式,使得學(xué)生的數(shù)學(xué)興趣得以全面的提升。其中,第一段需要還原數(shù)學(xué)知識的原創(chuàng)過程,使得學(xué)生明確數(shù)學(xué)知識的產(chǎn)生過程,進(jìn)而讓學(xué)生從生活案例當(dāng)中發(fā)現(xiàn)數(shù)學(xué)的價(jià)值,比如知道極限是由人影的長度變化引起的,導(dǎo)數(shù)是由于駕車的速度引入的,使得學(xué)生發(fā)現(xiàn)知識的價(jià)值,進(jìn)而就會大大提升自己的學(xué)習(xí)興趣和探究意識。第二段:講解數(shù)學(xué)知識。數(shù)學(xué)建模是在實(shí)際問題當(dāng)中引入的,因此要通過具體數(shù)學(xué)知識的講解使得學(xué)生明確數(shù)學(xué)建模的真正價(jià)值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學(xué)生對于數(shù)學(xué)的分析能力真正得以提升[2]。然后在為學(xué)生積極引入大量數(shù)學(xué)圖表的基礎(chǔ)上,為增強(qiáng)學(xué)生的感性認(rèn)識,進(jìn)而提升學(xué)生的綜合能力奠定堅(jiān)實(shí)的基礎(chǔ)。第三段:數(shù)學(xué)知識的運(yùn)用。隨著社會的發(fā)展,數(shù)學(xué)的應(yīng)用在各行各業(yè)都發(fā)揮出巨大的作用,因此對于高等數(shù)學(xué)在實(shí)際生活當(dāng)中發(fā)揮出來的作用進(jìn)行全面的探究是實(shí)現(xiàn)這種知識價(jià)值的真正途徑。在這樣的背景下,高等數(shù)學(xué)教師要將每個(gè)知識點(diǎn)的運(yùn)用真正灌輸給學(xué)生,比如指數(shù)增長在銀行計(jì)息當(dāng)中的應(yīng)用、定積分在學(xué)習(xí)曲線當(dāng)中的應(yīng)用、再生資源在數(shù)學(xué)開發(fā)以及管理當(dāng)中的應(yīng)用等等。從而使得學(xué)生數(shù)學(xué)學(xué)習(xí)中的創(chuàng)新意識以及應(yīng)用能力得以全面的提升。3.3開設(shè)數(shù)學(xué)實(shí)驗(yàn),提升學(xué)生的綜合素質(zhì)。數(shù)學(xué)建模為學(xué)生提供了一種真正的“數(shù)學(xué)實(shí)驗(yàn)”,在這種實(shí)驗(yàn)的過程中,學(xué)生對于數(shù)學(xué)知識的發(fā)展以及由來過程都會得到進(jìn)行全面的考慮,這對于他們數(shù)學(xué)探索意識的提升具有十分重要的意義。另外,在計(jì)算機(jī)輔助實(shí)驗(yàn)的過程中,學(xué)生的動腦能力也會得到全面的提升,這對于學(xué)生主動的學(xué)習(xí)數(shù)學(xué)相當(dāng)關(guān)鍵。因此在教學(xué)過程中,教師要積極利用這種方式對于學(xué)生進(jìn)行全面的培養(yǎng)。
總之,隨著我國經(jīng)濟(jì)水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當(dāng)中數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)當(dāng)中的應(yīng)用進(jìn)行全面的分析是實(shí)現(xiàn)學(xué)生綜合素質(zhì)得以全面提升的關(guān)鍵措施,這對于學(xué)生的長遠(yuǎn)發(fā)展也相當(dāng)關(guān)鍵,相關(guān)教育工作者要加大在這方面的研究力度,力求將高職院校的學(xué)生培養(yǎng)成為新時(shí)代所需要的人才。
[1]吳健輝,黃志堅(jiān),汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報(bào),20xx,(4).
[2]張卓飛.將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)的探討[j].湘潭師范學(xué)院學(xué)報(bào)(自然科學(xué)版),20xx,(1).
數(shù)學(xué)竟賽建模論文篇二十
信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實(shí)問題化為數(shù)學(xué)問題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對解決現(xiàn)實(shí)問題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對課程體系進(jìn)行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開展融入式教學(xué)的實(shí)驗(yàn)班級,對數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。
這樣,在解決實(shí)際問題的時(shí)候,學(xué)生就會有意識地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
【本文地址:http://mlvmservice.com/zuowen/18966651.html】