數(shù)學(xué)竟賽建模論文(優(yōu)質(zhì)18篇)

格式:DOC 上傳日期:2023-12-12 17:35:19
數(shù)學(xué)竟賽建模論文(優(yōu)質(zhì)18篇)
時(shí)間:2023-12-12 17:35:19     小編:飛雪

健康是人類(lèi)最寶貴的財(cái)富之一,我們應(yīng)該重視保護(hù)和提升自己的健康水平。在總結(jié)中,我們可以通過(guò)對(duì)過(guò)去的反思和解析,找出問(wèn)題所在,以便更好地改進(jìn)。以下是一些相關(guān)案例分析

數(shù)學(xué)竟賽建模論文篇一

計(jì)算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語(yǔ)言,通過(guò)簡(jiǎn)化,抽象的方式來(lái)解決實(shí)際問(wèn)題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問(wèn)題不止現(xiàn)實(shí)的,還包括對(duì)未來(lái)的一種預(yù)見(jiàn)。數(shù)學(xué)建模可以說(shuō)和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無(wú)所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國(guó)人才強(qiáng)國(guó),科教興國(guó)的戰(zhàn)略推向一個(gè)新的高度。

1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過(guò)程,是教師根據(jù)社會(huì)發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過(guò)認(rèn)識(shí)教學(xué)內(nèi)容從而認(rèn)識(shí)客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過(guò)程,即教學(xué)活動(dòng)的展開(kāi)過(guò)程。以往高工專(zhuān)的數(shù)學(xué)教學(xué)存在著知識(shí)單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿(mǎn)足時(shí)代的發(fā)展,如今的數(shù)學(xué)教學(xué)過(guò)程不是單純的傳授數(shù)學(xué)學(xué)科知識(shí),而是通過(guò)數(shù)學(xué)教學(xué)過(guò)程引導(dǎo)學(xué)生認(rèn)識(shí)科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門(mén)學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過(guò)程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過(guò)這個(gè)數(shù)學(xué)建模過(guò)程來(lái)引導(dǎo)學(xué)生解決問(wèn)題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對(duì)現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過(guò)理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。

2.數(shù)學(xué)建模對(duì)當(dāng)代大學(xué)生的作用。

2.1數(shù)學(xué)建模對(duì)數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個(gè)單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過(guò)掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來(lái)越受到關(guān)注和歡迎,越來(lái)越多的學(xué)生開(kāi)始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。

2.2數(shù)學(xué)建模對(duì)學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問(wèn)題,在數(shù)學(xué)建模學(xué)習(xí)的過(guò)程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問(wèn)題、解決問(wèn)題的能力得到提高,這對(duì)大學(xué)生畢業(yè)走向社會(huì)具有著重大意義。通過(guò)數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計(jì)算機(jī)科學(xué),來(lái)解決數(shù)學(xué)及其他領(lǐng)域的問(wèn)題。

3.數(shù)學(xué)建模對(duì)大學(xué)數(shù)學(xué)及其他學(xué)科教師的作用。

數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時(shí)代的進(jìn)步,是時(shí)代對(duì)當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識(shí)講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動(dòng)性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問(wèn)題。在這個(gè)過(guò)程中大學(xué)教師的專(zhuān)業(yè)知識(shí)得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對(duì)大學(xué)數(shù)學(xué)教師的社會(huì)地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來(lái)越重要,關(guān)于數(shù)學(xué)建模的各種國(guó)內(nèi)國(guó)際大賽頻頻舉辦,這對(duì)大學(xué)數(shù)學(xué)教師在知識(shí),體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時(shí)間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺(tái)前和幕后的指揮者。

隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計(jì)算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時(shí)代發(fā)展,數(shù)學(xué)建模成為各個(gè)高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計(jì)算機(jī)學(xué)家等多個(gè)學(xué)科專(zhuān)家的意見(jiàn),從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f(shuō)數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動(dòng)力。

參考文獻(xiàn):

[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.

[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,.

數(shù)學(xué)竟賽建模論文篇二

【論文關(guān)鍵詞】空氣管理系統(tǒng);信號(hào)驅(qū)動(dòng);控制邏輯建模。

0引言。

空氣管理系統(tǒng)是民用飛機(jī)上非常重要的機(jī)載系統(tǒng)之一,負(fù)責(zé)控制飛機(jī)引氣、座艙壓力調(diào)節(jié)、機(jī)翼防冰、溫度控制等功能[1-5]。空氣管理系統(tǒng)控制是以?xún)蓚€(gè)綜合空氣管理系統(tǒng)控制器(iasc)為控制中樞,以各種傳感器發(fā)來(lái)的監(jiān)控信號(hào)、外部系統(tǒng)發(fā)來(lái)的通訊信號(hào)為輸入,經(jīng)iasc內(nèi)部邏輯運(yùn)算后,驅(qū)動(dòng)各種受控設(shè)備,如風(fēng)扇、活門(mén)、加熱器等,來(lái)實(shí)現(xiàn)飛機(jī)空氣溫度、壓力、流量等控制功能,并將系統(tǒng)狀態(tài)信息發(fā)送給外部系統(tǒng)實(shí)現(xiàn)顯示、告警及記錄功能。

空氣管理系統(tǒng)控制功能需求是以系統(tǒng)需求為依據(jù),結(jié)合所采用的控制架構(gòu)細(xì)化而來(lái)。各控制功能由若干個(gè)控制邏輯組成。在空氣管理系統(tǒng)研制過(guò)程中需要進(jìn)行控制功能的確認(rèn)與驗(yàn)證。仿真的方式能有效提高效率,降低成本,而建立各種控制邏輯模型則是進(jìn)行仿真確認(rèn)與驗(yàn)證的基礎(chǔ)。本文研究了一種信號(hào)驅(qū)動(dòng)的空氣管理系統(tǒng)控制邏輯建模方法。

1信號(hào)驅(qū)動(dòng)的控制邏輯建模方法。

信號(hào)驅(qū)動(dòng)是指由各種信號(hào)作為基本單元來(lái)進(jìn)行控制邏輯建模。各個(gè)信號(hào)表示著不同的狀態(tài)變量,空氣管理系統(tǒng)控制器根據(jù)不同的輸入狀態(tài)變量的值來(lái)決定發(fā)出的指令信號(hào)。通過(guò)基本信號(hào)來(lái)表述邏輯能從最底層關(guān)系開(kāi)始,逐步向上搭建整套控制邏輯。具體的建模過(guò)程包括構(gòu)建信號(hào)庫(kù)、搭建邏輯樹(shù)以及驅(qū)動(dòng)功能驗(yàn)證邏輯3個(gè)步驟。

1.1構(gòu)建信號(hào)庫(kù)。

構(gòu)建信號(hào)庫(kù)是為了方便在構(gòu)建邏輯時(shí)隨時(shí)調(diào)用而將一些基本的輸入信號(hào)信息收集并按照一定的編碼方式存儲(chǔ)起來(lái)??諝夤芾硐到y(tǒng)邏輯運(yùn)算中需要用到的信號(hào)屬性包括信號(hào)名稱(chēng)、信號(hào)功能范圍、信號(hào)有效性、信號(hào)設(shè)備源。所以可將每條信號(hào)按照[id|name,range(min,max),valid,source]的方式進(jìn)行整理,例如由控制器iasc1的a通道發(fā)出的座艙高度告警信號(hào)可表示為[00001|cab_alt_w,(0,1),true,iasc1a]。集合所有控制器接收的信號(hào),從而形成空氣管理系統(tǒng)信號(hào)庫(kù)。

1.2搭建邏輯樹(shù)。

邏輯樹(shù)的根節(jié)點(diǎn)一般是各個(gè)基本信號(hào)組成的關(guān)系式,例如cab_alt_w=1,表示座艙告警為真。這些關(guān)系式通過(guò)基本的與/或邏輯算子連接,從而形成基本的邏輯樹(shù),這些邏輯樹(shù)的輸出結(jié)果為ture或者false。在搭建邏輯樹(shù)的過(guò)程中,當(dāng)一條邏輯鏈比較長(zhǎng)時(shí),可將一棵邏輯樹(shù)的輸出作為另外一棵邏輯樹(shù)的輸入而形成邏輯嵌套,建模論文這種方式能簡(jiǎn)化邏輯樹(shù)的搭建過(guò)程。邏輯樹(shù)的表達(dá)可用邏輯方程來(lái)記錄。例如座艙高度告警邏輯可按以下兩種方式表達(dá)。

將所有的邏輯按照邏輯樹(shù)的方式搭建起來(lái),可形成一個(gè)邏輯庫(kù),在后續(xù)定義功能時(shí)即可直接調(diào)用來(lái)構(gòu)建功能。

1.3驅(qū)動(dòng)功能驗(yàn)證邏輯。

若干條邏輯合在一起,可以驅(qū)動(dòng)復(fù)雜的功能。通過(guò)功能的仿真即可驗(yàn)證各種邏輯的正確性。從功能層面進(jìn)行驗(yàn)證因?yàn)橐饬x更明確更方便實(shí)施,且一條功能的驗(yàn)證即可驗(yàn)證多條邏輯,功能驗(yàn)證的方式是選擇功能相關(guān)的所有信號(hào),設(shè)定各信號(hào)的狀態(tài)值,作為組成功能的所有邏輯的輸入,計(jì)算得到功能輸出值,觀察是否與預(yù)期一致。

2空氣管理系統(tǒng)cas與簡(jiǎn)圖頁(yè)邏輯建模與驗(yàn)證。

cas與簡(jiǎn)圖頁(yè)是供飛行員了解各系統(tǒng)狀態(tài)的重要頁(yè)面,由系統(tǒng)負(fù)責(zé)提供信號(hào),指示系統(tǒng)按照指定的cas與簡(jiǎn)圖頁(yè)邏輯進(jìn)行顯示?;诒疚牡乃枷耄M(jìn)行空氣管理系統(tǒng)cas與簡(jiǎn)圖頁(yè)邏輯建模與功能驗(yàn)證,開(kāi)發(fā)了相應(yīng)的軟件平臺(tái)。

2.1空氣管理系統(tǒng)cas邏輯建模。

定義cas主要需要定義cas等級(jí)、cas顯示內(nèi)容以及cas顯示邏輯。cas等級(jí)按照嚴(yán)重程度可分為waring,caution,advisory,status四種,分別用紅色、黃色、青色、白色來(lái)表示。本文定義的cas邏輯是由系統(tǒng)發(fā)出cas相關(guān)信號(hào)后,由這些信號(hào)運(yùn)算后顯示在cas頁(yè)面的邏輯,空氣管理系統(tǒng)cas消息主要顯示系統(tǒng)工作狀態(tài)以及在一些危險(xiǎn)狀態(tài)如座艙高度過(guò)高、機(jī)翼防冰失效等情況下告警。

cas定義模塊主要提供cas名稱(chēng)、內(nèi)容、等級(jí)的編輯頁(yè)面,cas邏輯的指定可直接調(diào)用邏輯庫(kù)中的邏輯。

2.2空氣管理系統(tǒng)簡(jiǎn)圖頁(yè)邏輯建模。

空氣管理系統(tǒng)簡(jiǎn)圖頁(yè)功能是通過(guò)簡(jiǎn)要示意圖顯示系統(tǒng)主要設(shè)備與管路內(nèi)空氣的狀態(tài),管路的空氣狀態(tài)信息需要根據(jù)上下游的設(shè)備狀態(tài)來(lái)判斷,這些判斷關(guān)系組成了簡(jiǎn)圖頁(yè)的邏輯??諝夤芾硐到y(tǒng)簡(jiǎn)圖頁(yè)的主要圖形元素是活門(mén)與管路流線,其邏輯定義可分為活門(mén)與流線顯示邏輯定義。簡(jiǎn)圖頁(yè)定義模塊設(shè)計(jì)了自定義活門(mén)與管路繪制工具,通過(guò)活門(mén)與流線顯示邏輯定義指定顯示顏色的驅(qū)動(dòng)邏輯,構(gòu)成整體的簡(jiǎn)圖頁(yè)顯示邏輯。

2.3空氣管理系統(tǒng)cas與簡(jiǎn)圖頁(yè)功能驗(yàn)證。

前面構(gòu)建了空氣管理系統(tǒng)cas與簡(jiǎn)圖頁(yè)的邏輯,通過(guò)指定各功能相關(guān)輸入信號(hào)的值,在邏輯運(yùn)算后再直觀地顯示在頁(yè)面上,從而可以確認(rèn)功能是否正確實(shí)現(xiàn)。在驗(yàn)證時(shí)只需根據(jù)場(chǎng)景需要,設(shè)定各信號(hào)的模擬值,由系統(tǒng)后臺(tái)運(yùn)算得到功能輸出信號(hào)值,并驅(qū)動(dòng)頁(yè)面上的顯示元素顯示相應(yīng)的狀態(tài)。

通過(guò)上述幾個(gè)步驟,能對(duì)空氣管理系統(tǒng)cas與簡(jiǎn)圖頁(yè)功能進(jìn)行整體的驗(yàn)證,有效提高了cas與簡(jiǎn)圖頁(yè)功能的設(shè)計(jì)與確認(rèn)效率,也能為后續(xù)系統(tǒng)排故提供支持。

3結(jié)論。

本文結(jié)合空氣管理系統(tǒng)控制架構(gòu)特點(diǎn),提出了信號(hào)驅(qū)動(dòng)的邏輯建模方法。本文方法具有如下特點(diǎn):

1)構(gòu)建了空氣管理系統(tǒng)基礎(chǔ)信號(hào)庫(kù),能支持在邏輯層、功能層隨時(shí)調(diào)用相關(guān)的信號(hào)信息;。

2)構(gòu)建了空氣管理系統(tǒng)邏輯庫(kù),支持上層功能的搭建與驗(yàn)證;。

3)開(kāi)發(fā)了控制邏輯建模工具,能模擬各種場(chǎng)景下的功能驗(yàn)證,提高了設(shè)計(jì)效率。

【參考文獻(xiàn)】。

[1]程立嘉,程曉忠,左彥聲.大型客機(jī)空氣管理系統(tǒng)現(xiàn)狀與發(fā)展趨勢(shì)[j].航空科學(xué)技術(shù),20xx.3:7-8.

[2]徐紅專(zhuān),崔文君,張惠娟.電子電動(dòng)式座艙壓力調(diào)節(jié)系統(tǒng)研究[j].江蘇航空,20xx,3:8-13.

數(shù)學(xué)竟賽建模論文篇三

摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過(guò)程中數(shù)學(xué)建模入手,對(duì)如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過(guò)程中進(jìn)行了分析。

數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問(wèn)題,換句話說(shuō),就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問(wèn)題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過(guò)一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問(wèn)題利用簡(jiǎn)單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段。可以說(shuō),小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對(duì)今后的學(xué)習(xí)起到極大的影響。因此,對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問(wèn)題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問(wèn)題。

數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問(wèn)題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門(mén)較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識(shí),讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問(wèn)題。在這一過(guò)程中,數(shù)學(xué)教師要注意以下兩個(gè)問(wèn)題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問(wèn)題也必須要符合生活實(shí)際,讓學(xué)生對(duì)所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問(wèn)題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過(guò)程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的積極性,讓他們?cè)跀?shù)學(xué)建模中獲得成就感,增加自信心,以此來(lái)提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。

二、提高學(xué)生想象力,用數(shù)學(xué)建模簡(jiǎn)化問(wèn)題。

對(duì)于小學(xué)生來(lái)說(shuō),他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會(huì)得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問(wèn)題,讓題目簡(jiǎn)單化。具體來(lái)說(shuō),就是在面對(duì)復(fù)雜的'數(shù)學(xué)問(wèn)題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們?cè)敢庵鲃?dòng)去深入的研究遇到的題目。之后教師再去對(duì)他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問(wèn)題的含義,并能夠運(yùn)用他們的想象能力思考解決問(wèn)題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問(wèn)題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問(wèn)題簡(jiǎn)單化。

三、選擇合適的題目作為建模案例。

在數(shù)學(xué)建模過(guò)程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過(guò)程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問(wèn)題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類(lèi)的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對(duì)題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過(guò)對(duì)題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。

四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模。

在教師經(jīng)過(guò)反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識(shí),了解了數(shù)學(xué)建模過(guò)程,并且能夠在解題過(guò)程中簡(jiǎn)單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問(wèn)題,就要在解題過(guò)程中多對(duì)學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過(guò)程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過(guò)程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過(guò)程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過(guò)去的傳統(tǒng)教學(xué)思路,增加學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。

數(shù)學(xué)竟賽建模論文篇四

摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。

一、新課的引入需要發(fā)揮教師的作用。

教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對(duì)新課的引入上。教師一段精彩的導(dǎo)入會(huì)點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識(shí)上來(lái)。這對(duì)提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時(shí),新課前的導(dǎo)入環(huán)節(jié)是對(duì)學(xué)生進(jìn)行情感教育的最佳時(shí)刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會(huì)到數(shù)學(xué)建模的價(jià)值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說(shuō):“好的開(kāi)始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時(shí)要充分發(fā)揮教師的作用。

二、在教學(xué)任務(wù)的設(shè)計(jì)上需要發(fā)揮教師的作用。

數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過(guò)自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來(lái)達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對(duì)問(wèn)題設(shè)計(jì)質(zhì)量的高低。教師應(yīng)通過(guò)設(shè)計(jì)一系列高質(zhì)量的問(wèn)題把復(fù)雜的數(shù)學(xué)建模問(wèn)題分解成若干簡(jiǎn)單問(wèn)題來(lái)引導(dǎo)學(xué)生更好地發(fā)揮其主動(dòng)性。學(xué)生也只有在這些問(wèn)題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。

三、在新舊知識(shí)的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用。

建構(gòu)主義強(qiáng)調(diào)新知識(shí)是在學(xué)生已有知識(shí)的基礎(chǔ)上通過(guò)學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識(shí)應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對(duì)于數(shù)學(xué)建模這樣高難度的知識(shí)更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會(huì)喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識(shí)聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過(guò)有針對(duì)性的具體問(wèn)題喚起學(xué)生對(duì)舊知識(shí)的回憶,再通過(guò)啟發(fā)性問(wèn)題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識(shí),從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識(shí)可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識(shí)。

四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)。

教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動(dòng)去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過(guò)具體問(wèn)題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過(guò)學(xué)生自己的思考、討論解決疑難問(wèn)題。學(xué)生在教師的引導(dǎo)下通過(guò)自己的努力、討論解決了疑難后,學(xué)生會(huì)非常興奮,從而會(huì)越來(lái)越喜歡數(shù)學(xué)建模課。相反,在沒(méi)有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對(duì)數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見(jiàn),教師對(duì)學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。

數(shù)學(xué)竟賽建模論文篇五

摘要:不知不覺(jué)中,數(shù)學(xué)建模已經(jīng)成為在學(xué)生中一個(gè)非常熱門(mén)的名詞隨著各類(lèi)數(shù)學(xué)建模大賽的如火如荼,數(shù)學(xué)建模的概念已經(jīng)逐步走入到我們中學(xué)生的視線中。很多同學(xué)對(duì)于數(shù)學(xué)、對(duì)于數(shù)學(xué)建模的理解還存在著很多偏頗之處,認(rèn)為數(shù)學(xué)這門(mén)學(xué)科太過(guò)深?yuàn)W,比較難以學(xué)習(xí)領(lǐng)悟透徹,本文通過(guò)自身的理解,簡(jiǎn)要介紹了數(shù)學(xué)建模的概念與過(guò)程,體現(xiàn)了數(shù)學(xué)思想在問(wèn)題解決過(guò)程中的指導(dǎo)作用,同時(shí)揭開(kāi)數(shù)學(xué)建模的神秘面紗,讓數(shù)學(xué)以更加平易近人的方式成為我們數(shù)學(xué)的工具。

關(guān)鍵詞:數(shù)學(xué)建模;過(guò)程;應(yīng)用。

數(shù)學(xué)是一門(mén)高度的抽象并且嚴(yán)密的科學(xué)這沒(méi)錯(cuò),但是同樣的數(shù)學(xué)中的許多結(jié)論與方法,我們可以很好的應(yīng)用在生活中的方方面面。數(shù)學(xué)應(yīng)該是理工科學(xué)生最重要的一門(mén)基礎(chǔ)學(xué)科,然而我們大部分的同學(xué),甚至我自己常常都會(huì)有“不知道學(xué)了數(shù)學(xué)有什么用,學(xué)會(huì)了微分與導(dǎo)數(shù)日常生活也用不到”的困惑,除了備戰(zhàn)考試,“學(xué)而無(wú)趣”、“學(xué)而無(wú)用”的現(xiàn)象還是非常明顯的。但是伴隨著現(xiàn)代社會(huì)的高速發(fā)展,我們所掌握的科學(xué)技術(shù)水平也在穩(wěn)步提高,數(shù)學(xué)本身的發(fā)展也是日新月異。時(shí)至今日,數(shù)學(xué)在其他各個(gè)學(xué)科之中的應(yīng)用已經(jīng)顯得尤其重要。如何通過(guò)靈活的應(yīng)用所掌握的數(shù)學(xué)知識(shí)去解決各類(lèi)生產(chǎn)生活中遇到的實(shí)際問(wèn)題時(shí),建立合理地?cái)?shù)學(xué)模型就成為至關(guān)重要的一點(diǎn)。

人們?cè)趯?duì)一個(gè)現(xiàn)實(shí)對(duì)象進(jìn)行觀察、分析和研究的過(guò)程中經(jīng)常使用模型,如科技館里的各類(lèi)機(jī)械模型、水壩模型、火箭模型等,實(shí)際上,我們常常接觸到的照片、玩具、地圖、電路圖實(shí)驗(yàn)器材等都是模型。通過(guò)使用一定的模型,可以能夠概括、集中以及更直觀的反映現(xiàn)實(shí)對(duì)象的一些特征,進(jìn)而可以幫助人們迅速、有效地了解并掌握所研究的對(duì)象。而隨著現(xiàn)代計(jì)算機(jī)技術(shù)與理論的日漸成熟,以及我們研究對(duì)象逐步復(fù)雜化、抽象畫(huà),可以通過(guò)計(jì)算機(jī)模擬的數(shù)學(xué)模型應(yīng)運(yùn)而生。其實(shí)數(shù)學(xué)模型不過(guò)是更抽象些的模型,而數(shù)學(xué)建模就是建立這一模型的過(guò)程,并且能夠?qū)⒔:笥?jì)算得到的結(jié)果來(lái)解釋實(shí)際問(wèn)題,同時(shí)接受實(shí)際的檢驗(yàn)。當(dāng)我們需要對(duì)一個(gè)實(shí)際問(wèn)題從定量的角度分析和研究時(shí),就需要通過(guò)深入調(diào)查研究、了解對(duì)象信息,并作出作出簡(jiǎn)化假設(shè)、分析內(nèi)在規(guī)律,然后用數(shù)學(xué)的符號(hào)和語(yǔ)言,把這一問(wèn)題表述為數(shù)學(xué)式子即為數(shù)學(xué)模型。這一數(shù)學(xué)模型再經(jīng)過(guò)反復(fù)的檢驗(yàn)和修正最終得到的模型結(jié)果來(lái)解釋實(shí)際問(wèn)題,并且可以接受實(shí)際的檢驗(yàn)。當(dāng)今時(shí)代,數(shù)學(xué)的應(yīng)用已經(jīng)不僅局限在工程技術(shù)、自然科學(xué)等領(lǐng)域,并以空前的廣度和深度向環(huán)境、人口、金融、醫(yī)學(xué)、地質(zhì)、交通等嶄新的領(lǐng)域滲透,形成了所謂的數(shù)學(xué)技術(shù),并成為現(xiàn)代高新技術(shù)的重要組成。這其中,建立研究對(duì)象的數(shù)學(xué)模型并計(jì)算求解成為首要的和關(guān)鍵的步驟。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識(shí)經(jīng)濟(jì)時(shí)代為科學(xué)研究提供了重要的幫助。

數(shù)學(xué)建模的過(guò)程可粗略以上方框圖表示,其具體步驟可以概述為:1)通過(guò)分析問(wèn)題的實(shí)際情況,可以充分了解所面臨問(wèn)題的背景,去大膽分析并且暴漏出問(wèn)題的本質(zhì),針對(duì)研究對(duì)象提出問(wèn)題。2)忽略非主要因素,直接列出研究的對(duì)象的關(guān)鍵問(wèn)題。將復(fù)雜問(wèn)題簡(jiǎn)化,抓住關(guān)鍵點(diǎn),大大提高問(wèn)題解決的效率。3)通過(guò)應(yīng)用數(shù)學(xué)公式與理論,尋找客觀規(guī)律。必要時(shí)可以借助計(jì)算機(jī)軟件,形成合適的數(shù)學(xué)模型。4)通過(guò)運(yùn)作已建立的數(shù)學(xué)模型,產(chǎn)生結(jié)果,進(jìn)而通過(guò)結(jié)果的對(duì)比判斷所建立的數(shù)學(xué)模型是否真正符合實(shí)際的客觀規(guī)律。這是一個(gè)動(dòng)態(tài)的檢驗(yàn)、修改的過(guò)程,通常需要多次的模擬和完善才能夠建立起合理有效的數(shù)學(xué)模型。5)將建成的數(shù)學(xué)模型規(guī)律轉(zhuǎn)化為解決實(shí)際生活中的各種問(wèn)題的方法,進(jìn)而可以直接或間接地提高生產(chǎn)、生活效率。數(shù)學(xué)建模其實(shí)就是連接數(shù)學(xué)理論知識(shí)和數(shù)學(xué)實(shí)際應(yīng)用兩者之間的一條紐帶??傆幸恍┩瑢W(xué)將數(shù)學(xué)建模看得多么的高深莫測(cè),其實(shí)我們?cè)谝郧暗娜粘5膶W(xué)習(xí)中早就已經(jīng)接觸過(guò)了數(shù)學(xué)建?!,F(xiàn)在經(jīng)常被我們當(dāng)成搞笑段子來(lái)講的一些小學(xué)學(xué)習(xí)數(shù)學(xué)的階段做過(guò)的很多應(yīng)用題,實(shí)際就是一種簡(jiǎn)單的數(shù)學(xué)建模。數(shù)學(xué)建模的確切的含義目前尚無(wú)定論,但比較莫忠一是的看法為:通過(guò)將實(shí)際問(wèn)題的抽象化,歸納并簡(jiǎn)化問(wèn)題,進(jìn)而確定變量跟參數(shù),運(yùn)用數(shù)學(xué)的理論和方法,逐步確立比較合理的數(shù)學(xué)模型;然后再應(yīng)用數(shù)學(xué)與其他相關(guān)學(xué)科中的理論和方法借助計(jì)算機(jī)等相關(guān)技術(shù)手段,建立起數(shù)學(xué)模型;接著我們會(huì)對(duì)此模型進(jìn)行反復(fù)地驗(yàn)證,分析討論,不斷地對(duì)其進(jìn)行修正,逐漸地改進(jìn)使它更加的規(guī)范化。簡(jiǎn)單來(lái)說(shuō),數(shù)學(xué)建模就是以現(xiàn)實(shí)作為背景,用數(shù)學(xué)科學(xué)理論作依托,解決實(shí)際生產(chǎn)生活中問(wèn)題的過(guò)程。因而,可以說(shuō)我們所熟知的任何一個(gè)數(shù)學(xué)上的概念、定理、命題或者結(jié)構(gòu),都可以看作是數(shù)學(xué)模型。

進(jìn)入計(jì)算機(jī)技術(shù)引領(lǐng)的20世紀(jì),隨著電子計(jì)算機(jī)的出現(xiàn)與飛速發(fā)展,數(shù)學(xué)以前所未有的廣度和深度向各個(gè)領(lǐng)域滲透,而數(shù)學(xué)建模正是這其中的紐帶。在統(tǒng)工程技術(shù)領(lǐng)域諸如機(jī)械、電機(jī)、土木、水利等方面,數(shù)學(xué)建模已展現(xiàn)了其重要作用。建立在數(shù)學(xué)模型和計(jì)算機(jī)模擬基礎(chǔ)上的新型技術(shù),已經(jīng)憑借其快速、經(jīng)濟(jì)、方便的優(yōu)勢(shì),大量地替代了傳統(tǒng)工程設(shè)計(jì)中的現(xiàn)場(chǎng)實(shí)驗(yàn)和物理模擬等手段。高科技時(shí)代下的技術(shù)本質(zhì)上已經(jīng)成為一種數(shù)學(xué)技術(shù),源于支撐現(xiàn)代科技的計(jì)算機(jī)軟件是數(shù)學(xué)建模、數(shù)值計(jì)算和計(jì)算機(jī)圖形學(xué)相結(jié)合的產(chǎn)物在這個(gè)意義上,數(shù)學(xué)不再僅僅作為一門(mén)科學(xué),它是許多技術(shù)的基礎(chǔ),而且直接走向了技術(shù)的前臺(tái)。馬克思說(shuō)過(guò),一門(mén)科學(xué)只有成功地運(yùn)用數(shù)學(xué)時(shí),才算達(dá)到了完善的地步。展望21世紀(jì),數(shù)學(xué)必將大踏步地進(jìn)入所有學(xué)科,數(shù)學(xué)建模將迎來(lái)蓬勃發(fā)展的新時(shí)期。

數(shù)學(xué)竟賽建模論文篇六

概率論與數(shù)理統(tǒng)計(jì)是一門(mén)研究隨機(jī)現(xiàn)象及其統(tǒng)計(jì)規(guī)律的數(shù)學(xué)學(xué)科,它是高等院校各專(zhuān)業(yè)開(kāi)設(shè)的重要的基礎(chǔ)數(shù)學(xué)課程之一。以下是“概率統(tǒng)計(jì)中融入數(shù)學(xué)建模思想的教學(xué)探索論文”,希望能夠幫助的到您!

如何運(yùn)用該課程的理論知識(shí)解決實(shí)際問(wèn)題具有非常重要的研究意義。每年一次的全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽是目前各高校的規(guī)模較大的課外科技活動(dòng)之一。數(shù)學(xué)建模是一門(mén)運(yùn)用數(shù)學(xué)工具和計(jì)算機(jī)技術(shù),通過(guò)建立數(shù)學(xué)模型來(lái)解決現(xiàn)實(shí)中各種實(shí)際問(wèn)題的新學(xué)科。它通過(guò)調(diào)查,收集數(shù)據(jù)、資料,觀察和研究其固有的內(nèi)在規(guī)律,提出假設(shè),經(jīng)過(guò)抽象簡(jiǎn)化,建立反映實(shí)際問(wèn)題的數(shù)學(xué)模型,即將現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題。縱觀歷年數(shù)學(xué)建模競(jìng)賽試題,像高等教育的學(xué)費(fèi)問(wèn)題、北京奧運(yùn)會(huì)人流分布、dna序列分類(lèi)問(wèn)題、dvd在線租賃問(wèn)題及醫(yī)院病床的合理安排等問(wèn)題都不同程度地涉及到了概率論與數(shù)理統(tǒng)計(jì)的相關(guān)知識(shí)。筆者多年來(lái)一直為理工科的本科生講授概率論與數(shù)理統(tǒng)計(jì)課程,并每年輔導(dǎo)和指導(dǎo)全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,所以與同事們一直都在探索如何深化概率論與數(shù)理統(tǒng)計(jì)這門(mén)課程的教學(xué)改革,使其與數(shù)學(xué)建模思想能有機(jī)結(jié)合。本文將從以下幾方面進(jìn)行探討研究。

一、概率統(tǒng)計(jì)教學(xué)中融入數(shù)學(xué)建模思想的重要性。

傳統(tǒng)的概率論與數(shù)理統(tǒng)計(jì)課程的教學(xué),可以簡(jiǎn)單地歸納為:數(shù)學(xué)知識(shí)+例子說(shuō)明+解題+考試。這種模式雖然使學(xué)生在一定程度上掌握了基礎(chǔ)知識(shí),提高了計(jì)算能力,也學(xué)會(huì)了運(yùn)用所學(xué)知識(shí)解決課后作業(yè)和應(yīng)付考試。但也不難看出,這種教學(xué)方式與實(shí)際嚴(yán)重脫節(jié),學(xué)生學(xué)會(huì)了書(shū)本知識(shí),但卻不知在所學(xué)專(zhuān)業(yè)中該如何運(yùn)用,這不僅與素質(zhì)教育的宗旨相違背,也極大地削弱了學(xué)生學(xué)習(xí)這門(mén)課程的能動(dòng)性,從而也影響了教學(xué)效果。數(shù)學(xué)建模的指導(dǎo)思想恰恰在于培養(yǎng)學(xué)生運(yùn)用所學(xué)理論知識(shí)來(lái)解決現(xiàn)實(shí)實(shí)際問(wèn)題。這不僅僅是這門(mén)課程對(duì)學(xué)生的教育問(wèn)題,更是順應(yīng)當(dāng)前素質(zhì)教育和教學(xué)改革的需要問(wèn)題。

二、在課堂教學(xué)中融入數(shù)學(xué)建模思想。

對(duì)于講授概率論與數(shù)理統(tǒng)計(jì)這門(mén)課程的教師來(lái)說(shuō),有著非常重要的任務(wù),那就是如何教好這門(mén)課程,即如何使學(xué)生通過(guò)對(duì)這門(mén)課程的學(xué)習(xí)而增強(qiáng)其對(duì)概率統(tǒng)計(jì)方法的理解與實(shí)際應(yīng)用能力。

1.教學(xué)內(nèi)容上數(shù)學(xué)建模思想的滲透。眾所周知,教師對(duì)教學(xué)內(nèi)容的把握起著不容忽視的作用。有效的教學(xué)是依賴(lài)于教師對(duì)該課程的內(nèi)容有著全面的和深刻的理解。概率統(tǒng)計(jì)中的一些概念、性質(zhì)、模型的應(yīng)用確實(shí)有些難度,在日常教學(xué)中可以通過(guò)精選例題、切近現(xiàn)實(shí)生活,使學(xué)生逐漸深化對(duì)相關(guān)知識(shí)的理解,即講課的內(nèi)容生活化、趣味化,生活中的概率統(tǒng)計(jì)問(wèn)題模型化。在概率統(tǒng)計(jì)里這些趣味性的例子比比皆是!比如摸球、投擲骰子等常見(jiàn)的游戲,“父母的身高對(duì)子女的影響”、“男女生人數(shù)的均衡對(duì)一個(gè)班級(jí)學(xué)習(xí)效果的影響”等發(fā)生在身邊的事。在概率統(tǒng)計(jì)這門(mén)課程中數(shù)學(xué)模型的影子也隨處可見(jiàn)!比如像降雨概率、人體舒適度指數(shù)、超市銀臺(tái)處的等待服務(wù)時(shí)間等這樣的隨機(jī)現(xiàn)象問(wèn)題都需要將實(shí)際問(wèn)題數(shù)量化,然后對(duì)研究對(duì)象做出判斷,從而解決問(wèn)題。教學(xué)內(nèi)容中也可插入一些反映社會(huì)經(jīng)濟(jì)生活的背景與熱點(diǎn)問(wèn)題,使課堂教育跟上時(shí)代步伐。如有獎(jiǎng)促銷(xiāo)問(wèn)題、保險(xiǎn)賠償金確定問(wèn)題、交通事故問(wèn)題等,這樣的內(nèi)容都旨在培養(yǎng)學(xué)生利用數(shù)學(xué)工具分析解決實(shí)際問(wèn)題的意識(shí)和能力,也就是培養(yǎng)學(xué)生的建模能力。

2.教學(xué)方法中融入數(shù)學(xué)建模思想。在教學(xué)中,教師的責(zé)任更大地體現(xiàn)在對(duì)學(xué)生的引導(dǎo)能力,通過(guò)引導(dǎo)使學(xué)生運(yùn)用自己的能力來(lái)解決相關(guān)的問(wèn)題。這樣使學(xué)生不但能夠?qū)W到嚴(yán)謹(jǐn)?shù)睦碚撝R(shí),同時(shí)也提高了學(xué)生分析問(wèn)題和解決問(wèn)題的能力。在教學(xué)中,我們主要采用精講與導(dǎo)學(xué)相結(jié)合的方法,同時(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié)中也可恰當(dāng)運(yùn)用討論式、啟發(fā)式、歸納類(lèi)比式等教學(xué)方法。在運(yùn)用各種教學(xué)方法中都要充分關(guān)注學(xué)生的參與性,在與學(xué)生的互動(dòng)中挖掘出課本內(nèi)容中的數(shù)學(xué)建模思想,使其“顯化”出來(lái)。比如在講解隨機(jī)事件和古典概型中,可以講解摸球問(wèn)題、生日巧合及配對(duì)問(wèn)題、確診率及血清化驗(yàn)問(wèn)題等,這樣既活躍了課堂氛圍,又培養(yǎng)了學(xué)生愛(ài)思考的習(xí)慣。必須提及的是“案例教學(xué)法”,它是概率統(tǒng)計(jì)課程融入數(shù)學(xué)建模思想的有效而常用的教學(xué)方法之一。在教學(xué)中可以直接給出案例,然后從求解具體問(wèn)題中找出相應(yīng)的理論和方法。此方法縮短了數(shù)學(xué)理論與實(shí)際應(yīng)用的距離,不僅可以提高學(xué)生學(xué)習(xí)的積極性,同時(shí)也使學(xué)生明白概率統(tǒng)計(jì)是建立在現(xiàn)實(shí)生活基礎(chǔ)上的一門(mén)課程。比如在隨機(jī)變量的數(shù)字特征中,可以給出“報(bào)童的收益問(wèn)題”案例;在參數(shù)估計(jì)中,可以給出“湖中魚(yú)的數(shù)量估計(jì)”案例;在大數(shù)定律和中心極限定理中,可以給出“保險(xiǎn)公司的收益問(wèn)題”案例;等等。由于受到課時(shí)限制,可能不能充分有效地對(duì)案例進(jìn)行完整講解,通常將“案例分析法”和“現(xiàn)代教育技術(shù)法”相結(jié)合進(jìn)行教學(xué),利用多媒體教學(xué)手段可以將案例中出現(xiàn)的大量統(tǒng)計(jì)計(jì)算均由統(tǒng)計(jì)軟件(如spss,sas,r等)來(lái)實(shí)現(xiàn)。這樣既易于被學(xué)生接受,也有助于學(xué)生掌握統(tǒng)計(jì)方法和實(shí)際操作能力。

三、發(fā)揮課后作業(yè)作為課堂教學(xué)的補(bǔ)充與延伸作用。

作為數(shù)學(xué)課程,課后作業(yè)是十分重要的組成部分,是進(jìn)一步理解、消化和鞏固課堂教學(xué)內(nèi)容的重要環(huán)節(jié)。

1.課后試驗(yàn)。在概率統(tǒng)計(jì)這門(mén)課程中有很多隨機(jī)試驗(yàn),并且很多統(tǒng)計(jì)規(guī)律也都是在隨機(jī)試驗(yàn)中獲得的。比如通過(guò)投擲均勻的硬幣和均勻的六面體骰子,可以很好地理解頻率與概率之間的關(guān)系;雙色球的有(無(wú))放回抽樣,有助于理解隨機(jī)事件的相互獨(dú)立性;統(tǒng)計(jì)某書(shū)上的錯(cuò)別字,并判斷是否服從泊松分布等。通過(guò)讓學(xué)生們親自做實(shí)驗(yàn),不僅使他們能夠探索隨機(jī)現(xiàn)象的統(tǒng)計(jì)規(guī)律性,還能幫助他們更深刻的理解、鞏固和深化理論。

2.課后作業(yè)。除常規(guī)概率統(tǒng)計(jì)練習(xí)題目外,可以增加一些有趣的、與日常生活中密切相關(guān)的概率統(tǒng)計(jì)題目。比如在給出了摸彩票規(guī)則和中獎(jiǎng)規(guī)則后,解決下面三個(gè)問(wèn)題:

(1)中獎(jiǎng)概率與摸彩票的次序有關(guān)系嗎?

(2)假設(shè)發(fā)行了100萬(wàn)張彩票,中一、二等獎(jiǎng)的概率是多少?

(3)若你打算摸彩票,在什么條件下中獎(jiǎng)概率會(huì)大一些?

3.課外實(shí)踐。針對(duì)概率統(tǒng)計(jì)實(shí)用性強(qiáng)的特點(diǎn),有目的地組織學(xué)生參加社會(huì)實(shí)踐活動(dòng),深入實(shí)際,調(diào)查研究,收集數(shù)學(xué)建模的素材。只有將某種思想方法應(yīng)用到實(shí)踐中去,實(shí)際解決幾個(gè)問(wèn)題,才能達(dá)到理解、深化、鞏固和提高的效果。教師可以從現(xiàn)實(shí)中尋找素材,選擇具有豐富現(xiàn)實(shí)背景的學(xué)習(xí)材料,可以讓學(xué)生自由組隊(duì),深入實(shí)際,運(yùn)用統(tǒng)計(jì)方法調(diào)查、觀察和收集一些數(shù)據(jù),在教師指導(dǎo)下運(yùn)用所學(xué)知識(shí)和計(jì)算機(jī)技術(shù),分析解決一些實(shí)際問(wèn)題,寫(xiě)出書(shū)面報(bào)告。比如利用閑暇時(shí)間觀察校門(mén)口某路公交車(chē)各時(shí)段乘車(chē)人數(shù),根據(jù)觀察數(shù)據(jù),為該線路設(shè)計(jì)一個(gè)便于操作的公交車(chē)調(diào)度方案:包括發(fā)車(chē)時(shí)刻表;共需多少輛車(chē);以怎樣的程度能夠照顧乘客和公交公司雙方的利益。

四、改變傳統(tǒng)單一的考核方式。

考核是教學(xué)過(guò)程中不可缺少的一個(gè)教學(xué)環(huán)節(jié),是檢驗(yàn)學(xué)生學(xué)習(xí)情況,評(píng)估教師教學(xué)質(zhì)量的手段。傳統(tǒng)的概率論與數(shù)理統(tǒng)計(jì)課程均采用期末閉卷考試,教師通常都會(huì)按照固定的內(nèi)容和格式出題,學(xué)生為了應(yīng)付考試,往往把過(guò)多的精力花費(fèi)在對(duì)公式和概念的死記硬背上,而忽略了所學(xué)知識(shí)在實(shí)際中的應(yīng)用。雖然綜合成績(jī)是由平時(shí)成績(jī)和期末成績(jī)的各占比例計(jì)算而成,但平時(shí)成績(jī)的考核主要看課后習(xí)題所做的作業(yè),而學(xué)生的學(xué)習(xí)積極性對(duì)作業(yè)的態(tài)度差異性是很大的。為此,有必要改革傳統(tǒng)單一的考核方式,培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力。考核結(jié)果包括兩部分:一部分是閉卷考試,占60%,主要考察學(xué)生對(duì)概率統(tǒng)計(jì)的基本知識(shí)、基本運(yùn)算和基本理論的掌握程度;另一部分是開(kāi)放性考核,由各占20%的平時(shí)成績(jī)和課后試驗(yàn)、課外實(shí)踐構(gòu)成,其中平時(shí)成績(jī)主要考查學(xué)生的作業(yè)情況、考勤情況、課堂表現(xiàn)情況等方面;課后試驗(yàn)、課外實(shí)踐主要考核學(xué)生對(duì)概率統(tǒng)計(jì)知識(shí)的應(yīng)用能力,可以給學(xué)生一些實(shí)際問(wèn)題,或者讓學(xué)生參加社會(huì)實(shí)踐調(diào)查收集數(shù)據(jù),學(xué)生可以自由組隊(duì)也可單獨(dú)完成,通過(guò)運(yùn)用概率統(tǒng)計(jì)知識(shí)建立數(shù)學(xué)模型并借助計(jì)算機(jī)處理大量數(shù)據(jù)對(duì)實(shí)際問(wèn)題得到解決,最后提交一份書(shū)面研究報(bào)告。如此靈活多變的考核機(jī)制,才能充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,才有利于學(xué)生應(yīng)用能力的培養(yǎng)。

通過(guò)在各個(gè)環(huán)節(jié)中融入數(shù)學(xué)建模思想,不但充分體現(xiàn)了概率統(tǒng)計(jì)的實(shí)用價(jià)值,搭建起概率統(tǒng)計(jì)知識(shí)與實(shí)際應(yīng)用的橋梁,而且也使得工科類(lèi)學(xué)生對(duì)概率統(tǒng)計(jì)這門(mén)課程的理解、認(rèn)識(shí)增強(qiáng)了,數(shù)學(xué)的應(yīng)用能力也得到了提高。

數(shù)學(xué)竟賽建模論文篇七

摘要:以文獻(xiàn)綜述法為主要策略,查閱知網(wǎng)和萬(wàn)方數(shù)據(jù)庫(kù)中有關(guān)高職數(shù)學(xué)建模教學(xué)的相關(guān)文獻(xiàn),對(duì)高職數(shù)學(xué)建模教學(xué)現(xiàn)狀,存在問(wèn)題以及優(yōu)化發(fā)展對(duì)策的文獻(xiàn)研究成果進(jìn)行梳理,通過(guò)研究綜述發(fā)現(xiàn):以建模思維構(gòu)建課堂情境已成為國(guó)內(nèi)眾多高職院校數(shù)學(xué)課程教學(xué)的重要方法,對(duì)數(shù)學(xué)教學(xué)效果的提升也起到了積極的作用,但在教學(xué)方法創(chuàng)新和學(xué)生有效引導(dǎo)等方面仍存在一些問(wèn)題,希望各級(jí)高職院校能夠針對(duì)凸顯出的問(wèn)題進(jìn)行有效整改。

關(guān)鍵詞:高職數(shù)學(xué);建模教學(xué);現(xiàn)狀與發(fā)展;綜述分析。

(一)數(shù)學(xué)模型。

數(shù)學(xué)模型是一種使用數(shù)學(xué)語(yǔ)言對(duì)現(xiàn)實(shí)問(wèn)題的抽象化表達(dá)形式。它是人們用數(shù)學(xué)方法解決現(xiàn)實(shí)問(wèn)題的工具,基于數(shù)學(xué)模型的現(xiàn)實(shí)問(wèn)題表達(dá)往往有著量化的表現(xiàn)形式,再通過(guò)數(shù)學(xué)方法的推演和求解,將現(xiàn)實(shí)問(wèn)題中蘊(yùn)含的數(shù)學(xué)含義表達(dá)出來(lái)。在數(shù)學(xué)、經(jīng)濟(jì)、物理等研究領(lǐng)域,有很多經(jīng)典的數(shù)學(xué)模型,例如:,馬爾薩斯人口增長(zhǎng)理論模型、馬爾維次投資組合選擇模型等,這些數(shù)學(xué)模型的構(gòu)建幫助人們解決了很多現(xiàn)實(shí)的問(wèn)題,提升了相關(guān)領(lǐng)域量化分析的精確度。

數(shù)學(xué)建模教學(xué)是一種基于數(shù)學(xué)模型的教學(xué)方法,在高職院校數(shù)學(xué)教學(xué)中被普遍應(yīng)用,具體來(lái)說(shuō)數(shù)學(xué)建模教學(xué)的一般步驟為:

(1)模型理論依據(jù)分析。在教學(xué)中倘若需要以某一個(gè)知識(shí)點(diǎn)為基礎(chǔ)建設(shè)數(shù)學(xué)模型時(shí),教師應(yīng)該以前人的研究成果為依據(jù),找尋模型建設(shè)的理論支撐點(diǎn),切忌假大空似的模型構(gòu)建思路。

(2)以教學(xué)內(nèi)容為基礎(chǔ)假設(shè)模型。根據(jù)教學(xué)內(nèi)容的需要,對(duì)待研究問(wèn)題進(jìn)行模型化假設(shè),提出因變量、自變量等模型語(yǔ)言。

(3)建立模型。在假設(shè)的基礎(chǔ)上建立模型。

(4)解析模型。將待求解的數(shù)學(xué)數(shù)據(jù)代入模型進(jìn)行解析計(jì)算。

(5)模型應(yīng)用效果檢驗(yàn)。將模型解析的結(jié)果與實(shí)際情況進(jìn)行比較,以檢驗(yàn)?zāi)P徒馕龅臏?zhǔn)確性和實(shí)效性。

二、高職數(shù)學(xué)建模教學(xué)現(xiàn)狀與問(wèn)題研究綜述。

(一)教學(xué)現(xiàn)狀綜述。

施寧清等人(20xx)采用試驗(yàn)法研究了建模教學(xué)在高職數(shù)學(xué)課程教學(xué)中的效果,試驗(yàn)的過(guò)程以對(duì)照班和實(shí)驗(yàn)班對(duì)比教學(xué)的形式展開(kāi),針對(duì)試驗(yàn)班的教學(xué)采用數(shù)學(xué)建模的方法,而對(duì)照班的教學(xué)則采用傳統(tǒng)的講授法展開(kāi),通過(guò)一段時(shí)間的教學(xué)實(shí)踐后設(shè)置評(píng)估變量對(duì)兩個(gè)班級(jí)學(xué)生的數(shù)學(xué)學(xué)習(xí)效果進(jìn)行了總結(jié),結(jié)果顯示:試驗(yàn)班學(xué)生的數(shù)學(xué)考試成績(jī)、建模應(yīng)用能力等均優(yōu)于對(duì)照班,說(shuō)明建模法對(duì)高職數(shù)學(xué)教學(xué)質(zhì)量的提升效益明顯。危子青等人(20xx)項(xiàng)目教學(xué)法與建模思想融合的高職數(shù)學(xué)教學(xué)形式,指出:該種教學(xué)的特色在于將高職數(shù)學(xué)課程的教學(xué)內(nèi)容劃分為若干個(gè)子項(xiàng)目,對(duì)每一個(gè)項(xiàng)目都進(jìn)行模型化構(gòu)建,并以模型為素材設(shè)計(jì)和組織項(xiàng)目化教學(xué),通過(guò)教學(xué)應(yīng)用后發(fā)現(xiàn)學(xué)生不僅掌握了項(xiàng)目教學(xué)的學(xué)習(xí)精髓,也掌握了數(shù)學(xué)模型的構(gòu)建解析技能,教學(xué)效益獲得了雙豐收。馮寧(20xx)肯定了建模思想對(duì)高職數(shù)學(xué)教學(xué)帶來(lái)的效益,指出:通過(guò)引入建模教學(xué),能夠最大化鍛煉學(xué)生的發(fā)散性思維,以及數(shù)學(xué)邏輯應(yīng)用能力,對(duì)教學(xué)效果的促進(jìn)效益明顯。

(二)存在問(wèn)題綜述。

盡管建模法對(duì)高職數(shù)學(xué)教學(xué)帶來(lái)的效益十分明顯,但在多年的教學(xué)實(shí)踐中一些問(wèn)題也不斷凸顯出來(lái)有待進(jìn)一步整改,為此國(guó)內(nèi)一些學(xué)者也將研究的視角放在建模法在高職數(shù)學(xué)教學(xué)中存在問(wèn)題的研究上,例如:孟玲(20xx)從教學(xué)方法的教學(xué)分析了高職數(shù)學(xué)建模教學(xué)中的問(wèn)題,指出:很多高職生對(duì)數(shù)學(xué)學(xué)習(xí)的興趣不足,加之傳統(tǒng)的數(shù)學(xué)模型又十分抽象,學(xué)生理解起來(lái)比較困難,一些高職數(shù)學(xué)教師采用傳統(tǒng)的建模教學(xué)思路組織教學(xué)并不利于學(xué)生學(xué)習(xí)興趣的激發(fā),而抽象的數(shù)學(xué)模型與陳舊的教學(xué)方法結(jié)合反而降低的教學(xué)的效果。曹曉軍(20xx)則認(rèn)為:很多數(shù)學(xué)教師并不注重引導(dǎo)學(xué)生科學(xué)地理解數(shù)學(xué)模型,并在此基礎(chǔ)上有效地接受學(xué)習(xí)內(nèi)容,而是一味地采用灌輸法設(shè)計(jì)教學(xué)過(guò)程,不利于數(shù)學(xué)模型在課程教學(xué)中的應(yīng)用效益提升。

三、高職數(shù)學(xué)建模教學(xué)發(fā)展對(duì)策綜述。

針對(duì)建模法在高職數(shù)學(xué)教學(xué)中凸顯出的問(wèn)題,一些學(xué)者也提出了對(duì)策。例如,齊松茹(20xx)認(rèn)為應(yīng)創(chuàng)新建模教學(xué)的形式和方法,如引入游戲教學(xué)法,將深?yuàn)W的數(shù)學(xué)模型趣味化,通過(guò)組織多元化的教學(xué)游戲激發(fā)起學(xué)生參與建模學(xué)習(xí)的興趣。谷志元(20xx)則認(rèn)為教師應(yīng)該加大對(duì)學(xué)生的引導(dǎo),通過(guò)課前、中、后期的有效引導(dǎo),幫助學(xué)生有效地建立起對(duì)數(shù)學(xué)模型的認(rèn)知,逐步教會(huì)學(xué)生利用模型解決實(shí)際問(wèn)題,達(dá)到學(xué)以致用的教學(xué)效果,以提升數(shù)學(xué)模型在課程教學(xué)中的價(jià)值。周瑋(20xx)則提出了結(jié)合網(wǎng)絡(luò)課堂建立研討式課堂的建模教學(xué)新思路,不失為一種高職數(shù)學(xué)建模教學(xué)的創(chuàng)新教法。

四、結(jié)語(yǔ)。

通過(guò)對(duì)已有文獻(xiàn)的查閱和梳理發(fā)現(xiàn),高職數(shù)學(xué)課程教學(xué)中引入建模方法對(duì)于課程教學(xué)實(shí)效性提升的效果已經(jīng)得到了國(guó)內(nèi)眾多學(xué)者的肯定,但在應(yīng)用中也存在一些問(wèn)題,比如:教學(xué)方法的創(chuàng)新度不夠,學(xué)生引導(dǎo)的活動(dòng)不多等,為此國(guó)內(nèi)一些學(xué)者也提出了針對(duì)性的教學(xué)優(yōu)化思路。本文的研究認(rèn)為:建模法對(duì)于高職數(shù)學(xué)教學(xué)效益的提升有著積極的價(jià)值,在今后的教學(xué)實(shí)踐中各級(jí)高職院校教師應(yīng)該結(jié)合教學(xué)的實(shí)際情況開(kāi)展科學(xué)的建模教學(xué)活動(dòng),以不斷提升高職數(shù)學(xué)建模教學(xué)的實(shí)效性。

參考文獻(xiàn):

數(shù)學(xué)竟賽建模論文篇八

數(shù)學(xué)核心素養(yǎng)是數(shù)學(xué)課程的基本理念和總體目標(biāo)的體現(xiàn),可以有效地指導(dǎo)數(shù)學(xué)教學(xué)實(shí)踐?!镀胀ǜ咧袛?shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》修訂稿提出了數(shù)學(xué)學(xué)科的六種核心素養(yǎng),即數(shù)學(xué)抽象、直觀想象、數(shù)學(xué)建模、邏輯推理、數(shù)學(xué)運(yùn)算和數(shù)據(jù)分析。其中,數(shù)學(xué)建模是六大數(shù)學(xué)核心素養(yǎng)之一。提升數(shù)學(xué)核心素養(yǎng),要求數(shù)學(xué)教師在課堂教學(xué)中強(qiáng)化學(xué)生的建模意識(shí)。教師在教學(xué)中通過(guò)設(shè)置數(shù)學(xué)建?;顒?dòng),培養(yǎng)學(xué)生的建模能力。

數(shù)學(xué)建模是將實(shí)際問(wèn)題中的因素進(jìn)行簡(jiǎn)化,抽象變成數(shù)學(xué)中的參數(shù)和變量,運(yùn)用數(shù)學(xué)理論進(jìn)行求解和驗(yàn)證,并確定最終是否能夠用于解決問(wèn)題的多次循環(huán)。數(shù)學(xué)建模能力包括轉(zhuǎn)化能力、數(shù)學(xué)知識(shí)應(yīng)用能力、創(chuàng)造力和溝通與合作能力。

1.精心設(shè)計(jì)導(dǎo)學(xué)案,引導(dǎo)學(xué)生通過(guò)自主探究進(jìn)行建模。

在新授課前,教師設(shè)計(jì)前置性學(xué)習(xí)導(dǎo)學(xué)案,為學(xué)生掃除知識(shí)性和方向性的障礙。通過(guò)導(dǎo)學(xué)案,引導(dǎo)學(xué)生去探究問(wèn)題的關(guān)鍵,對(duì)模型的構(gòu)建先有一個(gè)初步的自主學(xué)習(xí)過(guò)程。通過(guò)自主學(xué)習(xí)探究,讓學(xué)生充分暴露問(wèn)題,提高模型教學(xué)的針對(duì)性。在前置性學(xué)習(xí)導(dǎo)學(xué)案設(shè)計(jì)的問(wèn)題的啟發(fā)與引導(dǎo)下,學(xué)生會(huì)逐步學(xué)習(xí)、研究和應(yīng)用數(shù)學(xué)模型,形成解決問(wèn)題的新方法,強(qiáng)化建模意識(shí)和參與實(shí)踐的意識(shí)。例如,教師在引導(dǎo)學(xué)生構(gòu)建關(guān)于測(cè)量類(lèi)模型時(shí),設(shè)計(jì)的導(dǎo)學(xué)案應(yīng)提醒學(xué)生對(duì)測(cè)量物體進(jìn)行抽象化理解,并掌握基本常識(shí)。教師應(yīng)鼓勵(lì)學(xué)生采用多種不同的測(cè)量方式,分析并優(yōu)化所得數(shù)據(jù)。通過(guò)引導(dǎo)學(xué)生自主探究,讓學(xué)生探索并歸納不同條件下的模型建立的方法,培養(yǎng)學(xué)生的建模維能力。

2.在教學(xué)環(huán)節(jié)中融入數(shù)學(xué)模型教學(xué)。

教師在教學(xué)的各個(gè)環(huán)節(jié)都可以融入數(shù)學(xué)模型教學(xué)。例如,教師在新課教學(xué)時(shí),應(yīng)注意滲透數(shù)學(xué)建模思想,讓學(xué)生將新授課中的數(shù)學(xué)知識(shí)點(diǎn)與實(shí)際生活相聯(lián)系,將實(shí)際生活中與數(shù)學(xué)相關(guān)的案例引入課堂教學(xué),引導(dǎo)學(xué)生將案例內(nèi)化為數(shù)學(xué)應(yīng)用模型,以此激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。在不同教學(xué)環(huán)節(jié),教師通過(guò)聯(lián)系現(xiàn)實(shí)生活中熟悉的事例,將教材上的內(nèi)容生動(dòng)地展示給學(xué)生,從而強(qiáng)化學(xué)生運(yùn)用數(shù)學(xué)模型解決實(shí)際問(wèn)題的能力。

教師通過(guò)描述數(shù)學(xué)問(wèn)題產(chǎn)生的背景,以問(wèn)題背景為導(dǎo)向,開(kāi)展新授課的學(xué)習(xí)。教師在復(fù)習(xí)課教學(xué)環(huán)節(jié),注重提煉和總結(jié)解題模型,培養(yǎng)學(xué)生的轉(zhuǎn)換能力,讓學(xué)生多方位認(rèn)識(shí)和運(yùn)用數(shù)學(xué)模型。相對(duì)而言,高中階段的數(shù)學(xué)問(wèn)題更加注重知識(shí)的綜合考查,對(duì)思維的靈活性要求較高。高中階段考查的數(shù)學(xué)知識(shí)、解題方法以及數(shù)學(xué)思想基本不變,設(shè)置的題目形式相對(duì)穩(wěn)定。因此,教師應(yīng)適當(dāng)引導(dǎo),合理啟發(fā),對(duì)答題思路進(jìn)行分析,逐步系統(tǒng)地構(gòu)建重點(diǎn)題型的解題模型。

3.結(jié)合教學(xué)實(shí)驗(yàn),開(kāi)展數(shù)學(xué)建模活動(dòng)。

教師在開(kāi)展數(shù)學(xué)建模活動(dòng)時(shí),應(yīng)結(jié)合教學(xué)實(shí)驗(yàn)。開(kāi)展活動(dòng)課和實(shí)踐課,可以促使學(xué)生進(jìn)行合作學(xué)習(xí)。教師要適時(shí)進(jìn)行數(shù)學(xué)實(shí)驗(yàn)教學(xué),可以每周布置一個(gè)教學(xué)實(shí)驗(yàn)課例,讓學(xué)生主動(dòng)地從數(shù)學(xué)建模的角度解決問(wèn)題。在教學(xué)實(shí)驗(yàn)中,以小組合作的形式,讓學(xué)生寫(xiě)出實(shí)驗(yàn)報(bào)告。教師讓學(xué)生在課堂上進(jìn)行小組交流,并對(duì)各組的交流進(jìn)行總結(jié)。教學(xué)實(shí)驗(yàn)可以促使學(xué)生在探索中增強(qiáng)數(shù)學(xué)建模意識(shí),提升數(shù)學(xué)核心素養(yǎng)。

4.在數(shù)學(xué)建模教學(xué)中,注重相關(guān)學(xué)科的聯(lián)系。

教師在數(shù)學(xué)建模教學(xué)中,應(yīng)注重選用數(shù)學(xué)與化學(xué)、物理、生物等科目相結(jié)合的跨學(xué)科問(wèn)題進(jìn)行教學(xué)。教師可以從這些科目中選擇相關(guān)的應(yīng)用題,引導(dǎo)學(xué)生通過(guò)數(shù)學(xué)建模,應(yīng)用數(shù)學(xué)工具,解決其他學(xué)科的難題。例如,有些學(xué)生以為學(xué)好生物是與數(shù)學(xué)沒(méi)有關(guān)系的,因?yàn)楦咧猩飳W(xué)科是以描述性的語(yǔ)言為主的。這些學(xué)生缺乏理科思維,尚未樹(shù)立理科意識(shí)。例如,學(xué)生可以用數(shù)學(xué)上的概率的相加和相乘原理來(lái)解決生物上的一些遺傳病概率的計(jì)算問(wèn)題,也可以用數(shù)學(xué)上的排列與組合分析生物上的減數(shù)分裂過(guò)程和配子的基因組成問(wèn)題。又如,在學(xué)習(xí)正弦函數(shù)時(shí),教師可以引導(dǎo)學(xué)生運(yùn)用模型函數(shù),寫(xiě)出在物理學(xué)科中學(xué)到的交流圖像的數(shù)學(xué)表達(dá)式。這就需要教師在課堂教學(xué)中引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模。因此,教師在數(shù)學(xué)建模教學(xué)中,應(yīng)注意與其他學(xué)科的聯(lián)系。通過(guò)數(shù)學(xué)建模,幫助學(xué)生理解其他學(xué)科知識(shí),強(qiáng)化學(xué)生的學(xué)習(xí)能力。注重?cái)?shù)學(xué)與其他學(xué)科的聯(lián)系,是培養(yǎng)學(xué)生建模意識(shí)的重要途徑。

總之,教師在數(shù)學(xué)教學(xué)過(guò)程中,應(yīng)以學(xué)生為本,精心設(shè)計(jì)導(dǎo)學(xué)案,鼓勵(lì)學(xué)生自主探究和應(yīng)用數(shù)學(xué)模型。通過(guò)建模教學(xué),讓學(xué)生形成數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題相互轉(zhuǎn)化的數(shù)學(xué)應(yīng)用意識(shí)和建模意識(shí)。教師通過(guò)強(qiáng)化數(shù)學(xué)建模意識(shí),讓學(xué)生掌握數(shù)學(xué)模型應(yīng)用的方法,可以使學(xué)生奠定堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ),提升數(shù)學(xué)核心素養(yǎng)。

參考文獻(xiàn):

[1]鄭蘭,肖文平.基于問(wèn)題驅(qū)動(dòng)的數(shù)學(xué)建模教學(xué)理念的探索與時(shí)間[j].武漢船舶職業(yè)技術(shù)學(xué)院學(xué)報(bào),20xx(4).

[2]王國(guó)君.高中數(shù)學(xué)建模教學(xué)[j].教育科學(xué)(引文版),20xx(8).

[3]李明振,齊建華.中學(xué)數(shù)學(xué)教師數(shù)學(xué)建模能力的培養(yǎng)[j].河南教育學(xué)院學(xué)報(bào)(自然科學(xué)版),20xx(2).

數(shù)學(xué)竟賽建模論文篇九

摘要:所謂數(shù)學(xué)建模,即借助數(shù)學(xué)模型,處理所遇到的具體問(wèn)題的課程,在本文中,分別就教學(xué)、模型建立以及相應(yīng)的信息檢索來(lái)進(jìn)行研究,通過(guò)將這三面進(jìn)行相應(yīng)的糅合從而證明可以將計(jì)算機(jī)技術(shù)引入到相應(yīng)的建模實(shí)踐中,從而有效促進(jìn)數(shù)學(xué)建模的發(fā)展,使得教學(xué)質(zhì)量得以有效提升。

關(guān)鍵詞:數(shù)學(xué)建模;計(jì)算機(jī)應(yīng)用;融合。

目前計(jì)算機(jī)在生活中應(yīng)用極為廣泛,借助于計(jì)算機(jī)能夠使得先前較為復(fù)雜繁瑣的問(wèn)題得以簡(jiǎn)化,有效提升計(jì)算速率。就數(shù)學(xué)建模來(lái)看,計(jì)算機(jī)在此方面的作用不言而喻。對(duì)于此,人們普遍認(rèn)為,能夠借助于計(jì)算機(jī)將任何一個(gè)數(shù)學(xué)問(wèn)題進(jìn)行簡(jiǎn)化處理。而對(duì)于生活中所遇到的任意一個(gè)實(shí)際問(wèn)題,均能夠借助于相應(yīng)的數(shù)學(xué)模型來(lái)進(jìn)行表示,在建模過(guò)程中,也可以根據(jù)實(shí)際情況來(lái)做出一些相應(yīng)的簡(jiǎn)化處理,從而將其歸屬于完全的數(shù)學(xué)問(wèn)題,最終建立起能夠用變量所描述的數(shù)學(xué)模型。之后,借助于相應(yīng)的計(jì)算機(jī)、軟件以及編程方面的知識(shí),來(lái)對(duì)此模型進(jìn)行相應(yīng)的求解計(jì)算。

2.計(jì)算機(jī)技術(shù)在數(shù)學(xué)建模中的應(yīng)用。

計(jì)算機(jī)在數(shù)學(xué)建模中的應(yīng)用面非常的廣泛,限于筆者的水平,本文主要就兩個(gè)方面展開(kāi)討論:第一,確定建模思想;第二,對(duì)數(shù)學(xué)模型進(jìn)行求解計(jì)算。

2.1計(jì)算機(jī)技術(shù)輔助確立數(shù)學(xué)建模思想。

對(duì)于數(shù)學(xué)建模,其最為重要的目的便是為了能夠提升學(xué)生對(duì)于數(shù)學(xué)知識(shí)的使用性,借助于相關(guān)的數(shù)學(xué)思想來(lái)對(duì)實(shí)際問(wèn)題進(jìn)行解決,同時(shí),還能夠促進(jìn)學(xué)生數(shù)學(xué)思想的發(fā)展、建模能力發(fā)展以及相關(guān)數(shù)學(xué)知識(shí)的完善,最終提升其對(duì)于數(shù)學(xué)知識(shí)的使用能力。培養(yǎng)數(shù)學(xué)思維重在將學(xué)生所思所想以最快最佳的方式展示出來(lái),計(jì)算機(jī)技術(shù)在數(shù)學(xué)建模中的應(yīng)用使得這個(gè)設(shè)想變得可能。因?yàn)閿?shù)學(xué)模型的計(jì)算和設(shè)計(jì)工作量大,傳統(tǒng)的計(jì)算辦法不能迅速解決某個(gè)問(wèn)題,但是在建模的輔助下一切問(wèn)題迎刃而解。

2.2計(jì)算機(jī)技術(shù)促進(jìn)數(shù)學(xué)建模結(jié)果求解。

對(duì)于數(shù)學(xué)建模,其屬于一項(xiàng)系統(tǒng)性工程,整個(gè)過(guò)程工作量較多。在前期,對(duì)于模型的構(gòu)想與建立需要不斷完善,此后,對(duì)于模型的求解也是極為困難的,這主要因?yàn)槠渖婕暗椒浅6嗟臄?shù)據(jù)處理與計(jì)算。在計(jì)算數(shù)學(xué)模型時(shí),不僅速度快,準(zhǔn)確度也很高,如表1給出了手動(dòng)解30維線性方程組和計(jì)算機(jī)解30維方程組的時(shí)間,手動(dòng)所用時(shí)間是計(jì)算所用時(shí)間的1200倍。

同時(shí),對(duì)于一些借助紙和筆而無(wú)法實(shí)現(xiàn)的計(jì)算,通過(guò)計(jì)算機(jī)能夠較快實(shí)現(xiàn),其中主要涉及到相關(guān)的編程、繪圖等操作。

計(jì)算機(jī)在數(shù)學(xué)建模領(lǐng)域擁有極為重要的優(yōu)勢(shì)與作用。如計(jì)算機(jī)的計(jì)算速度快、可以輔助作圖,甚至可以輔助做立體圖形。同時(shí),借助于計(jì)算機(jī)也能夠使得模型得以進(jìn)一步完善,也就是說(shuō)兩者彼此之間相輔相成。

數(shù)學(xué)建模的出現(xiàn),主要是為了便于處理同工程或者科研相關(guān)的問(wèn)題的,和試題類(lèi)有著較大區(qū)別。其所處理問(wèn)題具有一定的特性,即圍繞日常具體問(wèn)題展開(kāi),科研背景突出,需要的知識(shí)結(jié)構(gòu)復(fù)雜,涉及的范圍龐大,因素多且難,非常規(guī)特征明顯,缺乏有效的處理措施,涉及數(shù)據(jù)多,要選擇的算法亦十分繁瑣,得出的結(jié)果存在波動(dòng)性,要有限定的前提,通常僅可獲取近似解。而計(jì)算機(jī)的出現(xiàn),則在一定程度上使這種情況得到緩解。是數(shù)學(xué)建模多樣化,令設(shè)計(jì)領(lǐng)域更加寬泛,如數(shù)學(xué)建模可以模范人類(lèi)大腦的記憶功能。

3.2計(jì)算機(jī)使數(shù)學(xué)模型求解更為簡(jiǎn)單。

計(jì)算機(jī)在數(shù)學(xué)建模中的應(yīng)用使得數(shù)學(xué)模型求解更為簡(jiǎn)單體現(xiàn)在以下幾個(gè)方面:

(1)計(jì)算量問(wèn)題得到解決。以前計(jì)算量大是制約數(shù)學(xué)建模發(fā)展的主要因素之一,現(xiàn)在在計(jì)算機(jī)的幫助下,只要模型完善,計(jì)算量大已經(jīng)不是問(wèn)題。如德國(guó)的神威計(jì)算機(jī),計(jì)算速度達(dá)到了12.5億億次/秒。

(2)可視化功能使抽象問(wèn)題具體化。現(xiàn)代計(jì)算機(jī)都有強(qiáng)大的作圖功能,會(huì)使數(shù)學(xué)模型中的一些抽象概念、問(wèn)題解決過(guò)程都變得可視化。圖表的制作更是非常簡(jiǎn)單。

3.3計(jì)算機(jī)利用數(shù)學(xué)建模尋求最優(yōu)解成為可能。

在3.1節(jié)中已經(jīng)提到,在計(jì)算機(jī)沒(méi)有應(yīng)用到數(shù)學(xué)建模中之前,很多數(shù)學(xué)模型的解只是近似解,連精確解都談不上,更不用說(shuō)是最優(yōu)解。其主要原因是模型本身的計(jì)算量太大,筆和紙這兩樣工具更不能在短時(shí)間內(nèi)攻下數(shù)學(xué)模型計(jì)算這塊,此外筆和紙根本不可能完成某些圖表的制作也是原因之一。計(jì)算機(jī)有效的解決了這兩個(gè)問(wèn)題,這就會(huì)使得數(shù)學(xué)模型得到精確解。在求得精確解的基礎(chǔ)之上還可以進(jìn)一步尋求最優(yōu)解,因?yàn)閿?shù)學(xué)模型的解往往是多解的,不是唯一解。

4.總結(jié)。

數(shù)學(xué)模型,其主要是通過(guò)使用相應(yīng)的數(shù)學(xué)語(yǔ)言來(lái)對(duì)實(shí)際問(wèn)題進(jìn)行相應(yīng)的表示,也就是說(shuō),模型的實(shí)質(zhì)主要是為了有效解決生活中的實(shí)際問(wèn)題。通過(guò)借助于計(jì)算機(jī)能夠使得復(fù)雜問(wèn)題得以有效簡(jiǎn)化,對(duì)于促進(jìn)社會(huì)發(fā)展起到了重要作用。因而,在未來(lái)發(fā)展中數(shù)學(xué)建模也將會(huì)像計(jì)算機(jī)一樣得到廣泛重視。目前,對(duì)于教育界而言,其主要問(wèn)題在于理論與實(shí)踐相脫節(jié)。我們的教學(xué)越來(lái)越形式、抽象。在教材中,充斥著大量的定理、理論證明等等,但是并沒(méi)有將其與實(shí)際生活相結(jié)合,而對(duì)于借助相應(yīng)的數(shù)學(xué)教學(xué)來(lái)實(shí)現(xiàn)腦力發(fā)展的系統(tǒng)化更是微乎其微。將計(jì)算機(jī)與數(shù)學(xué)建模相結(jié)合,這是未來(lái)數(shù)學(xué)領(lǐng)域發(fā)展所必須經(jīng)歷的一個(gè)過(guò)程。

參考文獻(xiàn):

數(shù)學(xué)竟賽建模論文篇十

摘要:隨著現(xiàn)代社會(huì)的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無(wú)需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識(shí)解決日常問(wèn)題的一個(gè)重要手段。本文通過(guò)簡(jiǎn)述數(shù)學(xué)建模的方法與過(guò)程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問(wèn)題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問(wèn)題解決中的重要作用。

經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會(huì)的發(fā)展,國(guó)際間貿(mào)易往來(lái)的日趨緊密,日常經(jīng)濟(jì)形勢(shì)受到的影響因素越來(lái)越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對(duì)這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識(shí)、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。

數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡(jiǎn)稱(chēng),實(shí)際上數(shù)學(xué)建??梢苑Q(chēng)之為解決問(wèn)題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過(guò)程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個(gè)中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個(gè)方面,運(yùn)用數(shù)學(xué)的語(yǔ)言和方法進(jìn)行問(wèn)題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過(guò)程。數(shù)學(xué)建模的主要過(guò)程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個(gè)反復(fù)驗(yàn)證、修改、完善的動(dòng)態(tài)過(guò)程,很少能夠通過(guò)一次過(guò)程就建立起完美適合實(shí)際問(wèn)題的數(shù)學(xué)模型。通過(guò)上述過(guò)程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問(wèn)題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對(duì)象的特性,對(duì)復(fù)雜問(wèn)題進(jìn)行簡(jiǎn)化,提取主要因素,提煉精確的數(shù)學(xué)語(yǔ)言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個(gè)量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問(wèn)題為數(shù)學(xué)語(yǔ)言;4.模型求解:對(duì)上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問(wèn)題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。

二、經(jīng)濟(jì)問(wèn)題數(shù)學(xué)模型的建立。

經(jīng)濟(jì)類(lèi)問(wèn)題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類(lèi):概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類(lèi)似風(fēng)險(xiǎn)評(píng)估、最優(yōu)產(chǎn)量計(jì)算、庫(kù)存平衡等問(wèn)題;確定型則可以基于一定的條件與假設(shè),精確的對(duì)一種特定情況的結(jié)果做出判斷,如成本核算、損失評(píng)估等。對(duì)經(jīng)濟(jì)問(wèn)題的建模計(jì)算實(shí)際上是一個(gè)從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過(guò)程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對(duì)實(shí)際經(jīng)濟(jì)問(wèn)題和情況有一個(gè)較為深入的認(rèn)識(shí),然后通過(guò)細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問(wèn)題簡(jiǎn)化提煉為一個(gè)較為理想的自然模型,然后基于這個(gè)原始模型應(yīng)用數(shù)學(xué)知識(shí)建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。

三、建模舉例。

四、結(jié)語(yǔ)。

綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對(duì)很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤(rùn)、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開(kāi)支等各個(gè)方面。上文只提供了一個(gè)簡(jiǎn)單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。

數(shù)學(xué)竟賽建模論文篇十一

大學(xué)數(shù)學(xué)包含微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)三門(mén)基礎(chǔ)課程,這是高校經(jīng)管類(lèi)專(zhuān)業(yè)必修課程;更高級(jí)的數(shù)學(xué)課程還有運(yùn)籌學(xué)、最優(yōu)化理論,這些在中高級(jí)西方經(jīng)濟(jì)學(xué)中會(huì)經(jīng)常用到?,F(xiàn)實(shí)經(jīng)濟(jì)中存在很多問(wèn)題都與數(shù)學(xué)緊密相關(guān),都需要嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)方法去解決,因此數(shù)學(xué)的學(xué)習(xí)是非常重要的。數(shù)學(xué)的學(xué)習(xí),一方面能夠培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,另一方面,數(shù)學(xué)的系統(tǒng)學(xué)習(xí)為經(jīng)管專(zhuān)業(yè)后續(xù)課程(如西方經(jīng)濟(jì)學(xué)、計(jì)量經(jīng)濟(jì)學(xué))提供了數(shù)學(xué)分析工具和計(jì)算方法。除了需要掌握數(shù)學(xué)分析和計(jì)算能力,經(jīng)管專(zhuān)業(yè)應(yīng)該更加注重培養(yǎng)學(xué)生的經(jīng)濟(jì)直覺(jué)和數(shù)學(xué)建模能力,讓學(xué)生形象地理解數(shù)學(xué)定義和經(jīng)濟(jì)現(xiàn)象。雖然現(xiàn)在高校中經(jīng)管類(lèi)專(zhuān)業(yè)的數(shù)學(xué)教育過(guò)程融合了一些本專(zhuān)業(yè)的知識(shí),但仍存在很多問(wèn)題。筆者根據(jù)自己以及同行的教學(xué)經(jīng)驗(yàn),提出相應(yīng)的改革措施以更好挖掘數(shù)學(xué)方法在經(jīng)管中的有效作用。

一、經(jīng)管類(lèi)專(zhuān)業(yè)大學(xué)數(shù)學(xué)的特點(diǎn)。

每個(gè)專(zhuān)業(yè)都有其獨(dú)特的學(xué)習(xí)內(nèi)容和方法。經(jīng)管專(zhuān)業(yè)作為我國(guó)培養(yǎng)經(jīng)濟(jì)工作人員的特殊專(zhuān)業(yè)而成為國(guó)家重視、社會(huì)關(guān)注的專(zhuān)業(yè)。大學(xué)數(shù)學(xué)是社會(huì)科學(xué)和自然科學(xué)的基礎(chǔ),因此其在經(jīng)濟(jì)學(xué)理論中有著舉足輕重的地位,數(shù)學(xué)可以為經(jīng)濟(jì)學(xué)中的很多問(wèn)題提供思想和方法的支持。經(jīng)管類(lèi)專(zhuān)業(yè)數(shù)學(xué)的學(xué)習(xí)有如下特點(diǎn)。

1.經(jīng)管專(zhuān)業(yè)的數(shù)學(xué)和經(jīng)濟(jì)學(xué)問(wèn)題緊密相關(guān)。

經(jīng)管專(zhuān)業(yè)要學(xué)習(xí)和解決經(jīng)濟(jì)相關(guān)內(nèi)容,因此,經(jīng)濟(jì)類(lèi)的數(shù)學(xué)教育要圍繞著經(jīng)濟(jì)問(wèn)題展開(kāi)討論,例如簡(jiǎn)單的經(jīng)濟(jì)問(wèn)題有價(jià)格函數(shù)、需求函數(shù)、供給函數(shù)以及邊際成本的分析,復(fù)雜一些的還有競(jìng)爭(zhēng)性市場(chǎng)分析、壟斷競(jìng)爭(zhēng)和寡頭壟斷、博弈論和競(jìng)爭(zhēng)策略、生產(chǎn)和交換的帕累托最優(yōu)條件、信息不對(duì)稱(chēng)的市場(chǎng),這些都需要用微積分的知識(shí)理解。把數(shù)學(xué)知識(shí)融入經(jīng)濟(jì)學(xué),能夠給解決經(jīng)濟(jì)學(xué)問(wèn)題提供有效的技術(shù)支持。例如通過(guò)畫(huà)出各種函數(shù)的圖像,可以讓學(xué)生更直觀地了解價(jià)格、需求、供給的關(guān)系,可以更形象地看出它們之間的依賴(lài)關(guān)系。微積分中導(dǎo)數(shù)的學(xué)習(xí)應(yīng)用到經(jīng)濟(jì)中為經(jīng)濟(jì)利益最大化提供了分析方法,例如需求理論可以轉(zhuǎn)化成一個(gè)約束最優(yōu)化問(wèn)題,用拉格朗日乘數(shù)法進(jìn)行求導(dǎo)計(jì)算,從而求出目標(biāo)函數(shù)的最優(yōu)值。另外,消費(fèi)者剩余可以轉(zhuǎn)化成定積分進(jìn)行計(jì)算,人口阻滯增長(zhǎng)模型可以用微分方程解釋。

2.經(jīng)管專(zhuān)業(yè)的數(shù)學(xué)學(xué)習(xí)注重經(jīng)濟(jì)直覺(jué)培養(yǎng)。

數(shù)學(xué)的學(xué)習(xí)可以訓(xùn)練和培養(yǎng)學(xué)生的邏輯思維能力,一般自然科學(xué)專(zhuān)業(yè)的數(shù)學(xué)學(xué)習(xí)注重于各種問(wèn)題的來(lái)源以及證明。然而經(jīng)管專(zhuān)業(yè)的數(shù)學(xué)主要為學(xué)生培養(yǎng)經(jīng)濟(jì)直覺(jué)并引導(dǎo)其進(jìn)行有效計(jì)算,因此需要著重培養(yǎng)經(jīng)管專(zhuān)業(yè)學(xué)生的數(shù)學(xué)計(jì)算能力。例如,在講最值問(wèn)題時(shí)可以讓學(xué)生計(jì)算利潤(rùn)最大化的例子,利用微積分的知識(shí)計(jì)算出最大利潤(rùn),這樣既培養(yǎng)了學(xué)生的數(shù)學(xué)計(jì)算能力,又讓學(xué)生理解了經(jīng)濟(jì)學(xué)概念。

二、經(jīng)管類(lèi)專(zhuān)業(yè)學(xué)習(xí)數(shù)學(xué)的過(guò)程中出現(xiàn)的問(wèn)題。

近年來(lái),大學(xué)數(shù)學(xué)教育改革取得了一定效果,但是還存在很多問(wèn)題。例如,有些學(xué)校不重視大學(xué)數(shù)學(xué)課程的學(xué)習(xí),只注重專(zhuān)業(yè)課的學(xué)習(xí)。實(shí)際上數(shù)學(xué)學(xué)習(xí)的效果直接影響后續(xù)專(zhuān)業(yè)課的學(xué)習(xí)。還有部分院校教師教授經(jīng)管課程時(shí)還停留在純粹的數(shù)學(xué)理論上,雖然有的高校在高等數(shù)學(xué)教育中很大程度上融入了經(jīng)濟(jì)中的各類(lèi)問(wèn)題,但是由于高校教師都是數(shù)學(xué)專(zhuān)業(yè)出身,對(duì)經(jīng)濟(jì)類(lèi)專(zhuān)業(yè)中的數(shù)學(xué)問(wèn)題不甚了解,因此不能很好地解釋相應(yīng)的經(jīng)濟(jì)現(xiàn)象。另外,經(jīng)管類(lèi)招生一般同時(shí)招收了文科和理科生,從而學(xué)生的數(shù)學(xué)基礎(chǔ)大相徑庭,使得大學(xué)數(shù)學(xué)的教學(xué)存在一定困難。還有大學(xué)的學(xué)習(xí)任務(wù)重而老師授課時(shí)間有限,對(duì)于基礎(chǔ)較差的學(xué)生,教師又不能非常詳細(xì)地復(fù)習(xí)學(xué)生高中學(xué)過(guò)的知識(shí),因而造成基礎(chǔ)好的學(xué)生學(xué)起來(lái)輕松自如,學(xué)習(xí)效果較好,而基礎(chǔ)差的學(xué)生學(xué)起來(lái)吃力,學(xué)習(xí)的效果也不盡如人意。

三、改革措施。

培養(yǎng)學(xué)生經(jīng)濟(jì)直覺(jué)和數(shù)學(xué)建模能力。

1.優(yōu)化教學(xué)內(nèi)容,根據(jù)專(zhuān)業(yè)特點(diǎn)選取相關(guān)實(shí)例來(lái)理解數(shù)學(xué)定義。

由于大學(xué)課程任務(wù)重,使得大學(xué)數(shù)學(xué)的學(xué)習(xí)課時(shí)相對(duì)變少,這就要求教師上課時(shí)要優(yōu)化教學(xué)內(nèi)容,適當(dāng)刪減純數(shù)學(xué)理論的學(xué)習(xí),在不影響后續(xù)課程的條件下,可以刪除一些難度較大的純理論性的內(nèi)容,擴(kuò)充一些和經(jīng)管專(zhuān)業(yè)知識(shí)相關(guān)的內(nèi)容。教師在上課時(shí),要根據(jù)學(xué)生所學(xué)專(zhuān)業(yè)的特點(diǎn),選取相關(guān)概念、相關(guān)實(shí)例,讓學(xué)生更直觀、更形象地學(xué)習(xí)數(shù)學(xué)知識(shí),從而培養(yǎng)學(xué)生的經(jīng)濟(jì)直覺(jué)。例如,在學(xué)習(xí)微積分中導(dǎo)數(shù)的相關(guān)概念時(shí),可選取有關(guān)成本函數(shù)、收入函數(shù)和利潤(rùn)函數(shù)的例題來(lái)求邊際成本、邊際收入和邊際利潤(rùn),從而讓學(xué)生了解導(dǎo)數(shù)在本專(zhuān)業(yè)中的應(yīng)用。在講線性代數(shù)的矩陣概念時(shí),可以給學(xué)生講解經(jīng)濟(jì)學(xué)中投入產(chǎn)出模型。在講股票投資的時(shí)候可以和概率論聯(lián)系在一起,通過(guò)概率論的理論解釋可以說(shuō)明股票投資是具有隨機(jī)性的,在股票市場(chǎng)沒(méi)有絕對(duì)的贏家。在講拉格朗日方法的時(shí)候可以引入影子價(jià)格的概念,從而理解影子價(jià)格的經(jīng)濟(jì)現(xiàn)象解釋。只有讓數(shù)學(xué)和學(xué)生所學(xué)專(zhuān)業(yè)掛鉤,才能讓學(xué)生輕松地學(xué)習(xí)數(shù)學(xué)定義,并了解一些經(jīng)濟(jì)學(xué)專(zhuān)業(yè)名詞,達(dá)到讓數(shù)學(xué)更好的為專(zhuān)業(yè)知識(shí)服務(wù)的目的。

2.教學(xué)過(guò)程中要注重學(xué)生數(shù)學(xué)建模思想的培養(yǎng)。

經(jīng)管類(lèi)專(zhuān)業(yè)學(xué)生學(xué)習(xí)數(shù)學(xué)課程,一方面是為了解決專(zhuān)業(yè)內(nèi)容中的問(wèn)題,另一方面是還需要培養(yǎng)學(xué)生的邏輯思維能力和分析問(wèn)題、解決問(wèn)題的能力。因此,在講授經(jīng)濟(jì)中的數(shù)學(xué)問(wèn)題時(shí),還要教會(huì)學(xué)生根據(jù)經(jīng)濟(jì)問(wèn)題建立相應(yīng)的數(shù)學(xué)模型。建模就是把經(jīng)濟(jì)學(xué)中一些現(xiàn)象或者問(wèn)題用數(shù)學(xué)語(yǔ)言表述出來(lái),然后進(jìn)行模型求解,從而解釋經(jīng)濟(jì)現(xiàn)象或者解決相應(yīng)的經(jīng)濟(jì)問(wèn)題。通過(guò)建立數(shù)學(xué)模型把經(jīng)管專(zhuān)業(yè)中的經(jīng)濟(jì)學(xué)問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,然后通過(guò)求解數(shù)學(xué)模型得出相應(yīng)答案,從而解決該經(jīng)濟(jì)問(wèn)題。因此,建立數(shù)學(xué)模型非常重要。例如求解最大利潤(rùn)問(wèn)題、最小成本問(wèn)題可以引導(dǎo)學(xué)生通過(guò)建立利潤(rùn)和成本函數(shù),從而轉(zhuǎn)化成一個(gè)最優(yōu)化問(wèn)題,并且在求解該問(wèn)題時(shí),需要用到導(dǎo)數(shù)(偏導(dǎo)數(shù))的知識(shí),這樣既加深了學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解,又體會(huì)到數(shù)學(xué)知識(shí)在經(jīng)濟(jì)學(xué)中的重要作用。在學(xué)習(xí)統(tǒng)計(jì)學(xué)的f檢驗(yàn)和t檢驗(yàn)時(shí),可以引導(dǎo)學(xué)生建立計(jì)量經(jīng)濟(jì)學(xué)中要學(xué)習(xí)的回歸模型,一開(kāi)始可以引入一元線性回歸模型,再過(guò)渡到二元線性回歸模型,對(duì)于二元線性回歸模型可以形象地借助二維圖像進(jìn)行說(shuō)明,最后分析多元線性回歸模型,特別地,還可以指出,在回歸模型的建立中本質(zhì)上用到了微積分中學(xué)習(xí)的最小二乘法。在線性回歸模型學(xué)習(xí)完以后,還要進(jìn)一步學(xué)習(xí)更加復(fù)雜的非線性模型,以便讓學(xué)生掌握由簡(jiǎn)單到復(fù)雜的數(shù)學(xué)建模過(guò)程??傊?,在整個(gè)數(shù)學(xué)的學(xué)習(xí)過(guò)程中,要經(jīng)常讓學(xué)習(xí)練習(xí)如何正確地建立模型,以提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

3.教師要不斷了解經(jīng)管專(zhuān)業(yè)知識(shí),以適應(yīng)學(xué)生學(xué)習(xí)的需要。

教授經(jīng)管類(lèi)專(zhuān)業(yè)的任課教師要不斷閱讀經(jīng)管類(lèi)專(zhuān)業(yè)相關(guān)書(shū)籍,充分了解經(jīng)管類(lèi)專(zhuān)業(yè)知識(shí)要用到的數(shù)學(xué)知識(shí)和數(shù)學(xué)思想,把經(jīng)濟(jì)學(xué)和數(shù)學(xué)融會(huì)貫通。只有這樣,教師在上課時(shí)才能做到有的放矢,才能時(shí)刻圍繞學(xué)生所學(xué)所需的專(zhuān)業(yè)知識(shí)來(lái)講授數(shù)學(xué)知識(shí),真正做到數(shù)學(xué)為專(zhuān)業(yè)服務(wù)。整個(gè)教學(xué)過(guò)程中,教師要對(duì)經(jīng)管類(lèi)專(zhuān)業(yè)知識(shí)有深入的理解,才能結(jié)合數(shù)學(xué)給學(xué)生解釋清楚經(jīng)濟(jì)學(xué)概念和經(jīng)濟(jì)學(xué)原理,才不至于讓所學(xué)內(nèi)容與專(zhuān)業(yè)知識(shí)脫軌。教師要了解經(jīng)濟(jì)學(xué)的前沿進(jìn)展,從而可以在上課過(guò)程中引入生動(dòng)而形象的經(jīng)濟(jì)實(shí)例,做到學(xué)教結(jié)合,真正成為學(xué)生學(xué)習(xí)的引路人。

4.教學(xué)方法要多元化,以提高學(xué)生學(xué)習(xí)興趣。

目前,經(jīng)濟(jì)數(shù)學(xué)的教學(xué)依然是傳統(tǒng)的教學(xué)模式,即教師講授、學(xué)生被動(dòng)接受的模式。這種教學(xué)方法嚴(yán)重挫傷了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性。因此,教學(xué)方法的選擇至關(guān)重要。這就要求教師要根據(jù)學(xué)生的特點(diǎn),做到因材施教。講課過(guò)程中也不能一味羅列一些數(shù)學(xué)定義和數(shù)學(xué)定理,而要注重與學(xué)生的互動(dòng),以提高學(xué)生學(xué)習(xí)的積極性。教師在上課過(guò)程中還要注重學(xué)生興趣的培養(yǎng),可以講一些獲得諾貝爾獎(jiǎng)的經(jīng)濟(jì)學(xué)家的事跡,很多獲得諾貝爾獎(jiǎng)的經(jīng)濟(jì)學(xué)家都有很好的數(shù)學(xué)基礎(chǔ),在這些基礎(chǔ)上他們進(jìn)一步在學(xué)習(xí)的過(guò)程中加強(qiáng)了自己的經(jīng)濟(jì)直覺(jué)培養(yǎng),最后取得學(xué)術(shù)的成功。通過(guò)經(jīng)濟(jì)學(xué)家的故事可以啟發(fā)引導(dǎo)學(xué)生去接觸最新的經(jīng)濟(jì)學(xué)理念,從而逐步探索新知識(shí),然后啟發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)和經(jīng)濟(jì)學(xué)的興趣。同時(shí)要讓學(xué)生多獨(dú)立思考,布置一些有趣的課后習(xí)題,特別是可布置一些結(jié)合生活中的經(jīng)濟(jì)實(shí)例的數(shù)學(xué)習(xí)題,通過(guò)解答這些習(xí)題,學(xué)生不但可以學(xué)習(xí)數(shù)學(xué)知識(shí),還可以讓學(xué)生體會(huì)數(shù)學(xué)和經(jīng)濟(jì)學(xué)的生動(dòng)結(jié)合,最后引導(dǎo)學(xué)生思考一些更加復(fù)雜的經(jīng)濟(jì)問(wèn)題并用數(shù)學(xué)知識(shí)解決問(wèn)題。只有老師生動(dòng)講解、引導(dǎo)和學(xué)生快樂(lè)、輕松學(xué)習(xí)的完美結(jié)合,才能激發(fā)學(xué)生的學(xué)習(xí)興趣,起到事半功倍的學(xué)習(xí)效果。

四、結(jié)語(yǔ)。

在高校數(shù)學(xué)教學(xué)中,應(yīng)根據(jù)經(jīng)管專(zhuān)業(yè)特點(diǎn)采取有效的教學(xué)方法教授數(shù)學(xué)知識(shí),特別要注意學(xué)生經(jīng)濟(jì)直覺(jué)的培養(yǎng),這就要求在教學(xué)過(guò)程中可以適當(dāng)減少數(shù)學(xué)的嚴(yán)格證明,注重?cái)?shù)學(xué)概念在經(jīng)濟(jì)學(xué)中的應(yīng)用,從而讓學(xué)生形象生動(dòng)的理解數(shù)學(xué)知識(shí)在經(jīng)濟(jì)學(xué)中的重要作用。另外,教學(xué)過(guò)程中還需要培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,并培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,引導(dǎo)學(xué)生將所學(xué)數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際工作中,真正做到學(xué)有所用,從而培養(yǎng)優(yōu)秀的經(jīng)濟(jì)類(lèi)人才。

數(shù)學(xué)竟賽建模論文篇十二

摘要:高校課程改革要求培養(yǎng)具有適應(yīng)性和創(chuàng)新性的高素質(zhì)人才,培養(yǎng)大學(xué)生的創(chuàng)造能力和實(shí)踐能力已經(jīng)引起了廣泛關(guān)注。數(shù)學(xué)建模是提高學(xué)生應(yīng)用意識(shí)和數(shù)學(xué)素質(zhì)的重要途徑之一。學(xué)校結(jié)合各學(xué)科特點(diǎn)及學(xué)生情況,開(kāi)設(shè)數(shù)學(xué)建模課程,改變傳統(tǒng)的數(shù)學(xué)教學(xué)方式,在各科教學(xué)中穿插數(shù)學(xué)建模思想,通過(guò)課內(nèi)、課外數(shù)學(xué)教學(xué)的有機(jī)結(jié)合,培養(yǎng)大學(xué)生的數(shù)學(xué)建模思想,能夠使學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力增強(qiáng),有利于提高大學(xué)生的創(chuàng)新思維能力和綜合素質(zhì)。

關(guān)鍵詞:數(shù)學(xué)建模;科技創(chuàng)新;實(shí)踐能力。

一、引言。

加強(qiáng)大學(xué)生的創(chuàng)新精神和創(chuàng)新思維能力的培養(yǎng),已是世界各國(guó)教學(xué)改革的共同趨勢(shì),也是我國(guó)實(shí)現(xiàn)“科教興國(guó)”戰(zhàn)略的基本要求。新的課程改革強(qiáng)調(diào)數(shù)學(xué)與實(shí)際生活的聯(lián)系,多年來(lái)的教育實(shí)踐證明,數(shù)學(xué)建模的教學(xué)在大學(xué)生的創(chuàng)新教學(xué)中的地位和意義已是舉足輕重。學(xué)校可以通過(guò)數(shù)學(xué)建模,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識(shí)的能力、分析解決問(wèn)題的能力以及交流與合作的能力。數(shù)學(xué)教育本質(zhì)上是一種素質(zhì)教育,從開(kāi)始受教育,就接觸數(shù)學(xué)學(xué)科,數(shù)學(xué)的重要性可見(jiàn)一斑,不僅僅是要掌握這門(mén)課的知識(shí)這么簡(jiǎn)單,現(xiàn)實(shí)生活中的很多實(shí)際問(wèn)題都能用數(shù)學(xué)語(yǔ)言來(lái)描述,把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,再來(lái)描述、解決問(wèn)題的過(guò)程就是建立數(shù)學(xué)模型、求解數(shù)學(xué)模型的過(guò)程。在數(shù)學(xué)教學(xué)中,就不能和現(xiàn)實(shí)完全脫離,這種和現(xiàn)實(shí)脫軌的傳統(tǒng)教學(xué)狀態(tài)使學(xué)生雖然掌握了技術(shù),卻不能學(xué)以致用,填鴨式的教育并不能使學(xué)生真正成為現(xiàn)在社會(huì)需要的有用人才,數(shù)學(xué)建模就是將數(shù)學(xué)和外界聯(lián)系起來(lái)的一個(gè)通道。通過(guò)數(shù)學(xué)建模培養(yǎng)大學(xué)生對(duì)于新問(wèn)題在短時(shí)間之內(nèi)的解決問(wèn)題的能力,有利于培養(yǎng)大學(xué)生的創(chuàng)新思想。

二、制約大學(xué)生創(chuàng)新能力發(fā)展的問(wèn)題。

目前,數(shù)學(xué)教育主要還是關(guān)注在題目上,學(xué)習(xí)的目的大部分都是為了獲取高分。如果高校的教育從公式、定理展開(kāi),學(xué)生的作業(yè)、學(xué)習(xí)也依葫蘆畫(huà)瓢的積分微分,這種方式訓(xùn)練出來(lái)的學(xué)生,往往知其然而不知其所以然,雖然按教材中規(guī)中矩、按部就班地授課,可以使學(xué)生在短時(shí)間內(nèi)掌握知識(shí),也能獲得暫時(shí)的效果,然而當(dāng)學(xué)生走向社會(huì)時(shí),這樣學(xué)習(xí)到的知識(shí)往往不能給他們帶來(lái)更多的幫助,這種情況顯然不是在數(shù)學(xué)教育中理想的狀態(tài)。書(shū)本上看起來(lái)或晦澀難懂或明了清楚的概念理論應(yīng)該不僅僅帶給學(xué)生在校時(shí)的分?jǐn)?shù)、獎(jiǎng)學(xué)金,應(yīng)該了解精髓,懂得他們背后的思想和生命力才是數(shù)學(xué)帶給我們遠(yuǎn)比學(xué)習(xí)成績(jī)更重要的東西。

無(wú)論是以后從事什么崗位,接受過(guò)的數(shù)學(xué)教育鍛煉過(guò)思維、邏輯,使學(xué)生在面對(duì)實(shí)際問(wèn)題時(shí)更能明白事情的問(wèn)題所在,更能有邏輯、更有方法的解決問(wèn)題。這就是要培養(yǎng)學(xué)生的自主思考、發(fā)散創(chuàng)新的能力。傳統(tǒng)的教學(xué)過(guò)程既然很難做到,那么就要通過(guò)別的方法訓(xùn)練大學(xué)生面對(duì)問(wèn)題、解決問(wèn)題的能力。在高校中推廣數(shù)學(xué)建模是一種能實(shí)施、易實(shí)施又有效的方法。

三、高校大學(xué)生數(shù)學(xué)建模創(chuàng)新活動(dòng)的建設(shè)內(nèi)容。

針對(duì)現(xiàn)狀問(wèn)題,我們以培養(yǎng)大學(xué)生的創(chuàng)新能力及實(shí)踐能力為目的,通過(guò)建設(shè)高效的數(shù)學(xué)建模創(chuàng)新活動(dòng),激發(fā)大學(xué)生的創(chuàng)新活力和運(yùn)用數(shù)學(xué)方法解決復(fù)雜實(shí)際問(wèn)題的綜合能力,拓寬學(xué)生的知識(shí)面,培養(yǎng)學(xué)生的創(chuàng)新精神和團(tuán)隊(duì)合作意識(shí)。

1.從全校相關(guān)專(zhuān)業(yè)中選拔有實(shí)戰(zhàn)經(jīng)驗(yàn)的教師進(jìn)行培訓(xùn)根據(jù)不同專(zhuān)業(yè)的特色,從全校范圍內(nèi)選拔優(yōu)秀的數(shù)學(xué)建模指導(dǎo)教師團(tuán)隊(duì);根據(jù)數(shù)學(xué)建模特點(diǎn),對(duì)指導(dǎo)教師進(jìn)行專(zhuān)業(yè)培訓(xùn)和學(xué)術(shù)交流。比如,參加數(shù)學(xué)建模培訓(xùn)班,與其他高校優(yōu)秀建模教師進(jìn)行學(xué)術(shù)交流。邀請(qǐng)有實(shí)戰(zhàn)經(jīng)驗(yàn)的專(zhuān)家做數(shù)學(xué)建模的學(xué)術(shù)報(bào)告。根據(jù)指導(dǎo)教師特點(diǎn)進(jìn)行分工,研究不同領(lǐng)域的數(shù)學(xué)建模問(wèn)題,通過(guò)專(zhuān)兼結(jié)合達(dá)到知識(shí)結(jié)構(gòu)的優(yōu)勢(shì)互補(bǔ)。

2.將數(shù)學(xué)建模思想融入學(xué)生的認(rèn)知當(dāng)中現(xiàn)代認(rèn)知心理學(xué)家布魯納說(shuō):“探索是數(shù)學(xué)教學(xué)的生命線?!眒oor教學(xué)法提出學(xué)習(xí)數(shù)學(xué)最好的方式是“在做數(shù)學(xué)中學(xué)習(xí)數(shù)學(xué)”。因此,在教學(xué)中調(diào)動(dòng)學(xué)生積極參與數(shù)學(xué)建模過(guò)程中,探索建模方法。在選題時(shí)老師應(yīng)引導(dǎo)學(xué)生,開(kāi)發(fā)學(xué)生的開(kāi)放性、探索性,開(kāi)拓更廣闊的探索空間。講解建模環(huán)節(jié),教師要善于把建模材料組織成一個(gè)體系,為學(xué)生創(chuàng)造探索環(huán)境。數(shù)學(xué)建模環(huán)節(jié),教師應(yīng)尊重學(xué)生的主體地位,激勵(lì)學(xué)生獨(dú)立思考,出錯(cuò)環(huán)節(jié)協(xié)助其自主分析出錯(cuò)原因,并從錯(cuò)誤中尋出思維的合理之處。教師引導(dǎo)學(xué)生建模主要從兩個(gè)方面入手:一將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力;二對(duì)轉(zhuǎn)化過(guò)來(lái)的問(wèn)題,應(yīng)用數(shù)學(xué)解決的能力。在教學(xué)過(guò)程中,教師可以將實(shí)際問(wèn)題還原成所學(xué)數(shù)學(xué)知識(shí),使學(xué)生可以借助自己的認(rèn)知結(jié)構(gòu)主動(dòng)構(gòu)建數(shù)學(xué)模型;從數(shù)學(xué)問(wèn)題原型出發(fā),引導(dǎo)學(xué)生觀察、分析、概括得到數(shù)學(xué)概念、公式、定理、法則的教學(xué)方式符合知識(shí)的發(fā)生發(fā)展的過(guò)程,體現(xiàn)教學(xué)中解決問(wèn)題的心理過(guò)程。

3.在全校根據(jù)文理科專(zhuān)業(yè)開(kāi)設(shè)數(shù)學(xué)建模通識(shí)課大一上學(xué)期,全校范圍內(nèi)開(kāi)設(shè)數(shù)學(xué)建模通識(shí)課,結(jié)合各學(xué)科的特點(diǎn),分別開(kāi)設(shè)文科班和理科班,不僅理科生可以受到數(shù)學(xué)建模思想的熏陶,文科生也可以根據(jù)自身的認(rèn)知體驗(yàn)到數(shù)學(xué)建模帶來(lái)的樂(lè)趣。邀請(qǐng)有經(jīng)驗(yàn)的數(shù)學(xué)建模指導(dǎo)教師進(jìn)行講授,要結(jié)合學(xué)生感興趣的問(wèn)題入手。

比如,20xx年高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目b題“拍照賺錢(qián)”的任務(wù)定價(jià),通過(guò)學(xué)生感興趣的“拍照賺錢(qián)”等實(shí)際問(wèn)題讓學(xué)生切身體會(huì)到數(shù)學(xué)建模思想與生活息息相關(guān),讓學(xué)生帶著問(wèn)題學(xué)習(xí)。對(duì)一些同學(xué)難以理解的數(shù)學(xué)模型的講解時(shí),教師可以將數(shù)學(xué)問(wèn)題轉(zhuǎn)化為學(xué)生已有的認(rèn)知當(dāng)中,既通俗易懂,又能夠讓學(xué)生通過(guò)數(shù)學(xué)建模產(chǎn)生樂(lè)趣。比如,學(xué)生在學(xué)習(xí)難理解的貝葉斯模型時(shí),先驗(yàn)概率對(duì)后驗(yàn)概率的影響,不知其意而死記硬背,教學(xué)中可以用原型引出貝葉斯模型:已知外界的環(huán)境變化影響最終決策者的判斷;高等數(shù)學(xué)中的矩陣,矩陣分解可通過(guò)數(shù)學(xué)建模應(yīng)用于人臉圖像識(shí)別、矩陣的特征值及特征向量可以用于數(shù)據(jù)降維等。通過(guò)模型學(xué)習(xí)概念,強(qiáng)化數(shù)學(xué)來(lái)源于生活的思想教育,理論聯(lián)系實(shí)際的數(shù)學(xué)課堂教學(xué)模式讓學(xué)生看到問(wèn)題的提出,有利于學(xué)生的創(chuàng)造性思維能力的培養(yǎng),以此激發(fā)學(xué)生對(duì)數(shù)學(xué)建模的學(xué)習(xí)興趣。學(xué)期結(jié)束時(shí),要求學(xué)生根據(jù)教師提供的數(shù)學(xué)問(wèn)題提交一份數(shù)學(xué)建模論文。

4.成立數(shù)學(xué)建模興趣小組成立數(shù)學(xué)建模課外興趣小組群,通過(guò)qq、微信等社交平臺(tái),充分發(fā)揮大學(xué)生的主觀能動(dòng)性,形成良好的學(xué)習(xí)氛圍。學(xué)生通過(guò)數(shù)學(xué)建模學(xué)習(xí)如何在團(tuán)隊(duì)中發(fā)揮自己的長(zhǎng)處,如何合作完成共同的任務(wù)。在數(shù)學(xué)建模課外興趣小組中,學(xué)生互相討論時(shí),不同的思維碰撞會(huì)產(chǎn)生不同的想法,能激勵(lì)大學(xué)生養(yǎng)成勤于動(dòng)腦、善于思考的能力,能在一定程度上鍛煉學(xué)生的靈活性和思考問(wèn)題的多面性。課外小組中,學(xué)校舉辦數(shù)學(xué)建模系列講座,可以邀請(qǐng)有經(jīng)驗(yàn)的專(zhuān)家教師給大家講解數(shù)學(xué)在實(shí)際中的不同應(yīng)用,宣傳數(shù)學(xué)建?;舅枷耄箤W(xué)生全面理解模型的適用范圍、典型特征、建模及求解過(guò)程。通過(guò)對(duì)模型深入的理解,學(xué)生了解數(shù)學(xué)建模全過(guò)程,進(jìn)而舉一反三。此外,根據(jù)學(xué)生的不同特點(diǎn),分配給學(xué)生不同的學(xué)習(xí)任務(wù),既激起大學(xué)生對(duì)數(shù)學(xué)建模的興趣,又保證個(gè)性化的培養(yǎng)教育,學(xué)生們?cè)谛〗M中能體會(huì)到團(tuán)隊(duì)協(xié)作的重要性。學(xué)??梢蚤_(kāi)展數(shù)學(xué)文化節(jié),依托豐富多彩的數(shù)學(xué)課外閱讀活動(dòng),使學(xué)生感受數(shù)學(xué)文化,學(xué)會(huì)用數(shù)學(xué)的眼光看待世界,用數(shù)學(xué)的頭腦解決身邊的問(wèn)題,以此提升學(xué)生的數(shù)學(xué)素養(yǎng),重點(diǎn)培養(yǎng)學(xué)生的發(fā)散思維,以及以新穎獨(dú)特的方式解決問(wèn)題的思維方式。

5.參賽人員層級(jí)選拔及實(shí)訓(xùn)。

(1)校內(nèi)選拔。全校選拔人員采取自愿報(bào)名的方式。自愿參加的成員能積極、主動(dòng)地學(xué)習(xí),積極地思考問(wèn)題,將他們的能力最大限度地發(fā)揮出來(lái)。指導(dǎo)教師給定幾個(gè)經(jīng)典題目,按照全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽的所有規(guī)則進(jìn)行模擬競(jìng)賽,通過(guò)賽前鼓勵(lì)調(diào)動(dòng)學(xué)生的創(chuàng)造性思維能力,讓學(xué)生積極參與。賽中指導(dǎo)教師根據(jù)每一位參賽隊(duì)員的特點(diǎn)進(jìn)行有針對(duì)性的指導(dǎo),發(fā)揚(yáng)每個(gè)學(xué)生的優(yōu)點(diǎn),提高每一位參賽隊(duì)員的學(xué)業(yè)素質(zhì)及水平。賽后根據(jù)每位學(xué)生在活動(dòng)中的表現(xiàn),評(píng)出各個(gè)學(xué)生的等級(jí)獎(jiǎng)(一、二、三等獎(jiǎng)及優(yōu)秀獎(jiǎng))。根據(jù)成績(jī)及學(xué)生在比賽中的表現(xiàn),選拔出前20組優(yōu)秀學(xué)生團(tuán)隊(duì)。

(2)優(yōu)秀學(xué)生培訓(xùn)。學(xué)校有針對(duì)地對(duì)在校內(nèi)選拔的優(yōu)秀創(chuàng)新人才進(jìn)行集中培訓(xùn)和實(shí)訓(xùn),從實(shí)際出發(fā),以學(xué)校培養(yǎng)創(chuàng)新性人才的目標(biāo)為指導(dǎo)思想。在數(shù)學(xué)建模過(guò)程中,邀請(qǐng)往屆參賽得獎(jiǎng)的學(xué)生進(jìn)行交流,介紹經(jīng)驗(yàn)。教師帶領(lǐng)學(xué)生觀摩其他學(xué)校的數(shù)學(xué)建模培養(yǎng)方式,促進(jìn)大學(xué)生中優(yōu)秀人才的脫穎而出、健康快速成長(zhǎng),加強(qiáng)各高校之間以及高校與企業(yè)之間的研究,讓大學(xué)生從中獲得知識(shí),并讓學(xué)生有競(jìng)爭(zhēng)意識(shí)。學(xué)院設(shè)立數(shù)學(xué)建模暑期培訓(xùn),主要涉及有建模所需數(shù)學(xué)知識(shí)講解、建模案例分析、建模案例練習(xí)、全國(guó)大學(xué)生優(yōu)秀作品分析、最終的建模考試檢測(cè)。

(3)基于理論方法和具體實(shí)戰(zhàn)的培訓(xùn)。理論課方面,主要介紹數(shù)學(xué)建?;舅枷搿⒊S媒7椒?,以及較為經(jīng)典的建模案例。在教學(xué)方法上,教師可以采用啟發(fā)式教學(xué),引領(lǐng)學(xué)生參與建模的全過(guò)程,使學(xué)生領(lǐng)悟數(shù)學(xué)建模的精髓,激發(fā)對(duì)數(shù)學(xué)建模的興趣。實(shí)驗(yàn)課方面,為提高學(xué)生分析解決問(wèn)題、設(shè)計(jì)實(shí)現(xiàn)算法的能力,介紹主要軟件(matlab、spss、r和python)及其軟件包,教學(xué)生直接利用軟件編程求解一些簡(jiǎn)單的數(shù)學(xué)模型。實(shí)驗(yàn)課中,教師給出建模案例,讓學(xué)生練習(xí),包括(分析問(wèn)題、提出假設(shè)、建立模型、算法設(shè)計(jì)、實(shí)驗(yàn)操作、結(jié)果檢驗(yàn)、撰寫(xiě)論文),最后帶領(lǐng)學(xué)生參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽。英語(yǔ)基礎(chǔ)比較好的學(xué)生可以參加美國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽。

四、結(jié)束語(yǔ)。

創(chuàng)新人才的培養(yǎng)是時(shí)代發(fā)展的需要,是時(shí)代對(duì)教育提出的新要求。數(shù)學(xué)建模競(jìng)賽對(duì)大學(xué)生的實(shí)踐創(chuàng)新能力十分有效,因此學(xué)校改變傳統(tǒng)數(shù)學(xué)方式的局限性,要結(jié)合最新的科學(xué)前沿問(wèn)題,通過(guò)課堂數(shù)學(xué)教學(xué)、課外活動(dòng)將數(shù)學(xué)建模融入學(xué)生的認(rèn)知當(dāng)中,通過(guò)數(shù)學(xué)建模思想的培養(yǎng),提高當(dāng)代大學(xué)生的創(chuàng)造性思維能力,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識(shí)的能力、分析解決問(wèn)題的能力以及交流與合作的能力。

參考文獻(xiàn):

[1]楊艷琦.基于數(shù)學(xué)建模培訓(xùn)大學(xué)生創(chuàng)新能力[j].產(chǎn)業(yè)與科技論壇,20xx。

[4]姜啟源,謝金星.數(shù)學(xué)模型(第三版)[m].北京:高等教育出版社,20xx。

數(shù)學(xué)竟賽建模論文篇十三

1培養(yǎng)創(chuàng)造性思維學(xué)生在學(xué)習(xí)數(shù)學(xué)知識(shí)的過(guò)程中,雖然其接受的知識(shí)和經(jīng)驗(yàn)是前人研究和發(fā)現(xiàn)的成果,但對(duì)于學(xué)生來(lái)說(shuō),其處于知識(shí)再發(fā)現(xiàn)的地位。教師向?qū)W生教授數(shù)學(xué)發(fā)現(xiàn)的思維和方法,換言之就是重點(diǎn)引導(dǎo)學(xué)生重溫?cái)?shù)學(xué)經(jīng)驗(yàn)和知識(shí)的研究道路,進(jìn)而保證學(xué)生的再發(fā)現(xiàn)能夠順利實(shí)現(xiàn)。這也是培養(yǎng)學(xué)生創(chuàng)新思維和能力的一個(gè)重要途徑。利用數(shù)學(xué)建模能夠有效地彌補(bǔ)數(shù)學(xué)教學(xué)過(guò)程中存在的缺陷,使學(xué)生充分體會(huì)到數(shù)學(xué)發(fā)現(xiàn)過(guò)程中的樂(lè)趣,進(jìn)而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和積極性,培養(yǎng)其創(chuàng)造性思維。

2選擇經(jīng)典案例開(kāi)展數(shù)學(xué)建模討論、分析教師在實(shí)際的數(shù)學(xué)課堂教學(xué)中,可選擇一些社會(huì)實(shí)際案例為講授分析的主要對(duì)象,如實(shí)際生活和高科技的熱點(diǎn)話題。教師可對(duì)此類(lèi)實(shí)例進(jìn)行必要的分析與講解,在此過(guò)程中,積極引導(dǎo)學(xué)生獨(dú)立鉆研和研究問(wèn)題,并培養(yǎng)學(xué)生主動(dòng)查閱相關(guān)資料、自主討論的能力。與此同時(shí),教師還要及時(shí)與學(xué)生進(jìn)行交流,答疑釋難,并要求學(xué)生在自己實(shí)際能力的基礎(chǔ)上構(gòu)建恰當(dāng)?shù)哪P?,由易到難,循序漸進(jìn)。除此之外,還要使學(xué)生充分發(fā)揮其主觀能動(dòng)性,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,思考問(wèn)題以及處理問(wèn)題的能力。以微積分方程為例,教師在課堂教學(xué)中,可以“經(jīng)濟(jì)增長(zhǎng)”作為主要案例,向?qū)W生系統(tǒng)地闡述微積分方程的實(shí)際應(yīng)用過(guò)程,進(jìn)一步加深學(xué)生對(duì)知識(shí)的理解、掌握和應(yīng)用。

3同時(shí)開(kāi)設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程在職業(yè)院校數(shù)學(xué)教學(xué)過(guò)程中,同時(shí)開(kāi)設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程,能夠有效提高學(xué)生對(duì)基礎(chǔ)知識(shí)的理解能力和掌握程度,促進(jìn)學(xué)生實(shí)踐動(dòng)手能力的培養(yǎng)。在數(shù)學(xué)建模課程的開(kāi)設(shè)中,應(yīng)該在教師的指導(dǎo)下,充分利用教學(xué)軟件,引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)和計(jì)算,加深學(xué)生對(duì)知識(shí)的掌握。在此過(guò)程中,使學(xué)生充分了解到運(yùn)用數(shù)學(xué)理論和方法去分析和解決實(shí)際問(wèn)題的全過(guò)程,進(jìn)一步提高學(xué)生的積極性和思維意識(shí)能力,使他們意識(shí)到數(shù)學(xué)在實(shí)際生活應(yīng)用中的關(guān)鍵作用。同時(shí),促使學(xué)生將計(jì)算機(jī)技術(shù)融入數(shù)學(xué)學(xué)習(xí)中去,以現(xiàn)代化的高新科技為媒介,著手實(shí)際社會(huì)問(wèn)題的解決。

4創(chuàng)新教學(xué)模式根據(jù)職業(yè)院校學(xué)生學(xué)習(xí)的特點(diǎn)和知識(shí)水平,重點(diǎn)提高學(xué)生運(yùn)用數(shù)學(xué)的技能和思維方式來(lái)處理實(shí)際生活和專(zhuān)業(yè)問(wèn)題的能力。要想從根本上培養(yǎng)學(xué)生的創(chuàng)新能力,一定要改變?cè)瓉?lái)單一固定的教學(xué)模式,嘗試和探索基于學(xué)生實(shí)際情況的教學(xué)措施和方式。經(jīng)過(guò)長(zhǎng)期的實(shí)踐經(jīng)驗(yàn)研究,討論式教學(xué)和雙向教學(xué)方式對(duì)培養(yǎng)學(xué)生的能力非常有效。這兩種教學(xué)模式能夠加深學(xué)生參與課堂教學(xué)的程度,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的'主動(dòng)性,最終達(dá)到提高教學(xué)效率的目的。所以,數(shù)學(xué)建模可以以具體問(wèn)題為媒介,采用小組集體討論解決問(wèn)題的方法,培養(yǎng)學(xué)生的創(chuàng)新能力和意識(shí),進(jìn)一步加快職業(yè)技術(shù)院校數(shù)學(xué)教學(xué)模式的創(chuàng)新。

5組建數(shù)學(xué)建模團(tuán)隊(duì)在實(shí)際的數(shù)學(xué)教學(xué)中,教師可引導(dǎo)學(xué)生構(gòu)建數(shù)學(xué)建模團(tuán)隊(duì)。在教師對(duì)數(shù)學(xué)建模的深入分析為基礎(chǔ),充分調(diào)動(dòng)學(xué)生參與問(wèn)題解決的主動(dòng)性,師生積極互動(dòng),最終完成數(shù)學(xué)建模。如此一來(lái),不僅能夠有效培養(yǎng)學(xué)生積極進(jìn)取的良好學(xué)習(xí)態(tài)度,而且還能夠促進(jìn)學(xué)生數(shù)學(xué)邏輯思維能力的提高。

6搭建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺(tái)在職業(yè)技術(shù)院校中構(gòu)建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺(tái),積極宣傳與數(shù)學(xué)建模有關(guān)的知識(shí)經(jīng)驗(yàn),為學(xué)生主動(dòng)獲取數(shù)學(xué)建模信息提供各種數(shù)據(jù)資料。數(shù)學(xué)建模網(wǎng)絡(luò)平臺(tái)的搭建,能夠有效促進(jìn)教師和學(xué)生,學(xué)生與學(xué)生之間的交流與溝通,大大縮短學(xué)生和數(shù)學(xué)建模之間的距離,進(jìn)而促進(jìn)學(xué)生自主學(xué)習(xí)能力的提高和培養(yǎng)。

總而言之,數(shù)學(xué)建模思想是學(xué)生將基礎(chǔ)理論知識(shí)與實(shí)際解決問(wèn)題的方法相結(jié)合的最佳途徑。將數(shù)學(xué)建模融入職業(yè)院校數(shù)學(xué)中,全面培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和數(shù)學(xué)應(yīng)用能力,進(jìn)一步使數(shù)學(xué)為達(dá)成學(xué)院的教學(xué)和培養(yǎng)計(jì)劃奠定基礎(chǔ),為培養(yǎng)更多更優(yōu)秀的現(xiàn)代化社會(huì)人才服務(wù)。

數(shù)學(xué)竟賽建模論文篇十四

信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問(wèn)題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識(shí),學(xué)會(huì)創(chuàng)造性地解決問(wèn)題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識(shí)很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)將現(xiàn)實(shí)問(wèn)題化為數(shù)學(xué)問(wèn)題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對(duì)解決現(xiàn)實(shí)問(wèn)題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識(shí)為宗旨的教育改革需要。

大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對(duì)數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問(wèn)題,更是缺乏將數(shù)學(xué)應(yīng)用于專(zhuān)業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識(shí)為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過(guò)程中引導(dǎo)學(xué)生將數(shù)學(xué)知識(shí)內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過(guò)程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。

2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對(duì)數(shù)學(xué)本原知識(shí)的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對(duì)提高學(xué)生創(chuàng)新能力和對(duì)數(shù)學(xué)教育改革的重要意義,探索開(kāi)展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。

2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對(duì)課程體系進(jìn)行調(diào)整,在問(wèn)題解決過(guò)程中安排需要融入的知識(shí)體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對(duì)學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識(shí)應(yīng)用于工程問(wèn)題的創(chuàng)新能力。

2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評(píng)價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開(kāi)展融入式教學(xué)的實(shí)驗(yàn)班級(jí),對(duì)數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺(jué)思維深入理解背景知識(shí)、符號(hào)翻譯開(kāi)展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對(duì)實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對(duì)策。

3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過(guò)程中著力于對(duì)學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí),而對(duì)應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識(shí)則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識(shí),仍難以學(xué)會(huì)用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問(wèn)題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。

這樣,在解決實(shí)際問(wèn)題的時(shí)候,學(xué)生就會(huì)有意識(shí)地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識(shí)的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語(yǔ)數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動(dòng)大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對(duì)相關(guān)知識(shí)的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識(shí)與創(chuàng)新能力。

此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問(wèn)題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問(wèn)題,仍將有待于更深入的研究。

數(shù)學(xué)竟賽建模論文篇十五

在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對(duì)大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識(shí)的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的培養(yǎng)。

數(shù)學(xué)知識(shí)來(lái)源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識(shí)中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力十分重要,在傳授知識(shí)的過(guò)程中幫助學(xué)生利用所學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會(huì)公式的應(yīng)用過(guò)程,逐漸掌握解題技巧。

因此,如何能夠在傳授知識(shí)的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識(shí)應(yīng)用到實(shí)踐中來(lái)解決數(shù)學(xué)問(wèn)題是一個(gè)首要問(wèn)題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專(zhuān)業(yè)水平。

在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識(shí)。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識(shí)實(shí)際學(xué)習(xí)情況,有針對(duì)性地整合數(shù)學(xué)知識(shí),了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:

(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)。

閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識(shí)理論性較強(qiáng),知識(shí)較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識(shí)后,可以引入椅子的穩(wěn)定問(wèn)題,創(chuàng)建數(shù)學(xué)模型,提問(wèn)學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問(wèn)題同所學(xué)知識(shí)相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問(wèn)題。學(xué)生整合所學(xué)知識(shí),通過(guò)對(duì)問(wèn)題的分析,可以了解到利用介值定理來(lái)解決問(wèn)題。通過(guò)建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識(shí)學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。

(二)定積分。

定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問(wèn)題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來(lái)堆放煤矸石,根據(jù)上級(jí)主管部門(mén)的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識(shí)點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開(kāi)采量來(lái)堆放煤矸石。通過(guò)數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會(huì)大大提升。

(三)最值問(wèn)題。

在高等數(shù)學(xué)中,最值問(wèn)題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識(shí)可以解決實(shí)際生活中的最值問(wèn)題,這就需要提高對(duì)導(dǎo)數(shù)知識(shí)實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識(shí)后,通過(guò)建立關(guān)于天空的采空模型,提問(wèn)學(xué)生為什么雨后太陽(yáng)出來(lái)了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問(wèn)彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對(duì)此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過(guò)分析可以得出,雨滴可以反射太陽(yáng)光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識(shí)來(lái)計(jì)算得出太陽(yáng)光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問(wèn)題,加深對(duì)知識(shí)的理解和記憶,提升數(shù)學(xué)知識(shí)學(xué)習(xí)成效。

(四)微分方程。

微分方程知識(shí)同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問(wèn)題。這就需要學(xué)生在了解微分方程知識(shí)的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來(lái)解決問(wèn)題。如,在當(dāng)前社會(huì)進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問(wèn)題之一,受到社會(huì)各界廣泛的關(guān)注和重視。通過(guò)問(wèn)題精簡(jiǎn)化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹(shù)立正確的減肥理念。

(五)矩陣。

在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問(wèn)題之前,應(yīng)該根據(jù)知識(shí)點(diǎn)來(lái)創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過(guò)引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對(duì)矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識(shí)。

綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過(guò)數(shù)學(xué)建模思想來(lái)引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問(wèn)題的能力,將所學(xué)知識(shí)靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。

數(shù)學(xué)竟賽建模論文篇十六

對(duì)于高職院校的學(xué)生來(lái)講,數(shù)學(xué)在其教學(xué)過(guò)程中起著基礎(chǔ)性的作用,對(duì)于學(xué)生后續(xù)的學(xué)習(xí)相當(dāng)關(guān)鍵。但是從現(xiàn)階段高職院校數(shù)學(xué)教學(xué)的基本情況來(lái)看,數(shù)學(xué)教師的教學(xué)方法以及教學(xué)策略都相當(dāng)落后,對(duì)于學(xué)生數(shù)學(xué)興趣的提升造成了不同程度的影響。在這樣的背景下,相關(guān)專(zhuān)家提出了數(shù)學(xué)建模的方式,希望以此提升高職院校高等數(shù)學(xué)的教學(xué)效率。本文結(jié)合數(shù)學(xué)建模在高職高專(zhuān)人才培養(yǎng)當(dāng)中的意義和作用入手,對(duì)于其中的應(yīng)用策略進(jìn)行全面的分析,希望為相關(guān)單位提供一個(gè)全面的參考。

隨著我國(guó)社會(huì)的發(fā)展,經(jīng)濟(jì)產(chǎn)業(yè)結(jié)構(gòu)日益升級(jí),因此高等院校的人才需求日益擴(kuò)大,對(duì)于高職教育的發(fā)展提供了前所未有的契機(jī)。在這樣的背景下,從數(shù)學(xué)建模入手,將其思想融入到高等教育的數(shù)學(xué)教學(xué)當(dāng)中,對(duì)于其中的策略和方法進(jìn)行全面的研究應(yīng)該是一項(xiàng)具有普遍現(xiàn)實(shí)意義的工作。

從近些年的發(fā)展來(lái)看,參加過(guò)數(shù)學(xué)競(jìng)賽的學(xué)生在科研能力等方面都具有比其他同學(xué)更強(qiáng)的優(yōu)勢(shì),因此數(shù)學(xué)建模在提升學(xué)生創(chuàng)新能力、提高學(xué)生知識(shí)水平以及調(diào)動(dòng)學(xué)生的.學(xué)習(xí)興趣都具有十分重要的意義。比如在解決實(shí)際問(wèn)題的時(shí)候,數(shù)學(xué)建模通過(guò)利用各種技巧,可以使得學(xué)生分析問(wèn)題、創(chuàng)造能力得以全面的提升,進(jìn)而使得學(xué)生在摒棄原始思考問(wèn)題方式的基礎(chǔ)上,敢于向傳統(tǒng)的知識(shí)發(fā)出挑戰(zhàn),對(duì)于學(xué)生的綜合能力的全面提升相當(dāng)關(guān)鍵。其次,數(shù)學(xué)知識(shí)本就源于生活,因此在建模的基礎(chǔ)上學(xué)生就可以帶著問(wèn)題去思考,這對(duì)于數(shù)學(xué)知識(shí)整體性的發(fā)揮以及解決問(wèn)題能力的提升都具有十分重要的意義。最后,面對(duì)傳統(tǒng)數(shù)學(xué)的解決方式,很多學(xué)生望而生畏,因此主動(dòng)分析問(wèn)題的欲望就會(huì)受到遏制。在這樣的背景下,通過(guò)數(shù)學(xué)建模方式,學(xué)生會(huì)發(fā)現(xiàn)數(shù)學(xué)方法的靈活性,進(jìn)而使得他們解決問(wèn)題的能力得以全面的提升。

3.1制定切實(shí)可行的教學(xué)大綱,從而使得教學(xué)進(jìn)度得以保障。教學(xué)大綱在高職教學(xué)當(dāng)中起著十分重要的作用,這對(duì)于教學(xué)內(nèi)容的合理性以及提升學(xué)生學(xué)習(xí)的針對(duì)性都具有十分重要的意義[1]。比如在教學(xué)高等數(shù)學(xué)(一)的選修模塊時(shí),教學(xué)大綱的制定應(yīng)該結(jié)合學(xué)生的專(zhuān)業(yè),從而使得學(xué)生的數(shù)學(xué)學(xué)習(xí)真正取得實(shí)效。比如可以為理工類(lèi)的學(xué)生選擇無(wú)窮級(jí)數(shù)以及傅里葉變換的內(nèi)容;機(jī)械類(lèi)的學(xué)生選擇線性代數(shù)以及解析幾何作為教學(xué)內(nèi)容,從而使得學(xué)生的綜合能力得以全面的提升。3.2開(kāi)展“三段式”的教學(xué)模式。數(shù)學(xué)建模在以解決實(shí)際問(wèn)題為核心的過(guò)程中,使得學(xué)生分析問(wèn)題以及組織問(wèn)題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學(xué)模式分割開(kāi)來(lái),這就需要相關(guān)部門(mén)開(kāi)展“三段式”的教學(xué)模式,使得學(xué)生的數(shù)學(xué)興趣得以全面的提升。其中,第一段需要還原數(shù)學(xué)知識(shí)的原創(chuàng)過(guò)程,使得學(xué)生明確數(shù)學(xué)知識(shí)的產(chǎn)生過(guò)程,進(jìn)而讓學(xué)生從生活案例當(dāng)中發(fā)現(xiàn)數(shù)學(xué)的價(jià)值,比如知道極限是由人影的長(zhǎng)度變化引起的,導(dǎo)數(shù)是由于駕車(chē)的速度引入的,使得學(xué)生發(fā)現(xiàn)知識(shí)的價(jià)值,進(jìn)而就會(huì)大大提升自己的學(xué)習(xí)興趣和探究意識(shí)。第二段:講解數(shù)學(xué)知識(shí)。數(shù)學(xué)建模是在實(shí)際問(wèn)題當(dāng)中引入的,因此要通過(guò)具體數(shù)學(xué)知識(shí)的講解使得學(xué)生明確數(shù)學(xué)建模的真正價(jià)值,比如在講解微積分的過(guò)程中,可以以“極限-微分-積分”為主線,使得學(xué)生對(duì)于數(shù)學(xué)的分析能力真正得以提升[2]。然后在為學(xué)生積極引入大量數(shù)學(xué)圖表的基礎(chǔ)上,為增強(qiáng)學(xué)生的感性認(rèn)識(shí),進(jìn)而提升學(xué)生的綜合能力奠定堅(jiān)實(shí)的基礎(chǔ)。第三段:數(shù)學(xué)知識(shí)的運(yùn)用。隨著社會(huì)的發(fā)展,數(shù)學(xué)的應(yīng)用在各行各業(yè)都發(fā)揮出巨大的作用,因此對(duì)于高等數(shù)學(xué)在實(shí)際生活當(dāng)中發(fā)揮出來(lái)的作用進(jìn)行全面的探究是實(shí)現(xiàn)這種知識(shí)價(jià)值的真正途徑。在這樣的背景下,高等數(shù)學(xué)教師要將每個(gè)知識(shí)點(diǎn)的運(yùn)用真正灌輸給學(xué)生,比如指數(shù)增長(zhǎng)在銀行計(jì)息當(dāng)中的應(yīng)用、定積分在學(xué)習(xí)曲線當(dāng)中的應(yīng)用、再生資源在數(shù)學(xué)開(kāi)發(fā)以及管理當(dāng)中的應(yīng)用等等。從而使得學(xué)生數(shù)學(xué)學(xué)習(xí)中的創(chuàng)新意識(shí)以及應(yīng)用能力得以全面的提升。3.3開(kāi)設(shè)數(shù)學(xué)實(shí)驗(yàn),提升學(xué)生的綜合素質(zhì)。數(shù)學(xué)建模為學(xué)生提供了一種真正的“數(shù)學(xué)實(shí)驗(yàn)”,在這種實(shí)驗(yàn)的過(guò)程中,學(xué)生對(duì)于數(shù)學(xué)知識(shí)的發(fā)展以及由來(lái)過(guò)程都會(huì)得到進(jìn)行全面的考慮,這對(duì)于他們數(shù)學(xué)探索意識(shí)的提升具有十分重要的意義。另外,在計(jì)算機(jī)輔助實(shí)驗(yàn)的過(guò)程中,學(xué)生的動(dòng)腦能力也會(huì)得到全面的提升,這對(duì)于學(xué)生主動(dòng)的學(xué)習(xí)數(shù)學(xué)相當(dāng)關(guān)鍵。因此在教學(xué)過(guò)程中,教師要積極利用這種方式對(duì)于學(xué)生進(jìn)行全面的培養(yǎng)。

總之,隨著我國(guó)經(jīng)濟(jì)水平的不斷提升,社會(huì)對(duì)于高職院校的重視力度日益提升,因此對(duì)于高職院校當(dāng)中數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)當(dāng)中的應(yīng)用進(jìn)行全面的分析是實(shí)現(xiàn)學(xué)生綜合素質(zhì)得以全面提升的關(guān)鍵措施,這對(duì)于學(xué)生的長(zhǎng)遠(yuǎn)發(fā)展也相當(dāng)關(guān)鍵,相關(guān)教育工作者要加大在這方面的研究力度,力求將高職院校的學(xué)生培養(yǎng)成為新時(shí)代所需要的人才。

[1]吳健輝,黃志堅(jiān),汪龍虎.對(duì)數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中的探討[j].景德鎮(zhèn)高專(zhuān)學(xué)報(bào),20xx,(4).

[2]張卓飛.將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)的探討[j].湘潭師范學(xué)院學(xué)報(bào)(自然科學(xué)版),20xx,(1).

數(shù)學(xué)竟賽建模論文篇十七

摘要:數(shù)學(xué)作為很多學(xué)科的計(jì)算工具,可以說(shuō)是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點(diǎn)的基礎(chǔ)上,從計(jì)算機(jī)軟件、實(shí)際生活中的應(yīng)用等方面,對(duì)其應(yīng)用的發(fā)展進(jìn)行了分析,最后從分析問(wèn)題、建立模型、校驗(yàn)?zāi)P腿齻€(gè)階段,對(duì)數(shù)學(xué)建模的方法,進(jìn)行了深入的研究。

引言。

隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來(lái)解決實(shí)際問(wèn)題,越來(lái)越受到人們的重視,數(shù)學(xué)作為一門(mén)歷史悠久的自然科學(xué),是在實(shí)際應(yīng)用的基礎(chǔ)上發(fā)展起來(lái),但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進(jìn),很多理論都無(wú)法付諸實(shí)踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來(lái)解決實(shí)際問(wèn)題,成為了很多專(zhuān)家和學(xué)者研究的問(wèn)題。通過(guò)實(shí)際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實(shí)際的問(wèn)題轉(zhuǎn)化成數(shù)學(xué)符號(hào)的表達(dá)方式,這樣才能夠通過(guò)數(shù)學(xué)計(jì)算,來(lái)解決一些實(shí)際問(wèn)題,從某種意義上來(lái)說(shuō),計(jì)算機(jī)就是由若干個(gè)數(shù)學(xué)模型組成的,計(jì)算機(jī)軟件之所以能夠解決實(shí)際問(wèn)題,就是根據(jù)實(shí)際應(yīng)用的需要,建立了一個(gè)相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計(jì)算機(jī)來(lái)解決。

數(shù)學(xué)是一門(mén)歷史悠久的自然科學(xué),在古時(shí)候,由于實(shí)際應(yīng)用的需要,人們就已經(jīng)開(kāi)始使用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,但是受到當(dāng)時(shí)技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來(lái)進(jìn)行計(jì)數(shù)等,隨著經(jīng)濟(jì)和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對(duì)于利用自然科學(xué)來(lái)解決實(shí)際問(wèn)題,也成為了人們研究的重點(diǎn),在市場(chǎng)經(jīng)濟(jì)的推動(dòng)下,人們將這些理論知識(shí)轉(zhuǎn)化成為產(chǎn)品。計(jì)算機(jī)就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進(jìn)制相結(jié)合,這樣就能夠讓計(jì)算機(jī)來(lái)處理實(shí)際問(wèn)題,從本質(zhì)上來(lái)說(shuō),這就是數(shù)學(xué)建模思想的范疇,但是在計(jì)算機(jī)出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒(méi)有形成,隨著計(jì)算機(jī)軟件技術(shù)的發(fā)展,人們逐漸的意識(shí)到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實(shí)際的問(wèn)題,而數(shù)學(xué)建模的概念,就是將遇到的實(shí)際問(wèn)題,利用特定的數(shù)學(xué)符號(hào)進(jìn)行描述,這樣實(shí)際問(wèn)題就轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,可以利用數(shù)學(xué)的計(jì)算方法來(lái)解決。

如何解決實(shí)際問(wèn)題,從有人類(lèi)文明開(kāi)始,就成為了人們研究的重點(diǎn),隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實(shí)際問(wèn)題,而數(shù)學(xué)就是其中最重要的一門(mén)學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個(gè)計(jì)算的工具,由此可以看出數(shù)學(xué)的重要性,進(jìn)入到信息時(shí)代后,計(jì)算機(jī)得到了普及應(yīng)用,無(wú)論是日常生活中還是工作中,計(jì)算機(jī)都有非常重要的應(yīng)用,而在信息時(shí)代,注重的是解決問(wèn)題的效率。與其他解決問(wèn)題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門(mén)獨(dú)立的學(xué)科,很多高校中都開(kāi)設(shè)了這門(mén)課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實(shí)際問(wèn)題的能力,我國(guó)每年都會(huì)舉辦全國(guó)性的數(shù)學(xué)建模大賽,采用開(kāi)放式的參賽方式,對(duì)學(xué)生們的數(shù)學(xué)建模能力進(jìn)行考驗(yàn),而大賽的題目,很多都是一些實(shí)際問(wèn)題,對(duì)于比賽的結(jié)果,每個(gè)參賽隊(duì)伍的建模方式都有一定的差異,其中選出一個(gè)最有效的方式成為冠軍。由此可以看出,對(duì)于一個(gè)實(shí)際的問(wèn)題,可以建立多個(gè)數(shù)學(xué)模型進(jìn)行解決,但是執(zhí)行的效率具有一定的差異,如有些計(jì)算的步驟較少,而有些計(jì)算的過(guò)程比較簡(jiǎn)單,而如何評(píng)價(jià)一個(gè)模型的效率,必須從各個(gè)方面進(jìn)行綜合的考慮。

2.1計(jì)算機(jī)軟件中數(shù)學(xué)建模思想的應(yīng)用。

通過(guò)深入的分析可以知道,計(jì)算機(jī)之所以能夠解決實(shí)際問(wèn)題,很大程度上依賴(lài)與計(jì)算機(jī)軟件,而計(jì)算機(jī)軟件自身就是一個(gè)或幾個(gè)數(shù)學(xué)模型,在軟件開(kāi)發(fā)的過(guò)程中,首先要進(jìn)行需求的分析,這其實(shí)就是數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),對(duì)問(wèn)題進(jìn)行分析,在了解到問(wèn)題之后,就要通過(guò)計(jì)算機(jī)語(yǔ)言,對(duì)問(wèn)題進(jìn)行描述,而計(jì)算機(jī)語(yǔ)言是人與計(jì)算機(jī)進(jìn)行溝通的語(yǔ)言,最終這些語(yǔ)言都要轉(zhuǎn)化成0和1二進(jìn)制的方式,這樣計(jì)算機(jī)才能夠進(jìn)行具體的計(jì)算。由此可以看出,計(jì)算機(jī)就是依靠數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,而每個(gè)計(jì)算機(jī)軟件,都可以認(rèn)為是一個(gè)數(shù)學(xué)模型,如在早期的計(jì)算機(jī)程序設(shè)計(jì)中,受到當(dāng)時(shí)計(jì)算機(jī)技術(shù)水平的限制,采用的還是低級(jí)語(yǔ)言,由于低級(jí)語(yǔ)言人們很難理解,因此在程序編寫(xiě)之前,都會(huì)先建立一個(gè)數(shù)學(xué)模型,然后將這個(gè)模型轉(zhuǎn)化成相應(yīng)的計(jì)算機(jī)語(yǔ)言,這樣計(jì)算機(jī)就可以解決實(shí)際的問(wèn)題,由于計(jì)算機(jī)能夠自行計(jì)算的特點(diǎn),只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計(jì)算。

經(jīng)過(guò)了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國(guó)的數(shù)學(xué)建模人才,從1992年開(kāi)始,每年我國(guó)都會(huì)舉辦一屆全國(guó)數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開(kāi)放性的參賽方式,通常情況下,對(duì)于題目設(shè)置的也比較靈活,會(huì)有多個(gè)題目提供給隊(duì)員選擇,學(xué)生可以根據(jù)自己的實(shí)際情況,來(lái)選擇一個(gè)最適合自己的問(wèn)題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來(lái)解決實(shí)際問(wèn)題,在學(xué)習(xí)數(shù)學(xué)知識(shí)的過(guò)程中,很多學(xué)生會(huì)認(rèn)為,數(shù)學(xué)與實(shí)踐的距離很遠(yuǎn),學(xué)習(xí)的都是純理論的知識(shí),學(xué)習(xí)的興趣很低,與一些實(shí)踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專(zhuān)業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來(lái)解決復(fù)雜的問(wèn)題。受到特殊的歷史因素影響,我國(guó)自然科學(xué)發(fā)展的起步較晚,在建國(guó)后經(jīng)歷了很長(zhǎng)一段時(shí)間封,閉發(fā)展,與西方發(fā)達(dá)國(guó)家之間的交流比較少,因此對(duì)于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時(shí)間比較短,導(dǎo)致目前我國(guó)很少會(huì)利用數(shù)學(xué)建模來(lái)解決實(shí)際問(wèn)題,相比之下,發(fā)達(dá)國(guó)家在很多領(lǐng)域中,經(jīng)常會(huì)用到數(shù)學(xué)建模的知識(shí),如在企業(yè)日常運(yùn)營(yíng)中,需要進(jìn)行市場(chǎng)調(diào)研等工作,而對(duì)于這些調(diào)研工作的處理,在進(jìn)行之前都會(huì)建立一個(gè)數(shù)學(xué)模型,然后按照這個(gè)建立的模型來(lái)處理。

從本質(zhì)上來(lái)說(shuō),數(shù)學(xué)是在實(shí)際應(yīng)用的基礎(chǔ)上,逐漸形成的一門(mén)學(xué)科,但是受到當(dāng)時(shí)技術(shù)水平的限制,雖然人們已經(jīng)懂得去計(jì)算,卻并知道自己使用的是數(shù)學(xué)知識(shí),隨著自然科學(xué)的發(fā)展,對(duì)數(shù)學(xué)的應(yīng)用越來(lái)越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠(yuǎn)遠(yuǎn)超過(guò)了實(shí)際應(yīng)用的范圍,同時(shí)隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計(jì)算的工具,因此數(shù)學(xué)應(yīng)用的第一個(gè)階段中,主要是作為一種工具。隨著電子計(jì)算機(jī)的出現(xiàn),對(duì)數(shù)學(xué)的應(yīng)用達(dá)到了一個(gè)極限,人們?cè)跀?shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動(dòng)計(jì)算的機(jī)器,在計(jì)算機(jī)出現(xiàn)的早期,受到性能和體積上的限制,只能進(jìn)行一些簡(jiǎn)單的數(shù)學(xué)計(jì)算,還不能解決實(shí)際的問(wèn)題,但是計(jì)算機(jī)語(yǔ)言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計(jì)算的基礎(chǔ)上,能夠解決很多問(wèn)題,而軟件程序的開(kāi)發(fā),其實(shí)就是建立數(shù)學(xué)模型的過(guò)程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計(jì)算機(jī)等電子設(shè)備的方式,來(lái)解決實(shí)際的問(wèn)題。

3.1分析問(wèn)題。

數(shù)學(xué)模型的應(yīng)用都是為了解決實(shí)際問(wèn)題,雖然很多問(wèn)題都可以通過(guò)建模的方式來(lái)解決,但是并不是所有的問(wèn)題,因此在遇到實(shí)際問(wèn)題時(shí),首先要對(duì)問(wèn)題進(jìn)行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號(hào),如果能夠直接用數(shù)學(xué)語(yǔ)言來(lái)進(jìn)行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過(guò)實(shí)際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟(jì)和科技的發(fā)展,遇到的問(wèn)題越來(lái)越復(fù)雜,其中很多都無(wú)法直接用數(shù)學(xué)語(yǔ)言來(lái)描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問(wèn)題作為數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),也是最重要的一個(gè)環(huán)節(jié),如果問(wèn)題分析的不夠具體,那么將無(wú)法建立出數(shù)學(xué)模型,同時(shí)對(duì)數(shù)學(xué)模型的建立也具有非常重要的影響,通過(guò)實(shí)際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對(duì)問(wèn)題分析的比較徹底,甚至有些獨(dú)特的理解,只有這樣才能夠采用建立一個(gè)最簡(jiǎn)單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過(guò)程中,對(duì)于一個(gè)實(shí)際的問(wèn)題,經(jīng)常需要建立多個(gè)模型,這樣通過(guò)多個(gè)數(shù)學(xué)模型協(xié)同來(lái)解決一個(gè)問(wèn)題。

在分析實(shí)際問(wèn)題后,就要用數(shù)學(xué)符號(hào)來(lái)描述要解決的問(wèn)題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,無(wú)論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言,然后才能夠通過(guò)計(jì)算的方式解決,而數(shù)學(xué)模型的過(guò)程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達(dá)式,通常情況下,在分析問(wèn)題時(shí),都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個(gè)規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無(wú)法找到這個(gè)規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達(dá)式,最后解決相應(yīng)的問(wèn)題,由此可以看出,分析問(wèn)題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個(gè)規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識(shí)外,也可以結(jié)合其他學(xué)科的知識(shí),尤其是現(xiàn)在遇到的問(wèn)題越來(lái)越復(fù)雜,對(duì)于以往簡(jiǎn)單的問(wèn)題,只需要建立一個(gè)簡(jiǎn)單的模型即可解決,而現(xiàn)在復(fù)雜的問(wèn)題,經(jīng)常需要建立多個(gè)模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來(lái)越大,從近些年全國(guó)數(shù)學(xué)建模大賽的題目就可以看出,對(duì)于問(wèn)題的描述越來(lái)越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實(shí)際問(wèn)題的解決提供了良好的參考,目前我國(guó)對(duì)數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達(dá)國(guó)家相比,實(shí)踐的機(jī)會(huì)還比較少。

在數(shù)學(xué)模型建立之后,對(duì)于這個(gè)模型是否能夠解決實(shí)際問(wèn)題,具體的執(zhí)行效率如何,都需要進(jìn)行校驗(yàn),因此檢驗(yàn)是數(shù)學(xué)模型建立最后的一個(gè)環(huán)節(jié),也是非常重要的一個(gè)步驟,通常情況下,經(jīng)過(guò)校驗(yàn)都能夠發(fā)現(xiàn)模型中存在的一些問(wèn)題,從而進(jìn)行完善,這樣才能夠保證嚴(yán)謹(jǐn)性,在實(shí)際校驗(yàn)的過(guò)程中,要對(duì)數(shù)學(xué)模型的每個(gè)部分進(jìn)行驗(yàn)證,通過(guò)輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒(méi)有問(wèn)題,就說(shuō)明該模型可以解決實(shí)際問(wèn)題。除了檢驗(yàn)?zāi)P偷臏?zhǔn)確外,校驗(yàn)還有另外一個(gè)作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計(jì)算的整個(gè)過(guò)程,這時(shí)就可以對(duì)具體的細(xì)節(jié)進(jìn)行優(yōu)化,如哪部分可以減少計(jì)算的步驟,或者簡(jiǎn)化計(jì)算的方式等,這樣可以使整個(gè)模型更加科學(xué)、合理,由此可以看出,校驗(yàn)工作對(duì)于數(shù)學(xué)模型的建立,具有非常重要的意義。

4結(jié)語(yǔ)。

通過(guò)全文的分析可以知道,對(duì)于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開(kāi)始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計(jì)算機(jī)技術(shù)的發(fā)展,逐漸形成的一門(mén)學(xué)科,電子計(jì)算機(jī)的出現(xiàn),在很大程度上改變了處理事情的方式,利用計(jì)算機(jī)軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計(jì)算機(jī)的出現(xiàn),省略了中間的計(jì)算過(guò)程,因此計(jì)算機(jī)軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問(wèn)題,只要建立不同的模型,然后編寫(xiě)相應(yīng)的程序。

數(shù)學(xué)竟賽建模論文篇十八

數(shù)學(xué)建模隨著人類(lèi)的進(jìn)步,科技的發(fā)展和社會(huì)的日趨數(shù)字化,應(yīng)用領(lǐng)域越來(lái)越廣泛,人們身邊的數(shù)學(xué)內(nèi)容越來(lái)越豐富。強(qiáng)調(diào)數(shù)學(xué)應(yīng)用及培養(yǎng)應(yīng)用數(shù)學(xué)意識(shí)對(duì)推動(dòng)素質(zhì)教育的實(shí)施意義十分巨大。數(shù)學(xué)建模在數(shù)學(xué)教育中的地位被提到了新的高度,通過(guò)數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題,提高學(xué)生的綜合素質(zhì)。本文將結(jié)合數(shù)學(xué)應(yīng)用題的特點(diǎn),把怎樣利用數(shù)學(xué)建模解好數(shù)學(xué)應(yīng)用問(wèn)題進(jìn)行剖析,希望得到同仁的幫助和指正。

一、數(shù)學(xué)應(yīng)用題的特點(diǎn)。

我們常把來(lái)源于客觀世界的實(shí)際,具有實(shí)際意義或?qū)嶋H背景,要通過(guò)數(shù)學(xué)建模的方法將問(wèn)題轉(zhuǎn)化為數(shù)學(xué)形式表示,從而獲得解決的.一類(lèi)數(shù)學(xué)問(wèn)題叫做數(shù)學(xué)應(yīng)用題。數(shù)學(xué)應(yīng)用題具有如下特點(diǎn):

第一、數(shù)學(xué)應(yīng)用題的本身具有實(shí)際意義或?qū)嶋H背景。這里的實(shí)際是指生產(chǎn)實(shí)際、社會(huì)實(shí)際、生活實(shí)際等現(xiàn)實(shí)世界的各個(gè)方面的實(shí)際。如與課本知識(shí)密切聯(lián)系的源于實(shí)際生活的應(yīng)用題;與模向?qū)W科知識(shí)網(wǎng)絡(luò)交匯點(diǎn)有聯(lián)系的應(yīng)用題;與現(xiàn)代科技發(fā)展、社會(huì)市場(chǎng)經(jīng)濟(jì)、環(huán)境保護(hù)、實(shí)事政治等有關(guān)的應(yīng)用題等。

第二、數(shù)學(xué)應(yīng)用題的求解需要采用數(shù)學(xué)建模的方法,使所求問(wèn)題數(shù)學(xué)化,即將問(wèn)題轉(zhuǎn)化成數(shù)學(xué)形式來(lái)表示后再求解。

第三、數(shù)學(xué)應(yīng)用題涉及的知識(shí)點(diǎn)多。是對(duì)綜合運(yùn)用數(shù)學(xué)知識(shí)和方法解決實(shí)際問(wèn)題能力的檢驗(yàn),考查的是學(xué)生的綜合能力,涉及的知識(shí)點(diǎn)一般在三個(gè)以上,如果某一知識(shí)點(diǎn)掌握的不過(guò)關(guān),很難將問(wèn)題正確解答。

第一層次:直接建模。

根據(jù)題設(shè)條件,套用現(xiàn)成的數(shù)學(xué)公式、定理等數(shù)學(xué)模型,注解圖為:

第二層次:直接建模??衫矛F(xiàn)成的數(shù)學(xué)模型,但必須概括這個(gè)數(shù)學(xué)模型,對(duì)應(yīng)用題進(jìn)行分析,然后確定解題所需要的具體數(shù)學(xué)模型或數(shù)學(xué)模型中所需數(shù)學(xué)量需進(jìn)一步求出,然后才能使用現(xiàn)有數(shù)學(xué)模型。

第三層次:多重建模。對(duì)復(fù)雜的關(guān)系進(jìn)行提煉加工,忽略次要因素,建立若干個(gè)數(shù)學(xué)模型方能解決問(wèn)題。

第四層次:假設(shè)建模。要進(jìn)行分析、加工和作出假設(shè),然后才能建立數(shù)學(xué)模型。如研究十字路口車(chē)流量問(wèn)題,假設(shè)車(chē)流平穩(wěn),沒(méi)有突發(fā)事件等才能建模。

三、建立數(shù)學(xué)模型應(yīng)具備的能力。

從實(shí)際問(wèn)題中建立數(shù)學(xué)模型,解決數(shù)學(xué)問(wèn)題從而解決實(shí)際問(wèn)題,這一數(shù)學(xué)全過(guò)程的教學(xué)關(guān)鍵是建立數(shù)學(xué)模型,數(shù)學(xué)建模能力的強(qiáng)弱,直接關(guān)系到數(shù)學(xué)應(yīng)用題的解題質(zhì)量,同時(shí)也體現(xiàn)一個(gè)學(xué)生的綜合能力。

1提高分析、理解、閱讀能力。

2強(qiáng)化將文字語(yǔ)言敘述轉(zhuǎn)譯成數(shù)學(xué)符號(hào)語(yǔ)言的能力。

3增強(qiáng)選擇數(shù)學(xué)模型的能力。

4加強(qiáng)數(shù)學(xué)運(yùn)算能力。

數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過(guò)程,不重視計(jì)算過(guò)程的做法是不可取的。

【本文地址:http://mlvmservice.com/zuowen/19047265.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔