數(shù)學(xué)竟賽建模論文(實(shí)用20篇)

格式:DOC 上傳日期:2023-12-12 04:51:42
數(shù)學(xué)竟賽建模論文(實(shí)用20篇)
時間:2023-12-12 04:51:42     小編:翰墨

社會人際關(guān)系是指個體與他人之間在社會關(guān)系中的相互關(guān)系??偨Y(jié)能夠加強(qiáng)團(tuán)隊協(xié)作,促進(jìn)工作的不斷進(jìn)步。下面是一些總結(jié)的實(shí)例,希望能對大家提供寫作思路。

數(shù)學(xué)竟賽建模論文篇一

摘要:以文獻(xiàn)綜述法為主要策略,查閱知網(wǎng)和萬方數(shù)據(jù)庫中有關(guān)高職數(shù)學(xué)建模教學(xué)的相關(guān)文獻(xiàn),對高職數(shù)學(xué)建模教學(xué)現(xiàn)狀,存在問題以及優(yōu)化發(fā)展對策的文獻(xiàn)研究成果進(jìn)行梳理,通過研究綜述發(fā)現(xiàn):以建模思維構(gòu)建課堂情境已成為國內(nèi)眾多高職院校數(shù)學(xué)課程教學(xué)的重要方法,對數(shù)學(xué)教學(xué)效果的提升也起到了積極的作用,但在教學(xué)方法創(chuàng)新和學(xué)生有效引導(dǎo)等方面仍存在一些問題,希望各級高職院校能夠針對凸顯出的問題進(jìn)行有效整改。

關(guān)鍵詞:高職數(shù)學(xué);建模教學(xué);現(xiàn)狀與發(fā)展;綜述分析。

(一)數(shù)學(xué)模型。

數(shù)學(xué)模型是一種使用數(shù)學(xué)語言對現(xiàn)實(shí)問題的抽象化表達(dá)形式。它是人們用數(shù)學(xué)方法解決現(xiàn)實(shí)問題的工具,基于數(shù)學(xué)模型的現(xiàn)實(shí)問題表達(dá)往往有著量化的表現(xiàn)形式,再通過數(shù)學(xué)方法的推演和求解,將現(xiàn)實(shí)問題中蘊(yùn)含的數(shù)學(xué)含義表達(dá)出來。在數(shù)學(xué)、經(jīng)濟(jì)、物理等研究領(lǐng)域,有很多經(jīng)典的數(shù)學(xué)模型,例如:,馬爾薩斯人口增長理論模型、馬爾維次投資組合選擇模型等,這些數(shù)學(xué)模型的構(gòu)建幫助人們解決了很多現(xiàn)實(shí)的問題,提升了相關(guān)領(lǐng)域量化分析的精確度。

數(shù)學(xué)建模教學(xué)是一種基于數(shù)學(xué)模型的教學(xué)方法,在高職院校數(shù)學(xué)教學(xué)中被普遍應(yīng)用,具體來說數(shù)學(xué)建模教學(xué)的一般步驟為:

(1)模型理論依據(jù)分析。在教學(xué)中倘若需要以某一個知識點(diǎn)為基礎(chǔ)建設(shè)數(shù)學(xué)模型時,教師應(yīng)該以前人的研究成果為依據(jù),找尋模型建設(shè)的理論支撐點(diǎn),切忌假大空似的模型構(gòu)建思路。

(2)以教學(xué)內(nèi)容為基礎(chǔ)假設(shè)模型。根據(jù)教學(xué)內(nèi)容的需要,對待研究問題進(jìn)行模型化假設(shè),提出因變量、自變量等模型語言。

(3)建立模型。在假設(shè)的基礎(chǔ)上建立模型。

(4)解析模型。將待求解的數(shù)學(xué)數(shù)據(jù)代入模型進(jìn)行解析計算。

(5)模型應(yīng)用效果檢驗(yàn)。將模型解析的結(jié)果與實(shí)際情況進(jìn)行比較,以檢驗(yàn)?zāi)P徒馕龅臏?zhǔn)確性和實(shí)效性。

二、高職數(shù)學(xué)建模教學(xué)現(xiàn)狀與問題研究綜述。

(一)教學(xué)現(xiàn)狀綜述。

施寧清等人(20xx)采用試驗(yàn)法研究了建模教學(xué)在高職數(shù)學(xué)課程教學(xué)中的效果,試驗(yàn)的過程以對照班和實(shí)驗(yàn)班對比教學(xué)的形式展開,針對試驗(yàn)班的教學(xué)采用數(shù)學(xué)建模的方法,而對照班的教學(xué)則采用傳統(tǒng)的講授法展開,通過一段時間的教學(xué)實(shí)踐后設(shè)置評估變量對兩個班級學(xué)生的數(shù)學(xué)學(xué)習(xí)效果進(jìn)行了總結(jié),結(jié)果顯示:試驗(yàn)班學(xué)生的數(shù)學(xué)考試成績、建模應(yīng)用能力等均優(yōu)于對照班,說明建模法對高職數(shù)學(xué)教學(xué)質(zhì)量的提升效益明顯。危子青等人(20xx)項(xiàng)目教學(xué)法與建模思想融合的高職數(shù)學(xué)教學(xué)形式,指出:該種教學(xué)的特色在于將高職數(shù)學(xué)課程的教學(xué)內(nèi)容劃分為若干個子項(xiàng)目,對每一個項(xiàng)目都進(jìn)行模型化構(gòu)建,并以模型為素材設(shè)計和組織項(xiàng)目化教學(xué),通過教學(xué)應(yīng)用后發(fā)現(xiàn)學(xué)生不僅掌握了項(xiàng)目教學(xué)的學(xué)習(xí)精髓,也掌握了數(shù)學(xué)模型的構(gòu)建解析技能,教學(xué)效益獲得了雙豐收。馮寧(20xx)肯定了建模思想對高職數(shù)學(xué)教學(xué)帶來的效益,指出:通過引入建模教學(xué),能夠最大化鍛煉學(xué)生的發(fā)散性思維,以及數(shù)學(xué)邏輯應(yīng)用能力,對教學(xué)效果的促進(jìn)效益明顯。

(二)存在問題綜述。

盡管建模法對高職數(shù)學(xué)教學(xué)帶來的效益十分明顯,但在多年的教學(xué)實(shí)踐中一些問題也不斷凸顯出來有待進(jìn)一步整改,為此國內(nèi)一些學(xué)者也將研究的視角放在建模法在高職數(shù)學(xué)教學(xué)中存在問題的研究上,例如:孟玲(20xx)從教學(xué)方法的教學(xué)分析了高職數(shù)學(xué)建模教學(xué)中的問題,指出:很多高職生對數(shù)學(xué)學(xué)習(xí)的興趣不足,加之傳統(tǒng)的數(shù)學(xué)模型又十分抽象,學(xué)生理解起來比較困難,一些高職數(shù)學(xué)教師采用傳統(tǒng)的建模教學(xué)思路組織教學(xué)并不利于學(xué)生學(xué)習(xí)興趣的激發(fā),而抽象的數(shù)學(xué)模型與陳舊的教學(xué)方法結(jié)合反而降低的教學(xué)的效果。曹曉軍(20xx)則認(rèn)為:很多數(shù)學(xué)教師并不注重引導(dǎo)學(xué)生科學(xué)地理解數(shù)學(xué)模型,并在此基礎(chǔ)上有效地接受學(xué)習(xí)內(nèi)容,而是一味地采用灌輸法設(shè)計教學(xué)過程,不利于數(shù)學(xué)模型在課程教學(xué)中的應(yīng)用效益提升。

三、高職數(shù)學(xué)建模教學(xué)發(fā)展對策綜述。

針對建模法在高職數(shù)學(xué)教學(xué)中凸顯出的問題,一些學(xué)者也提出了對策。例如,齊松茹(20xx)認(rèn)為應(yīng)創(chuàng)新建模教學(xué)的形式和方法,如引入游戲教學(xué)法,將深奧的數(shù)學(xué)模型趣味化,通過組織多元化的教學(xué)游戲激發(fā)起學(xué)生參與建模學(xué)習(xí)的興趣。谷志元(20xx)則認(rèn)為教師應(yīng)該加大對學(xué)生的引導(dǎo),通過課前、中、后期的有效引導(dǎo),幫助學(xué)生有效地建立起對數(shù)學(xué)模型的認(rèn)知,逐步教會學(xué)生利用模型解決實(shí)際問題,達(dá)到學(xué)以致用的教學(xué)效果,以提升數(shù)學(xué)模型在課程教學(xué)中的價值。周瑋(20xx)則提出了結(jié)合網(wǎng)絡(luò)課堂建立研討式課堂的建模教學(xué)新思路,不失為一種高職數(shù)學(xué)建模教學(xué)的創(chuàng)新教法。

四、結(jié)語。

通過對已有文獻(xiàn)的查閱和梳理發(fā)現(xiàn),高職數(shù)學(xué)課程教學(xué)中引入建模方法對于課程教學(xué)實(shí)效性提升的效果已經(jīng)得到了國內(nèi)眾多學(xué)者的肯定,但在應(yīng)用中也存在一些問題,比如:教學(xué)方法的創(chuàng)新度不夠,學(xué)生引導(dǎo)的活動不多等,為此國內(nèi)一些學(xué)者也提出了針對性的教學(xué)優(yōu)化思路。本文的研究認(rèn)為:建模法對于高職數(shù)學(xué)教學(xué)效益的提升有著積極的價值,在今后的教學(xué)實(shí)踐中各級高職院校教師應(yīng)該結(jié)合教學(xué)的實(shí)際情況開展科學(xué)的建模教學(xué)活動,以不斷提升高職數(shù)學(xué)建模教學(xué)的實(shí)效性。

參考文獻(xiàn):

數(shù)學(xué)竟賽建模論文篇二

摘要:不知不覺中,數(shù)學(xué)建模已經(jīng)成為在學(xué)生中一個非常熱門的名詞隨著各類數(shù)學(xué)建模大賽的如火如荼,數(shù)學(xué)建模的概念已經(jīng)逐步走入到我們中學(xué)生的視線中。很多同學(xué)對于數(shù)學(xué)、對于數(shù)學(xué)建模的理解還存在著很多偏頗之處,認(rèn)為數(shù)學(xué)這門學(xué)科太過深奧,比較難以學(xué)習(xí)領(lǐng)悟透徹,本文通過自身的理解,簡要介紹了數(shù)學(xué)建模的概念與過程,體現(xiàn)了數(shù)學(xué)思想在問題解決過程中的指導(dǎo)作用,同時揭開數(shù)學(xué)建模的神秘面紗,讓數(shù)學(xué)以更加平易近人的方式成為我們數(shù)學(xué)的工具。

關(guān)鍵詞:數(shù)學(xué)建模;過程;應(yīng)用。

數(shù)學(xué)是一門高度的抽象并且嚴(yán)密的科學(xué)這沒錯,但是同樣的數(shù)學(xué)中的許多結(jié)論與方法,我們可以很好的應(yīng)用在生活中的方方面面。數(shù)學(xué)應(yīng)該是理工科學(xué)生最重要的一門基礎(chǔ)學(xué)科,然而我們大部分的同學(xué),甚至我自己常常都會有“不知道學(xué)了數(shù)學(xué)有什么用,學(xué)會了微分與導(dǎo)數(shù)日常生活也用不到”的困惑,除了備戰(zhàn)考試,“學(xué)而無趣”、“學(xué)而無用”的現(xiàn)象還是非常明顯的。但是伴隨著現(xiàn)代社會的高速發(fā)展,我們所掌握的科學(xué)技術(shù)水平也在穩(wěn)步提高,數(shù)學(xué)本身的發(fā)展也是日新月異。時至今日,數(shù)學(xué)在其他各個學(xué)科之中的應(yīng)用已經(jīng)顯得尤其重要。如何通過靈活的應(yīng)用所掌握的數(shù)學(xué)知識去解決各類生產(chǎn)生活中遇到的實(shí)際問題時,建立合理地數(shù)學(xué)模型就成為至關(guān)重要的一點(diǎn)。

人們在對一個現(xiàn)實(shí)對象進(jìn)行觀察、分析和研究的過程中經(jīng)常使用模型,如科技館里的各類機(jī)械模型、水壩模型、火箭模型等,實(shí)際上,我們常常接觸到的照片、玩具、地圖、電路圖實(shí)驗(yàn)器材等都是模型。通過使用一定的模型,可以能夠概括、集中以及更直觀的反映現(xiàn)實(shí)對象的一些特征,進(jìn)而可以幫助人們迅速、有效地了解并掌握所研究的對象。而隨著現(xiàn)代計算機(jī)技術(shù)與理論的日漸成熟,以及我們研究對象逐步復(fù)雜化、抽象畫,可以通過計算機(jī)模擬的數(shù)學(xué)模型應(yīng)運(yùn)而生。其實(shí)數(shù)學(xué)模型不過是更抽象些的模型,而數(shù)學(xué)建模就是建立這一模型的過程,并且能夠?qū)⒔:笥嬎愕玫降慕Y(jié)果來解釋實(shí)際問題,同時接受實(shí)際的檢驗(yàn)。當(dāng)我們需要對一個實(shí)際問題從定量的角度分析和研究時,就需要通過深入調(diào)查研究、了解對象信息,并作出作出簡化假設(shè)、分析內(nèi)在規(guī)律,然后用數(shù)學(xué)的符號和語言,把這一問題表述為數(shù)學(xué)式子即為數(shù)學(xué)模型。這一數(shù)學(xué)模型再經(jīng)過反復(fù)的檢驗(yàn)和修正最終得到的模型結(jié)果來解釋實(shí)際問題,并且可以接受實(shí)際的檢驗(yàn)。當(dāng)今時代,數(shù)學(xué)的應(yīng)用已經(jīng)不僅局限在工程技術(shù)、自然科學(xué)等領(lǐng)域,并以空前的廣度和深度向環(huán)境、人口、金融、醫(yī)學(xué)、地質(zhì)、交通等嶄新的領(lǐng)域滲透,形成了所謂的數(shù)學(xué)技術(shù),并成為現(xiàn)代高新技術(shù)的重要組成。這其中,建立研究對象的數(shù)學(xué)模型并計算求解成為首要的和關(guān)鍵的步驟。數(shù)學(xué)建模和計算機(jī)技術(shù)在知識經(jīng)濟(jì)時代為科學(xué)研究提供了重要的幫助。

數(shù)學(xué)建模的過程可粗略以上方框圖表示,其具體步驟可以概述為:1)通過分析問題的實(shí)際情況,可以充分了解所面臨問題的背景,去大膽分析并且暴漏出問題的本質(zhì),針對研究對象提出問題。2)忽略非主要因素,直接列出研究的對象的關(guān)鍵問題。將復(fù)雜問題簡化,抓住關(guān)鍵點(diǎn),大大提高問題解決的效率。3)通過應(yīng)用數(shù)學(xué)公式與理論,尋找客觀規(guī)律。必要時可以借助計算機(jī)軟件,形成合適的數(shù)學(xué)模型。4)通過運(yùn)作已建立的數(shù)學(xué)模型,產(chǎn)生結(jié)果,進(jìn)而通過結(jié)果的對比判斷所建立的數(shù)學(xué)模型是否真正符合實(shí)際的客觀規(guī)律。這是一個動態(tài)的檢驗(yàn)、修改的過程,通常需要多次的模擬和完善才能夠建立起合理有效的數(shù)學(xué)模型。5)將建成的數(shù)學(xué)模型規(guī)律轉(zhuǎn)化為解決實(shí)際生活中的各種問題的方法,進(jìn)而可以直接或間接地提高生產(chǎn)、生活效率。數(shù)學(xué)建模其實(shí)就是連接數(shù)學(xué)理論知識和數(shù)學(xué)實(shí)際應(yīng)用兩者之間的一條紐帶。總有一些同學(xué)將數(shù)學(xué)建??吹枚嗝吹母呱钅獪y,其實(shí)我們在以前的日常的學(xué)習(xí)中早就已經(jīng)接觸過了數(shù)學(xué)建?!,F(xiàn)在經(jīng)常被我們當(dāng)成搞笑段子來講的一些小學(xué)學(xué)習(xí)數(shù)學(xué)的階段做過的很多應(yīng)用題,實(shí)際就是一種簡單的數(shù)學(xué)建模。數(shù)學(xué)建模的確切的含義目前尚無定論,但比較莫忠一是的看法為:通過將實(shí)際問題的抽象化,歸納并簡化問題,進(jìn)而確定變量跟參數(shù),運(yùn)用數(shù)學(xué)的理論和方法,逐步確立比較合理的數(shù)學(xué)模型;然后再應(yīng)用數(shù)學(xué)與其他相關(guān)學(xué)科中的理論和方法借助計算機(jī)等相關(guān)技術(shù)手段,建立起數(shù)學(xué)模型;接著我們會對此模型進(jìn)行反復(fù)地驗(yàn)證,分析討論,不斷地對其進(jìn)行修正,逐漸地改進(jìn)使它更加的規(guī)范化。簡單來說,數(shù)學(xué)建模就是以現(xiàn)實(shí)作為背景,用數(shù)學(xué)科學(xué)理論作依托,解決實(shí)際生產(chǎn)生活中問題的過程。因而,可以說我們所熟知的任何一個數(shù)學(xué)上的概念、定理、命題或者結(jié)構(gòu),都可以看作是數(shù)學(xué)模型。

進(jìn)入計算機(jī)技術(shù)引領(lǐng)的20世紀(jì),隨著電子計算機(jī)的出現(xiàn)與飛速發(fā)展,數(shù)學(xué)以前所未有的廣度和深度向各個領(lǐng)域滲透,而數(shù)學(xué)建模正是這其中的紐帶。在統(tǒng)工程技術(shù)領(lǐng)域諸如機(jī)械、電機(jī)、土木、水利等方面,數(shù)學(xué)建模已展現(xiàn)了其重要作用。建立在數(shù)學(xué)模型和計算機(jī)模擬基礎(chǔ)上的新型技術(shù),已經(jīng)憑借其快速、經(jīng)濟(jì)、方便的優(yōu)勢,大量地替代了傳統(tǒng)工程設(shè)計中的現(xiàn)場實(shí)驗(yàn)和物理模擬等手段。高科技時代下的技術(shù)本質(zhì)上已經(jīng)成為一種數(shù)學(xué)技術(shù),源于支撐現(xiàn)代科技的計算機(jī)軟件是數(shù)學(xué)建模、數(shù)值計算和計算機(jī)圖形學(xué)相結(jié)合的產(chǎn)物在這個意義上,數(shù)學(xué)不再僅僅作為一門科學(xué),它是許多技術(shù)的基礎(chǔ),而且直接走向了技術(shù)的前臺。馬克思說過,一門科學(xué)只有成功地運(yùn)用數(shù)學(xué)時,才算達(dá)到了完善的地步。展望21世紀(jì),數(shù)學(xué)必將大踏步地進(jìn)入所有學(xué)科,數(shù)學(xué)建模將迎來蓬勃發(fā)展的新時期。

數(shù)學(xué)竟賽建模論文篇三

計算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實(shí)際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實(shí)的,還包括對未來的一種預(yù)見。數(shù)學(xué)建模可以說和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強(qiáng)國,科教興國的戰(zhàn)略推向一個新的高度。

1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過認(rèn)識教學(xué)內(nèi)容從而認(rèn)識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿足時代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認(rèn)識科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過這個數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。

2.數(shù)學(xué)建模對當(dāng)代大學(xué)生的作用。

2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。

2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計算機(jī)科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。

3.數(shù)學(xué)建模對大學(xué)數(shù)學(xué)及其他學(xué)科教師的作用。

數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時代的進(jìn)步,是時代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問題。在這個過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。

隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時代發(fā)展,數(shù)學(xué)建模成為各個高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計算機(jī)學(xué)家等多個學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動力。

參考文獻(xiàn):

[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.

[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,.

數(shù)學(xué)竟賽建模論文篇四

摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識解決日常問題的一個重要手段。本文通過簡述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問題解決中的重要作用。

經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟(jì)形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風(fēng)險的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。

數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡稱,實(shí)際上數(shù)學(xué)建??梢苑Q之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個中介和橋梁,在工業(yè)設(shè)計、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個方面,運(yùn)用數(shù)學(xué)的語言和方法進(jìn)行問題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個反復(fù)驗(yàn)證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實(shí)際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對象的特性,對復(fù)雜問題進(jìn)行簡化,提取主要因素,提煉精確的數(shù)學(xué)語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問題為數(shù)學(xué)語言;4.模型求解:對上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。

二、經(jīng)濟(jì)問題數(shù)學(xué)模型的建立。

經(jīng)濟(jì)類問題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟(jì)問題的建模計算實(shí)際上是一個從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對實(shí)際經(jīng)濟(jì)問題和情況有一個較為深入的認(rèn)識,然后通過細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應(yīng)用數(shù)學(xué)知識建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。

三、建模舉例。

四、結(jié)語。

綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤、規(guī)避風(fēng)險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。

數(shù)學(xué)竟賽建模論文篇五

摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。

一、新課的引入需要發(fā)揮教師的作用。

教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時,新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進(jìn)行情感教育的最佳時刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半。”數(shù)學(xué)建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。

二、在教學(xué)任務(wù)的設(shè)計上需要發(fā)揮教師的作用。

數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應(yīng)通過設(shè)計一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。

三、在新舊知識的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用。

建構(gòu)主義強(qiáng)調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。

四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)。

教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。

數(shù)學(xué)竟賽建模論文篇六

摘要:所謂數(shù)學(xué)建模,即借助數(shù)學(xué)模型,處理所遇到的具體問題的課程,在本文中,分別就教學(xué)、模型建立以及相應(yīng)的信息檢索來進(jìn)行研究,通過將這三面進(jìn)行相應(yīng)的糅合從而證明可以將計算機(jī)技術(shù)引入到相應(yīng)的建模實(shí)踐中,從而有效促進(jìn)數(shù)學(xué)建模的發(fā)展,使得教學(xué)質(zhì)量得以有效提升。

關(guān)鍵詞:數(shù)學(xué)建模;計算機(jī)應(yīng)用;融合。

目前計算機(jī)在生活中應(yīng)用極為廣泛,借助于計算機(jī)能夠使得先前較為復(fù)雜繁瑣的問題得以簡化,有效提升計算速率。就數(shù)學(xué)建模來看,計算機(jī)在此方面的作用不言而喻。對于此,人們普遍認(rèn)為,能夠借助于計算機(jī)將任何一個數(shù)學(xué)問題進(jìn)行簡化處理。而對于生活中所遇到的任意一個實(shí)際問題,均能夠借助于相應(yīng)的數(shù)學(xué)模型來進(jìn)行表示,在建模過程中,也可以根據(jù)實(shí)際情況來做出一些相應(yīng)的簡化處理,從而將其歸屬于完全的數(shù)學(xué)問題,最終建立起能夠用變量所描述的數(shù)學(xué)模型。之后,借助于相應(yīng)的計算機(jī)、軟件以及編程方面的知識,來對此模型進(jìn)行相應(yīng)的求解計算。

2.計算機(jī)技術(shù)在數(shù)學(xué)建模中的應(yīng)用。

計算機(jī)在數(shù)學(xué)建模中的應(yīng)用面非常的廣泛,限于筆者的水平,本文主要就兩個方面展開討論:第一,確定建模思想;第二,對數(shù)學(xué)模型進(jìn)行求解計算。

2.1計算機(jī)技術(shù)輔助確立數(shù)學(xué)建模思想。

對于數(shù)學(xué)建模,其最為重要的目的便是為了能夠提升學(xué)生對于數(shù)學(xué)知識的使用性,借助于相關(guān)的數(shù)學(xué)思想來對實(shí)際問題進(jìn)行解決,同時,還能夠促進(jìn)學(xué)生數(shù)學(xué)思想的發(fā)展、建模能力發(fā)展以及相關(guān)數(shù)學(xué)知識的完善,最終提升其對于數(shù)學(xué)知識的使用能力。培養(yǎng)數(shù)學(xué)思維重在將學(xué)生所思所想以最快最佳的方式展示出來,計算機(jī)技術(shù)在數(shù)學(xué)建模中的應(yīng)用使得這個設(shè)想變得可能。因?yàn)閿?shù)學(xué)模型的計算和設(shè)計工作量大,傳統(tǒng)的計算辦法不能迅速解決某個問題,但是在建模的輔助下一切問題迎刃而解。

2.2計算機(jī)技術(shù)促進(jìn)數(shù)學(xué)建模結(jié)果求解。

對于數(shù)學(xué)建模,其屬于一項(xiàng)系統(tǒng)性工程,整個過程工作量較多。在前期,對于模型的構(gòu)想與建立需要不斷完善,此后,對于模型的求解也是極為困難的,這主要因?yàn)槠渖婕暗椒浅6嗟臄?shù)據(jù)處理與計算。在計算數(shù)學(xué)模型時,不僅速度快,準(zhǔn)確度也很高,如表1給出了手動解30維線性方程組和計算機(jī)解30維方程組的時間,手動所用時間是計算所用時間的1200倍。

同時,對于一些借助紙和筆而無法實(shí)現(xiàn)的計算,通過計算機(jī)能夠較快實(shí)現(xiàn),其中主要涉及到相關(guān)的編程、繪圖等操作。

計算機(jī)在數(shù)學(xué)建模領(lǐng)域擁有極為重要的優(yōu)勢與作用。如計算機(jī)的計算速度快、可以輔助作圖,甚至可以輔助做立體圖形。同時,借助于計算機(jī)也能夠使得模型得以進(jìn)一步完善,也就是說兩者彼此之間相輔相成。

數(shù)學(xué)建模的出現(xiàn),主要是為了便于處理同工程或者科研相關(guān)的問題的,和試題類有著較大區(qū)別。其所處理問題具有一定的特性,即圍繞日常具體問題展開,科研背景突出,需要的知識結(jié)構(gòu)復(fù)雜,涉及的范圍龐大,因素多且難,非常規(guī)特征明顯,缺乏有效的處理措施,涉及數(shù)據(jù)多,要選擇的算法亦十分繁瑣,得出的結(jié)果存在波動性,要有限定的前提,通常僅可獲取近似解。而計算機(jī)的出現(xiàn),則在一定程度上使這種情況得到緩解。是數(shù)學(xué)建模多樣化,令設(shè)計領(lǐng)域更加寬泛,如數(shù)學(xué)建??梢阅7度祟惔竽X的記憶功能。

3.2計算機(jī)使數(shù)學(xué)模型求解更為簡單。

計算機(jī)在數(shù)學(xué)建模中的應(yīng)用使得數(shù)學(xué)模型求解更為簡單體現(xiàn)在以下幾個方面:

(1)計算量問題得到解決。以前計算量大是制約數(shù)學(xué)建模發(fā)展的主要因素之一,現(xiàn)在在計算機(jī)的幫助下,只要模型完善,計算量大已經(jīng)不是問題。如德國的神威計算機(jī),計算速度達(dá)到了12.5億億次/秒。

(2)可視化功能使抽象問題具體化?,F(xiàn)代計算機(jī)都有強(qiáng)大的作圖功能,會使數(shù)學(xué)模型中的一些抽象概念、問題解決過程都變得可視化。圖表的制作更是非常簡單。

3.3計算機(jī)利用數(shù)學(xué)建模尋求最優(yōu)解成為可能。

在3.1節(jié)中已經(jīng)提到,在計算機(jī)沒有應(yīng)用到數(shù)學(xué)建模中之前,很多數(shù)學(xué)模型的解只是近似解,連精確解都談不上,更不用說是最優(yōu)解。其主要原因是模型本身的計算量太大,筆和紙這兩樣工具更不能在短時間內(nèi)攻下數(shù)學(xué)模型計算這塊,此外筆和紙根本不可能完成某些圖表的制作也是原因之一。計算機(jī)有效的解決了這兩個問題,這就會使得數(shù)學(xué)模型得到精確解。在求得精確解的基礎(chǔ)之上還可以進(jìn)一步尋求最優(yōu)解,因?yàn)閿?shù)學(xué)模型的解往往是多解的,不是唯一解。

4.總結(jié)。

數(shù)學(xué)模型,其主要是通過使用相應(yīng)的數(shù)學(xué)語言來對實(shí)際問題進(jìn)行相應(yīng)的表示,也就是說,模型的實(shí)質(zhì)主要是為了有效解決生活中的實(shí)際問題。通過借助于計算機(jī)能夠使得復(fù)雜問題得以有效簡化,對于促進(jìn)社會發(fā)展起到了重要作用。因而,在未來發(fā)展中數(shù)學(xué)建模也將會像計算機(jī)一樣得到廣泛重視。目前,對于教育界而言,其主要問題在于理論與實(shí)踐相脫節(jié)。我們的教學(xué)越來越形式、抽象。在教材中,充斥著大量的定理、理論證明等等,但是并沒有將其與實(shí)際生活相結(jié)合,而對于借助相應(yīng)的數(shù)學(xué)教學(xué)來實(shí)現(xiàn)腦力發(fā)展的系統(tǒng)化更是微乎其微。將計算機(jī)與數(shù)學(xué)建模相結(jié)合,這是未來數(shù)學(xué)領(lǐng)域發(fā)展所必須經(jīng)歷的一個過程。

參考文獻(xiàn):

數(shù)學(xué)竟賽建模論文篇七

概率論與數(shù)理統(tǒng)計是一門研究隨機(jī)現(xiàn)象及其統(tǒng)計規(guī)律的數(shù)學(xué)學(xué)科,它是高等院校各專業(yè)開設(shè)的重要的基礎(chǔ)數(shù)學(xué)課程之一。以下是“概率統(tǒng)計中融入數(shù)學(xué)建模思想的教學(xué)探索論文”,希望能夠幫助的到您!

如何運(yùn)用該課程的理論知識解決實(shí)際問題具有非常重要的研究意義。每年一次的全國大學(xué)生數(shù)學(xué)建模競賽是目前各高校的規(guī)模較大的課外科技活動之一。數(shù)學(xué)建模是一門運(yùn)用數(shù)學(xué)工具和計算機(jī)技術(shù),通過建立數(shù)學(xué)模型來解決現(xiàn)實(shí)中各種實(shí)際問題的新學(xué)科。它通過調(diào)查,收集數(shù)據(jù)、資料,觀察和研究其固有的內(nèi)在規(guī)律,提出假設(shè),經(jīng)過抽象簡化,建立反映實(shí)際問題的數(shù)學(xué)模型,即將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題??v觀歷年數(shù)學(xué)建模競賽試題,像高等教育的學(xué)費(fèi)問題、北京奧運(yùn)會人流分布、dna序列分類問題、dvd在線租賃問題及醫(yī)院病床的合理安排等問題都不同程度地涉及到了概率論與數(shù)理統(tǒng)計的相關(guān)知識。筆者多年來一直為理工科的本科生講授概率論與數(shù)理統(tǒng)計課程,并每年輔導(dǎo)和指導(dǎo)全國大學(xué)生數(shù)學(xué)建模競賽,所以與同事們一直都在探索如何深化概率論與數(shù)理統(tǒng)計這門課程的教學(xué)改革,使其與數(shù)學(xué)建模思想能有機(jī)結(jié)合。本文將從以下幾方面進(jìn)行探討研究。

一、概率統(tǒng)計教學(xué)中融入數(shù)學(xué)建模思想的重要性。

傳統(tǒng)的概率論與數(shù)理統(tǒng)計課程的教學(xué),可以簡單地歸納為:數(shù)學(xué)知識+例子說明+解題+考試。這種模式雖然使學(xué)生在一定程度上掌握了基礎(chǔ)知識,提高了計算能力,也學(xué)會了運(yùn)用所學(xué)知識解決課后作業(yè)和應(yīng)付考試。但也不難看出,這種教學(xué)方式與實(shí)際嚴(yán)重脫節(jié),學(xué)生學(xué)會了書本知識,但卻不知在所學(xué)專業(yè)中該如何運(yùn)用,這不僅與素質(zhì)教育的宗旨相違背,也極大地削弱了學(xué)生學(xué)習(xí)這門課程的能動性,從而也影響了教學(xué)效果。數(shù)學(xué)建模的指導(dǎo)思想恰恰在于培養(yǎng)學(xué)生運(yùn)用所學(xué)理論知識來解決現(xiàn)實(shí)實(shí)際問題。這不僅僅是這門課程對學(xué)生的教育問題,更是順應(yīng)當(dāng)前素質(zhì)教育和教學(xué)改革的需要問題。

二、在課堂教學(xué)中融入數(shù)學(xué)建模思想。

對于講授概率論與數(shù)理統(tǒng)計這門課程的教師來說,有著非常重要的任務(wù),那就是如何教好這門課程,即如何使學(xué)生通過對這門課程的學(xué)習(xí)而增強(qiáng)其對概率統(tǒng)計方法的理解與實(shí)際應(yīng)用能力。

1.教學(xué)內(nèi)容上數(shù)學(xué)建模思想的滲透。眾所周知,教師對教學(xué)內(nèi)容的把握起著不容忽視的作用。有效的教學(xué)是依賴于教師對該課程的內(nèi)容有著全面的和深刻的理解。概率統(tǒng)計中的一些概念、性質(zhì)、模型的應(yīng)用確實(shí)有些難度,在日常教學(xué)中可以通過精選例題、切近現(xiàn)實(shí)生活,使學(xué)生逐漸深化對相關(guān)知識的理解,即講課的內(nèi)容生活化、趣味化,生活中的概率統(tǒng)計問題模型化。在概率統(tǒng)計里這些趣味性的例子比比皆是!比如摸球、投擲骰子等常見的游戲,“父母的身高對子女的影響”、“男女生人數(shù)的均衡對一個班級學(xué)習(xí)效果的影響”等發(fā)生在身邊的事。在概率統(tǒng)計這門課程中數(shù)學(xué)模型的影子也隨處可見!比如像降雨概率、人體舒適度指數(shù)、超市銀臺處的等待服務(wù)時間等這樣的隨機(jī)現(xiàn)象問題都需要將實(shí)際問題數(shù)量化,然后對研究對象做出判斷,從而解決問題。教學(xué)內(nèi)容中也可插入一些反映社會經(jīng)濟(jì)生活的背景與熱點(diǎn)問題,使課堂教育跟上時代步伐。如有獎促銷問題、保險賠償金確定問題、交通事故問題等,這樣的內(nèi)容都旨在培養(yǎng)學(xué)生利用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,也就是培養(yǎng)學(xué)生的建模能力。

2.教學(xué)方法中融入數(shù)學(xué)建模思想。在教學(xué)中,教師的責(zé)任更大地體現(xiàn)在對學(xué)生的引導(dǎo)能力,通過引導(dǎo)使學(xué)生運(yùn)用自己的能力來解決相關(guān)的問題。這樣使學(xué)生不但能夠?qū)W到嚴(yán)謹(jǐn)?shù)睦碚撝R,同時也提高了學(xué)生分析問題和解決問題的能力。在教學(xué)中,我們主要采用精講與導(dǎo)學(xué)相結(jié)合的方法,同時在課堂教學(xué)的各個環(huán)節(jié)中也可恰當(dāng)運(yùn)用討論式、啟發(fā)式、歸納類比式等教學(xué)方法。在運(yùn)用各種教學(xué)方法中都要充分關(guān)注學(xué)生的參與性,在與學(xué)生的互動中挖掘出課本內(nèi)容中的數(shù)學(xué)建模思想,使其“顯化”出來。比如在講解隨機(jī)事件和古典概型中,可以講解摸球問題、生日巧合及配對問題、確診率及血清化驗(yàn)問題等,這樣既活躍了課堂氛圍,又培養(yǎng)了學(xué)生愛思考的習(xí)慣。必須提及的是“案例教學(xué)法”,它是概率統(tǒng)計課程融入數(shù)學(xué)建模思想的有效而常用的教學(xué)方法之一。在教學(xué)中可以直接給出案例,然后從求解具體問題中找出相應(yīng)的理論和方法。此方法縮短了數(shù)學(xué)理論與實(shí)際應(yīng)用的距離,不僅可以提高學(xué)生學(xué)習(xí)的積極性,同時也使學(xué)生明白概率統(tǒng)計是建立在現(xiàn)實(shí)生活基礎(chǔ)上的一門課程。比如在隨機(jī)變量的數(shù)字特征中,可以給出“報童的收益問題”案例;在參數(shù)估計中,可以給出“湖中魚的數(shù)量估計”案例;在大數(shù)定律和中心極限定理中,可以給出“保險公司的收益問題”案例;等等。由于受到課時限制,可能不能充分有效地對案例進(jìn)行完整講解,通常將“案例分析法”和“現(xiàn)代教育技術(shù)法”相結(jié)合進(jìn)行教學(xué),利用多媒體教學(xué)手段可以將案例中出現(xiàn)的大量統(tǒng)計計算均由統(tǒng)計軟件(如spss,sas,r等)來實(shí)現(xiàn)。這樣既易于被學(xué)生接受,也有助于學(xué)生掌握統(tǒng)計方法和實(shí)際操作能力。

三、發(fā)揮課后作業(yè)作為課堂教學(xué)的補(bǔ)充與延伸作用。

作為數(shù)學(xué)課程,課后作業(yè)是十分重要的組成部分,是進(jìn)一步理解、消化和鞏固課堂教學(xué)內(nèi)容的重要環(huán)節(jié)。

1.課后試驗(yàn)。在概率統(tǒng)計這門課程中有很多隨機(jī)試驗(yàn),并且很多統(tǒng)計規(guī)律也都是在隨機(jī)試驗(yàn)中獲得的。比如通過投擲均勻的硬幣和均勻的六面體骰子,可以很好地理解頻率與概率之間的關(guān)系;雙色球的有(無)放回抽樣,有助于理解隨機(jī)事件的相互獨(dú)立性;統(tǒng)計某書上的錯別字,并判斷是否服從泊松分布等。通過讓學(xué)生們親自做實(shí)驗(yàn),不僅使他們能夠探索隨機(jī)現(xiàn)象的統(tǒng)計規(guī)律性,還能幫助他們更深刻的理解、鞏固和深化理論。

2.課后作業(yè)。除常規(guī)概率統(tǒng)計練習(xí)題目外,可以增加一些有趣的、與日常生活中密切相關(guān)的概率統(tǒng)計題目。比如在給出了摸彩票規(guī)則和中獎規(guī)則后,解決下面三個問題:

(1)中獎概率與摸彩票的次序有關(guān)系嗎?

(2)假設(shè)發(fā)行了100萬張彩票,中一、二等獎的概率是多少?

(3)若你打算摸彩票,在什么條件下中獎概率會大一些?

3.課外實(shí)踐。針對概率統(tǒng)計實(shí)用性強(qiáng)的特點(diǎn),有目的地組織學(xué)生參加社會實(shí)踐活動,深入實(shí)際,調(diào)查研究,收集數(shù)學(xué)建模的素材。只有將某種思想方法應(yīng)用到實(shí)踐中去,實(shí)際解決幾個問題,才能達(dá)到理解、深化、鞏固和提高的效果。教師可以從現(xiàn)實(shí)中尋找素材,選擇具有豐富現(xiàn)實(shí)背景的學(xué)習(xí)材料,可以讓學(xué)生自由組隊,深入實(shí)際,運(yùn)用統(tǒng)計方法調(diào)查、觀察和收集一些數(shù)據(jù),在教師指導(dǎo)下運(yùn)用所學(xué)知識和計算機(jī)技術(shù),分析解決一些實(shí)際問題,寫出書面報告。比如利用閑暇時間觀察校門口某路公交車各時段乘車人數(shù),根據(jù)觀察數(shù)據(jù),為該線路設(shè)計一個便于操作的公交車調(diào)度方案:包括發(fā)車時刻表;共需多少輛車;以怎樣的程度能夠照顧乘客和公交公司雙方的利益。

四、改變傳統(tǒng)單一的考核方式。

考核是教學(xué)過程中不可缺少的一個教學(xué)環(huán)節(jié),是檢驗(yàn)學(xué)生學(xué)習(xí)情況,評估教師教學(xué)質(zhì)量的手段。傳統(tǒng)的概率論與數(shù)理統(tǒng)計課程均采用期末閉卷考試,教師通常都會按照固定的內(nèi)容和格式出題,學(xué)生為了應(yīng)付考試,往往把過多的精力花費(fèi)在對公式和概念的死記硬背上,而忽略了所學(xué)知識在實(shí)際中的應(yīng)用。雖然綜合成績是由平時成績和期末成績的各占比例計算而成,但平時成績的考核主要看課后習(xí)題所做的作業(yè),而學(xué)生的學(xué)習(xí)積極性對作業(yè)的態(tài)度差異性是很大的。為此,有必要改革傳統(tǒng)單一的考核方式,培養(yǎng)學(xué)生綜合運(yùn)用知識的能力??己私Y(jié)果包括兩部分:一部分是閉卷考試,占60%,主要考察學(xué)生對概率統(tǒng)計的基本知識、基本運(yùn)算和基本理論的掌握程度;另一部分是開放性考核,由各占20%的平時成績和課后試驗(yàn)、課外實(shí)踐構(gòu)成,其中平時成績主要考查學(xué)生的作業(yè)情況、考勤情況、課堂表現(xiàn)情況等方面;課后試驗(yàn)、課外實(shí)踐主要考核學(xué)生對概率統(tǒng)計知識的應(yīng)用能力,可以給學(xué)生一些實(shí)際問題,或者讓學(xué)生參加社會實(shí)踐調(diào)查收集數(shù)據(jù),學(xué)生可以自由組隊也可單獨(dú)完成,通過運(yùn)用概率統(tǒng)計知識建立數(shù)學(xué)模型并借助計算機(jī)處理大量數(shù)據(jù)對實(shí)際問題得到解決,最后提交一份書面研究報告。如此靈活多變的考核機(jī)制,才能充分調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,才有利于學(xué)生應(yīng)用能力的培養(yǎng)。

通過在各個環(huán)節(jié)中融入數(shù)學(xué)建模思想,不但充分體現(xiàn)了概率統(tǒng)計的實(shí)用價值,搭建起概率統(tǒng)計知識與實(shí)際應(yīng)用的橋梁,而且也使得工科類學(xué)生對概率統(tǒng)計這門課程的理解、認(rèn)識增強(qiáng)了,數(shù)學(xué)的應(yīng)用能力也得到了提高。

數(shù)學(xué)竟賽建模論文篇八

摘要:高校課程改革要求培養(yǎng)具有適應(yīng)性和創(chuàng)新性的高素質(zhì)人才,培養(yǎng)大學(xué)生的創(chuàng)造能力和實(shí)踐能力已經(jīng)引起了廣泛關(guān)注。數(shù)學(xué)建模是提高學(xué)生應(yīng)用意識和數(shù)學(xué)素質(zhì)的重要途徑之一。學(xué)校結(jié)合各學(xué)科特點(diǎn)及學(xué)生情況,開設(shè)數(shù)學(xué)建模課程,改變傳統(tǒng)的數(shù)學(xué)教學(xué)方式,在各科教學(xué)中穿插數(shù)學(xué)建模思想,通過課內(nèi)、課外數(shù)學(xué)教學(xué)的有機(jī)結(jié)合,培養(yǎng)大學(xué)生的數(shù)學(xué)建模思想,能夠使學(xué)生應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的能力增強(qiáng),有利于提高大學(xué)生的創(chuàng)新思維能力和綜合素質(zhì)。

關(guān)鍵詞:數(shù)學(xué)建模;科技創(chuàng)新;實(shí)踐能力。

一、引言。

加強(qiáng)大學(xué)生的創(chuàng)新精神和創(chuàng)新思維能力的培養(yǎng),已是世界各國教學(xué)改革的共同趨勢,也是我國實(shí)現(xiàn)“科教興國”戰(zhàn)略的基本要求。新的課程改革強(qiáng)調(diào)數(shù)學(xué)與實(shí)際生活的聯(lián)系,多年來的教育實(shí)踐證明,數(shù)學(xué)建模的教學(xué)在大學(xué)生的創(chuàng)新教學(xué)中的地位和意義已是舉足輕重。學(xué)??梢酝ㄟ^數(shù)學(xué)建模,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識的能力、分析解決問題的能力以及交流與合作的能力。數(shù)學(xué)教育本質(zhì)上是一種素質(zhì)教育,從開始受教育,就接觸數(shù)學(xué)學(xué)科,數(shù)學(xué)的重要性可見一斑,不僅僅是要掌握這門課的知識這么簡單,現(xiàn)實(shí)生活中的很多實(shí)際問題都能用數(shù)學(xué)語言來描述,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,再來描述、解決問題的過程就是建立數(shù)學(xué)模型、求解數(shù)學(xué)模型的過程。在數(shù)學(xué)教學(xué)中,就不能和現(xiàn)實(shí)完全脫離,這種和現(xiàn)實(shí)脫軌的傳統(tǒng)教學(xué)狀態(tài)使學(xué)生雖然掌握了技術(shù),卻不能學(xué)以致用,填鴨式的教育并不能使學(xué)生真正成為現(xiàn)在社會需要的有用人才,數(shù)學(xué)建模就是將數(shù)學(xué)和外界聯(lián)系起來的一個通道。通過數(shù)學(xué)建模培養(yǎng)大學(xué)生對于新問題在短時間之內(nèi)的解決問題的能力,有利于培養(yǎng)大學(xué)生的創(chuàng)新思想。

二、制約大學(xué)生創(chuàng)新能力發(fā)展的問題。

目前,數(shù)學(xué)教育主要還是關(guān)注在題目上,學(xué)習(xí)的目的大部分都是為了獲取高分。如果高校的教育從公式、定理展開,學(xué)生的作業(yè)、學(xué)習(xí)也依葫蘆畫瓢的積分微分,這種方式訓(xùn)練出來的學(xué)生,往往知其然而不知其所以然,雖然按教材中規(guī)中矩、按部就班地授課,可以使學(xué)生在短時間內(nèi)掌握知識,也能獲得暫時的效果,然而當(dāng)學(xué)生走向社會時,這樣學(xué)習(xí)到的知識往往不能給他們帶來更多的幫助,這種情況顯然不是在數(shù)學(xué)教育中理想的狀態(tài)。書本上看起來或晦澀難懂或明了清楚的概念理論應(yīng)該不僅僅帶給學(xué)生在校時的分?jǐn)?shù)、獎學(xué)金,應(yīng)該了解精髓,懂得他們背后的思想和生命力才是數(shù)學(xué)帶給我們遠(yuǎn)比學(xué)習(xí)成績更重要的東西。

無論是以后從事什么崗位,接受過的數(shù)學(xué)教育鍛煉過思維、邏輯,使學(xué)生在面對實(shí)際問題時更能明白事情的問題所在,更能有邏輯、更有方法的解決問題。這就是要培養(yǎng)學(xué)生的自主思考、發(fā)散創(chuàng)新的能力。傳統(tǒng)的教學(xué)過程既然很難做到,那么就要通過別的方法訓(xùn)練大學(xué)生面對問題、解決問題的能力。在高校中推廣數(shù)學(xué)建模是一種能實(shí)施、易實(shí)施又有效的方法。

三、高校大學(xué)生數(shù)學(xué)建模創(chuàng)新活動的建設(shè)內(nèi)容。

針對現(xiàn)狀問題,我們以培養(yǎng)大學(xué)生的創(chuàng)新能力及實(shí)踐能力為目的,通過建設(shè)高效的數(shù)學(xué)建模創(chuàng)新活動,激發(fā)大學(xué)生的創(chuàng)新活力和運(yùn)用數(shù)學(xué)方法解決復(fù)雜實(shí)際問題的綜合能力,拓寬學(xué)生的知識面,培養(yǎng)學(xué)生的創(chuàng)新精神和團(tuán)隊合作意識。

1.從全校相關(guān)專業(yè)中選拔有實(shí)戰(zhàn)經(jīng)驗(yàn)的教師進(jìn)行培訓(xùn)根據(jù)不同專業(yè)的特色,從全校范圍內(nèi)選拔優(yōu)秀的數(shù)學(xué)建模指導(dǎo)教師團(tuán)隊;根據(jù)數(shù)學(xué)建模特點(diǎn),對指導(dǎo)教師進(jìn)行專業(yè)培訓(xùn)和學(xué)術(shù)交流。比如,參加數(shù)學(xué)建模培訓(xùn)班,與其他高校優(yōu)秀建模教師進(jìn)行學(xué)術(shù)交流。邀請有實(shí)戰(zhàn)經(jīng)驗(yàn)的專家做數(shù)學(xué)建模的學(xué)術(shù)報告。根據(jù)指導(dǎo)教師特點(diǎn)進(jìn)行分工,研究不同領(lǐng)域的數(shù)學(xué)建模問題,通過專兼結(jié)合達(dá)到知識結(jié)構(gòu)的優(yōu)勢互補(bǔ)。

2.將數(shù)學(xué)建模思想融入學(xué)生的認(rèn)知當(dāng)中現(xiàn)代認(rèn)知心理學(xué)家布魯納說:“探索是數(shù)學(xué)教學(xué)的生命線?!眒oor教學(xué)法提出學(xué)習(xí)數(shù)學(xué)最好的方式是“在做數(shù)學(xué)中學(xué)習(xí)數(shù)學(xué)”。因此,在教學(xué)中調(diào)動學(xué)生積極參與數(shù)學(xué)建模過程中,探索建模方法。在選題時老師應(yīng)引導(dǎo)學(xué)生,開發(fā)學(xué)生的開放性、探索性,開拓更廣闊的探索空間。講解建模環(huán)節(jié),教師要善于把建模材料組織成一個體系,為學(xué)生創(chuàng)造探索環(huán)境。數(shù)學(xué)建模環(huán)節(jié),教師應(yīng)尊重學(xué)生的主體地位,激勵學(xué)生獨(dú)立思考,出錯環(huán)節(jié)協(xié)助其自主分析出錯原因,并從錯誤中尋出思維的合理之處。教師引導(dǎo)學(xué)生建模主要從兩個方面入手:一將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力;二對轉(zhuǎn)化過來的問題,應(yīng)用數(shù)學(xué)解決的能力。在教學(xué)過程中,教師可以將實(shí)際問題還原成所學(xué)數(shù)學(xué)知識,使學(xué)生可以借助自己的認(rèn)知結(jié)構(gòu)主動構(gòu)建數(shù)學(xué)模型;從數(shù)學(xué)問題原型出發(fā),引導(dǎo)學(xué)生觀察、分析、概括得到數(shù)學(xué)概念、公式、定理、法則的教學(xué)方式符合知識的發(fā)生發(fā)展的過程,體現(xiàn)教學(xué)中解決問題的心理過程。

3.在全校根據(jù)文理科專業(yè)開設(shè)數(shù)學(xué)建模通識課大一上學(xué)期,全校范圍內(nèi)開設(shè)數(shù)學(xué)建模通識課,結(jié)合各學(xué)科的特點(diǎn),分別開設(shè)文科班和理科班,不僅理科生可以受到數(shù)學(xué)建模思想的熏陶,文科生也可以根據(jù)自身的認(rèn)知體驗(yàn)到數(shù)學(xué)建模帶來的樂趣。邀請有經(jīng)驗(yàn)的數(shù)學(xué)建模指導(dǎo)教師進(jìn)行講授,要結(jié)合學(xué)生感興趣的問題入手。

比如,20xx年高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目b題“拍照賺錢”的任務(wù)定價,通過學(xué)生感興趣的“拍照賺錢”等實(shí)際問題讓學(xué)生切身體會到數(shù)學(xué)建模思想與生活息息相關(guān),讓學(xué)生帶著問題學(xué)習(xí)。對一些同學(xué)難以理解的數(shù)學(xué)模型的講解時,教師可以將數(shù)學(xué)問題轉(zhuǎn)化為學(xué)生已有的認(rèn)知當(dāng)中,既通俗易懂,又能夠讓學(xué)生通過數(shù)學(xué)建模產(chǎn)生樂趣。比如,學(xué)生在學(xué)習(xí)難理解的貝葉斯模型時,先驗(yàn)概率對后驗(yàn)概率的影響,不知其意而死記硬背,教學(xué)中可以用原型引出貝葉斯模型:已知外界的環(huán)境變化影響最終決策者的判斷;高等數(shù)學(xué)中的矩陣,矩陣分解可通過數(shù)學(xué)建模應(yīng)用于人臉圖像識別、矩陣的特征值及特征向量可以用于數(shù)據(jù)降維等。通過模型學(xué)習(xí)概念,強(qiáng)化數(shù)學(xué)來源于生活的思想教育,理論聯(lián)系實(shí)際的數(shù)學(xué)課堂教學(xué)模式讓學(xué)生看到問題的提出,有利于學(xué)生的創(chuàng)造性思維能力的培養(yǎng),以此激發(fā)學(xué)生對數(shù)學(xué)建模的學(xué)習(xí)興趣。學(xué)期結(jié)束時,要求學(xué)生根據(jù)教師提供的數(shù)學(xué)問題提交一份數(shù)學(xué)建模論文。

4.成立數(shù)學(xué)建模興趣小組成立數(shù)學(xué)建模課外興趣小組群,通過qq、微信等社交平臺,充分發(fā)揮大學(xué)生的主觀能動性,形成良好的學(xué)習(xí)氛圍。學(xué)生通過數(shù)學(xué)建模學(xué)習(xí)如何在團(tuán)隊中發(fā)揮自己的長處,如何合作完成共同的任務(wù)。在數(shù)學(xué)建模課外興趣小組中,學(xué)生互相討論時,不同的思維碰撞會產(chǎn)生不同的想法,能激勵大學(xué)生養(yǎng)成勤于動腦、善于思考的能力,能在一定程度上鍛煉學(xué)生的靈活性和思考問題的多面性。課外小組中,學(xué)校舉辦數(shù)學(xué)建模系列講座,可以邀請有經(jīng)驗(yàn)的專家教師給大家講解數(shù)學(xué)在實(shí)際中的不同應(yīng)用,宣傳數(shù)學(xué)建?;舅枷耄箤W(xué)生全面理解模型的適用范圍、典型特征、建模及求解過程。通過對模型深入的理解,學(xué)生了解數(shù)學(xué)建模全過程,進(jìn)而舉一反三。此外,根據(jù)學(xué)生的不同特點(diǎn),分配給學(xué)生不同的學(xué)習(xí)任務(wù),既激起大學(xué)生對數(shù)學(xué)建模的興趣,又保證個性化的培養(yǎng)教育,學(xué)生們在小組中能體會到團(tuán)隊協(xié)作的重要性。學(xué)??梢蚤_展數(shù)學(xué)文化節(jié),依托豐富多彩的數(shù)學(xué)課外閱讀活動,使學(xué)生感受數(shù)學(xué)文化,學(xué)會用數(shù)學(xué)的眼光看待世界,用數(shù)學(xué)的頭腦解決身邊的問題,以此提升學(xué)生的數(shù)學(xué)素養(yǎng),重點(diǎn)培養(yǎng)學(xué)生的發(fā)散思維,以及以新穎獨(dú)特的方式解決問題的思維方式。

5.參賽人員層級選拔及實(shí)訓(xùn)。

(1)校內(nèi)選拔。全校選拔人員采取自愿報名的方式。自愿參加的成員能積極、主動地學(xué)習(xí),積極地思考問題,將他們的能力最大限度地發(fā)揮出來。指導(dǎo)教師給定幾個經(jīng)典題目,按照全國大學(xué)生數(shù)學(xué)建模競賽的所有規(guī)則進(jìn)行模擬競賽,通過賽前鼓勵調(diào)動學(xué)生的創(chuàng)造性思維能力,讓學(xué)生積極參與。賽中指導(dǎo)教師根據(jù)每一位參賽隊員的特點(diǎn)進(jìn)行有針對性的指導(dǎo),發(fā)揚(yáng)每個學(xué)生的優(yōu)點(diǎn),提高每一位參賽隊員的學(xué)業(yè)素質(zhì)及水平。賽后根據(jù)每位學(xué)生在活動中的表現(xiàn),評出各個學(xué)生的等級獎(一、二、三等獎及優(yōu)秀獎)。根據(jù)成績及學(xué)生在比賽中的表現(xiàn),選拔出前20組優(yōu)秀學(xué)生團(tuán)隊。

(2)優(yōu)秀學(xué)生培訓(xùn)。學(xué)校有針對地對在校內(nèi)選拔的優(yōu)秀創(chuàng)新人才進(jìn)行集中培訓(xùn)和實(shí)訓(xùn),從實(shí)際出發(fā),以學(xué)校培養(yǎng)創(chuàng)新性人才的目標(biāo)為指導(dǎo)思想。在數(shù)學(xué)建模過程中,邀請往屆參賽得獎的學(xué)生進(jìn)行交流,介紹經(jīng)驗(yàn)。教師帶領(lǐng)學(xué)生觀摩其他學(xué)校的數(shù)學(xué)建模培養(yǎng)方式,促進(jìn)大學(xué)生中優(yōu)秀人才的脫穎而出、健康快速成長,加強(qiáng)各高校之間以及高校與企業(yè)之間的研究,讓大學(xué)生從中獲得知識,并讓學(xué)生有競爭意識。學(xué)院設(shè)立數(shù)學(xué)建模暑期培訓(xùn),主要涉及有建模所需數(shù)學(xué)知識講解、建模案例分析、建模案例練習(xí)、全國大學(xué)生優(yōu)秀作品分析、最終的建??荚嚈z測。

(3)基于理論方法和具體實(shí)戰(zhàn)的培訓(xùn)。理論課方面,主要介紹數(shù)學(xué)建模基本思想、常用建模方法,以及較為經(jīng)典的建模案例。在教學(xué)方法上,教師可以采用啟發(fā)式教學(xué),引領(lǐng)學(xué)生參與建模的全過程,使學(xué)生領(lǐng)悟數(shù)學(xué)建模的精髓,激發(fā)對數(shù)學(xué)建模的興趣。實(shí)驗(yàn)課方面,為提高學(xué)生分析解決問題、設(shè)計實(shí)現(xiàn)算法的能力,介紹主要軟件(matlab、spss、r和python)及其軟件包,教學(xué)生直接利用軟件編程求解一些簡單的數(shù)學(xué)模型。實(shí)驗(yàn)課中,教師給出建模案例,讓學(xué)生練習(xí),包括(分析問題、提出假設(shè)、建立模型、算法設(shè)計、實(shí)驗(yàn)操作、結(jié)果檢驗(yàn)、撰寫論文),最后帶領(lǐng)學(xué)生參加全國大學(xué)生數(shù)學(xué)建模競賽。英語基礎(chǔ)比較好的學(xué)生可以參加美國大學(xué)生數(shù)學(xué)建模競賽。

四、結(jié)束語。

創(chuàng)新人才的培養(yǎng)是時代發(fā)展的需要,是時代對教育提出的新要求。數(shù)學(xué)建模競賽對大學(xué)生的實(shí)踐創(chuàng)新能力十分有效,因此學(xué)校改變傳統(tǒng)數(shù)學(xué)方式的局限性,要結(jié)合最新的科學(xué)前沿問題,通過課堂數(shù)學(xué)教學(xué)、課外活動將數(shù)學(xué)建模融入學(xué)生的認(rèn)知當(dāng)中,通過數(shù)學(xué)建模思想的培養(yǎng),提高當(dāng)代大學(xué)生的創(chuàng)造性思維能力,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識的能力、分析解決問題的能力以及交流與合作的能力。

參考文獻(xiàn):

[1]楊艷琦.基于數(shù)學(xué)建模培訓(xùn)大學(xué)生創(chuàng)新能力[j].產(chǎn)業(yè)與科技論壇,20xx。

[4]姜啟源,謝金星.數(shù)學(xué)模型(第三版)[m].北京:高等教育出版社,20xx。

數(shù)學(xué)竟賽建模論文篇九

數(shù)學(xué)核心素養(yǎng)是數(shù)學(xué)課程的基本理念和總體目標(biāo)的體現(xiàn),可以有效地指導(dǎo)數(shù)學(xué)教學(xué)實(shí)踐?!镀胀ǜ咧袛?shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》修訂稿提出了數(shù)學(xué)學(xué)科的六種核心素養(yǎng),即數(shù)學(xué)抽象、直觀想象、數(shù)學(xué)建模、邏輯推理、數(shù)學(xué)運(yùn)算和數(shù)據(jù)分析。其中,數(shù)學(xué)建模是六大數(shù)學(xué)核心素養(yǎng)之一。提升數(shù)學(xué)核心素養(yǎng),要求數(shù)學(xué)教師在課堂教學(xué)中強(qiáng)化學(xué)生的建模意識。教師在教學(xué)中通過設(shè)置數(shù)學(xué)建?;顒?,培養(yǎng)學(xué)生的建模能力。

數(shù)學(xué)建模是將實(shí)際問題中的因素進(jìn)行簡化,抽象變成數(shù)學(xué)中的參數(shù)和變量,運(yùn)用數(shù)學(xué)理論進(jìn)行求解和驗(yàn)證,并確定最終是否能夠用于解決問題的多次循環(huán)。數(shù)學(xué)建模能力包括轉(zhuǎn)化能力、數(shù)學(xué)知識應(yīng)用能力、創(chuàng)造力和溝通與合作能力。

1.精心設(shè)計導(dǎo)學(xué)案,引導(dǎo)學(xué)生通過自主探究進(jìn)行建模。

在新授課前,教師設(shè)計前置性學(xué)習(xí)導(dǎo)學(xué)案,為學(xué)生掃除知識性和方向性的障礙。通過導(dǎo)學(xué)案,引導(dǎo)學(xué)生去探究問題的關(guān)鍵,對模型的構(gòu)建先有一個初步的自主學(xué)習(xí)過程。通過自主學(xué)習(xí)探究,讓學(xué)生充分暴露問題,提高模型教學(xué)的針對性。在前置性學(xué)習(xí)導(dǎo)學(xué)案設(shè)計的問題的啟發(fā)與引導(dǎo)下,學(xué)生會逐步學(xué)習(xí)、研究和應(yīng)用數(shù)學(xué)模型,形成解決問題的新方法,強(qiáng)化建模意識和參與實(shí)踐的意識。例如,教師在引導(dǎo)學(xué)生構(gòu)建關(guān)于測量類模型時,設(shè)計的導(dǎo)學(xué)案應(yīng)提醒學(xué)生對測量物體進(jìn)行抽象化理解,并掌握基本常識。教師應(yīng)鼓勵學(xué)生采用多種不同的測量方式,分析并優(yōu)化所得數(shù)據(jù)。通過引導(dǎo)學(xué)生自主探究,讓學(xué)生探索并歸納不同條件下的模型建立的方法,培養(yǎng)學(xué)生的建模維能力。

2.在教學(xué)環(huán)節(jié)中融入數(shù)學(xué)模型教學(xué)。

教師在教學(xué)的各個環(huán)節(jié)都可以融入數(shù)學(xué)模型教學(xué)。例如,教師在新課教學(xué)時,應(yīng)注意滲透數(shù)學(xué)建模思想,讓學(xué)生將新授課中的數(shù)學(xué)知識點(diǎn)與實(shí)際生活相聯(lián)系,將實(shí)際生活中與數(shù)學(xué)相關(guān)的案例引入課堂教學(xué),引導(dǎo)學(xué)生將案例內(nèi)化為數(shù)學(xué)應(yīng)用模型,以此激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的興趣。在不同教學(xué)環(huán)節(jié),教師通過聯(lián)系現(xiàn)實(shí)生活中熟悉的事例,將教材上的內(nèi)容生動地展示給學(xué)生,從而強(qiáng)化學(xué)生運(yùn)用數(shù)學(xué)模型解決實(shí)際問題的能力。

教師通過描述數(shù)學(xué)問題產(chǎn)生的背景,以問題背景為導(dǎo)向,開展新授課的學(xué)習(xí)。教師在復(fù)習(xí)課教學(xué)環(huán)節(jié),注重提煉和總結(jié)解題模型,培養(yǎng)學(xué)生的轉(zhuǎn)換能力,讓學(xué)生多方位認(rèn)識和運(yùn)用數(shù)學(xué)模型。相對而言,高中階段的數(shù)學(xué)問題更加注重知識的綜合考查,對思維的靈活性要求較高。高中階段考查的數(shù)學(xué)知識、解題方法以及數(shù)學(xué)思想基本不變,設(shè)置的題目形式相對穩(wěn)定。因此,教師應(yīng)適當(dāng)引導(dǎo),合理啟發(fā),對答題思路進(jìn)行分析,逐步系統(tǒng)地構(gòu)建重點(diǎn)題型的解題模型。

3.結(jié)合教學(xué)實(shí)驗(yàn),開展數(shù)學(xué)建?;顒?。

教師在開展數(shù)學(xué)建?;顒訒r,應(yīng)結(jié)合教學(xué)實(shí)驗(yàn)。開展活動課和實(shí)踐課,可以促使學(xué)生進(jìn)行合作學(xué)習(xí)。教師要適時進(jìn)行數(shù)學(xué)實(shí)驗(yàn)教學(xué),可以每周布置一個教學(xué)實(shí)驗(yàn)課例,讓學(xué)生主動地從數(shù)學(xué)建模的角度解決問題。在教學(xué)實(shí)驗(yàn)中,以小組合作的形式,讓學(xué)生寫出實(shí)驗(yàn)報告。教師讓學(xué)生在課堂上進(jìn)行小組交流,并對各組的交流進(jìn)行總結(jié)。教學(xué)實(shí)驗(yàn)可以促使學(xué)生在探索中增強(qiáng)數(shù)學(xué)建模意識,提升數(shù)學(xué)核心素養(yǎng)。

4.在數(shù)學(xué)建模教學(xué)中,注重相關(guān)學(xué)科的聯(lián)系。

教師在數(shù)學(xué)建模教學(xué)中,應(yīng)注重選用數(shù)學(xué)與化學(xué)、物理、生物等科目相結(jié)合的跨學(xué)科問題進(jìn)行教學(xué)。教師可以從這些科目中選擇相關(guān)的應(yīng)用題,引導(dǎo)學(xué)生通過數(shù)學(xué)建模,應(yīng)用數(shù)學(xué)工具,解決其他學(xué)科的難題。例如,有些學(xué)生以為學(xué)好生物是與數(shù)學(xué)沒有關(guān)系的,因?yàn)楦咧猩飳W(xué)科是以描述性的語言為主的。這些學(xué)生缺乏理科思維,尚未樹立理科意識。例如,學(xué)生可以用數(shù)學(xué)上的概率的相加和相乘原理來解決生物上的一些遺傳病概率的計算問題,也可以用數(shù)學(xué)上的排列與組合分析生物上的減數(shù)分裂過程和配子的基因組成問題。又如,在學(xué)習(xí)正弦函數(shù)時,教師可以引導(dǎo)學(xué)生運(yùn)用模型函數(shù),寫出在物理學(xué)科中學(xué)到的交流圖像的數(shù)學(xué)表達(dá)式。這就需要教師在課堂教學(xué)中引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模。因此,教師在數(shù)學(xué)建模教學(xué)中,應(yīng)注意與其他學(xué)科的聯(lián)系。通過數(shù)學(xué)建模,幫助學(xué)生理解其他學(xué)科知識,強(qiáng)化學(xué)生的學(xué)習(xí)能力。注重數(shù)學(xué)與其他學(xué)科的聯(lián)系,是培養(yǎng)學(xué)生建模意識的重要途徑。

總之,教師在數(shù)學(xué)教學(xué)過程中,應(yīng)以學(xué)生為本,精心設(shè)計導(dǎo)學(xué)案,鼓勵學(xué)生自主探究和應(yīng)用數(shù)學(xué)模型。通過建模教學(xué),讓學(xué)生形成數(shù)學(xué)問題和實(shí)際問題相互轉(zhuǎn)化的數(shù)學(xué)應(yīng)用意識和建模意識。教師通過強(qiáng)化數(shù)學(xué)建模意識,讓學(xué)生掌握數(shù)學(xué)模型應(yīng)用的方法,可以使學(xué)生奠定堅實(shí)的數(shù)學(xué)基礎(chǔ),提升數(shù)學(xué)核心素養(yǎng)。

參考文獻(xiàn):

[1]鄭蘭,肖文平.基于問題驅(qū)動的數(shù)學(xué)建模教學(xué)理念的探索與時間[j].武漢船舶職業(yè)技術(shù)學(xué)院學(xué)報,20xx(4).

[2]王國君.高中數(shù)學(xué)建模教學(xué)[j].教育科學(xué)(引文版),20xx(8).

[3]李明振,齊建華.中學(xué)數(shù)學(xué)教師數(shù)學(xué)建模能力的培養(yǎng)[j].河南教育學(xué)院學(xué)報(自然科學(xué)版),20xx(2).

數(shù)學(xué)竟賽建模論文篇十

摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過程中進(jìn)行了分析。

數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段。可以說,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個小學(xué)數(shù)學(xué)教師都值得思考的問題。

數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實(shí)際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。

二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題。

對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運(yùn)用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。

三、選擇合適的題目作為建模案例。

在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。

四、引導(dǎo)學(xué)生主動進(jìn)行數(shù)學(xué)建模。

在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進(jìn)行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。

數(shù)學(xué)竟賽建模論文篇十一

數(shù)學(xué)建模隨著人類的進(jìn)步,科技的發(fā)展和社會的日趨數(shù)字化,應(yīng)用領(lǐng)域越來越廣泛,人們身邊的數(shù)學(xué)內(nèi)容越來越豐富。強(qiáng)調(diào)數(shù)學(xué)應(yīng)用及培養(yǎng)應(yīng)用數(shù)學(xué)意識對推動素質(zhì)教育的實(shí)施意義十分巨大。數(shù)學(xué)建模在數(shù)學(xué)教育中的地位被提到了新的高度,通過數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題,提高學(xué)生的綜合素質(zhì)。本文將結(jié)合數(shù)學(xué)應(yīng)用題的特點(diǎn),把怎樣利用數(shù)學(xué)建模解好數(shù)學(xué)應(yīng)用問題進(jìn)行剖析,希望得到同仁的幫助和指正。

一、數(shù)學(xué)應(yīng)用題的特點(diǎn)。

我們常把來源于客觀世界的實(shí)際,具有實(shí)際意義或?qū)嶋H背景,要通過數(shù)學(xué)建模的方法將問題轉(zhuǎn)化為數(shù)學(xué)形式表示,從而獲得解決的.一類數(shù)學(xué)問題叫做數(shù)學(xué)應(yīng)用題。數(shù)學(xué)應(yīng)用題具有如下特點(diǎn):

第一、數(shù)學(xué)應(yīng)用題的本身具有實(shí)際意義或?qū)嶋H背景。這里的實(shí)際是指生產(chǎn)實(shí)際、社會實(shí)際、生活實(shí)際等現(xiàn)實(shí)世界的各個方面的實(shí)際。如與課本知識密切聯(lián)系的源于實(shí)際生活的應(yīng)用題;與模向?qū)W科知識網(wǎng)絡(luò)交匯點(diǎn)有聯(lián)系的應(yīng)用題;與現(xiàn)代科技發(fā)展、社會市場經(jīng)濟(jì)、環(huán)境保護(hù)、實(shí)事政治等有關(guān)的應(yīng)用題等。

第二、數(shù)學(xué)應(yīng)用題的求解需要采用數(shù)學(xué)建模的方法,使所求問題數(shù)學(xué)化,即將問題轉(zhuǎn)化成數(shù)學(xué)形式來表示后再求解。

第三、數(shù)學(xué)應(yīng)用題涉及的知識點(diǎn)多。是對綜合運(yùn)用數(shù)學(xué)知識和方法解決實(shí)際問題能力的檢驗(yàn),考查的是學(xué)生的綜合能力,涉及的知識點(diǎn)一般在三個以上,如果某一知識點(diǎn)掌握的不過關(guān),很難將問題正確解答。

第一層次:直接建模。

根據(jù)題設(shè)條件,套用現(xiàn)成的數(shù)學(xué)公式、定理等數(shù)學(xué)模型,注解圖為:

第二層次:直接建模??衫矛F(xiàn)成的數(shù)學(xué)模型,但必須概括這個數(shù)學(xué)模型,對應(yīng)用題進(jìn)行分析,然后確定解題所需要的具體數(shù)學(xué)模型或數(shù)學(xué)模型中所需數(shù)學(xué)量需進(jìn)一步求出,然后才能使用現(xiàn)有數(shù)學(xué)模型。

第三層次:多重建模。對復(fù)雜的關(guān)系進(jìn)行提煉加工,忽略次要因素,建立若干個數(shù)學(xué)模型方能解決問題。

第四層次:假設(shè)建模。要進(jìn)行分析、加工和作出假設(shè),然后才能建立數(shù)學(xué)模型。如研究十字路口車流量問題,假設(shè)車流平穩(wěn),沒有突發(fā)事件等才能建模。

三、建立數(shù)學(xué)模型應(yīng)具備的能力。

從實(shí)際問題中建立數(shù)學(xué)模型,解決數(shù)學(xué)問題從而解決實(shí)際問題,這一數(shù)學(xué)全過程的教學(xué)關(guān)鍵是建立數(shù)學(xué)模型,數(shù)學(xué)建模能力的強(qiáng)弱,直接關(guān)系到數(shù)學(xué)應(yīng)用題的解題質(zhì)量,同時也體現(xiàn)一個學(xué)生的綜合能力。

1提高分析、理解、閱讀能力。

2強(qiáng)化將文字語言敘述轉(zhuǎn)譯成數(shù)學(xué)符號語言的能力。

3增強(qiáng)選擇數(shù)學(xué)模型的能力。

4加強(qiáng)數(shù)學(xué)運(yùn)算能力。

數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。

數(shù)學(xué)竟賽建模論文篇十二

走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡稱。

“走進(jìn)美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇是中國少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動。20xx年,由國際數(shù)學(xué)家大會組委會、中國數(shù)學(xué)會、中國教育學(xué)會、中國少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國三十多個城市近三十萬人參與了此項(xiàng)活動,在全國青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇活動是一項(xiàng)面對小學(xué)三年級至初中二年級學(xué)生的綜合性數(shù)學(xué)活動。通過“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對抗賽”等一系列內(nèi)容豐富的活動提高廣大中小學(xué)生的數(shù)學(xué)建模意識和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過程的轉(zhuǎn)變,從而進(jìn)一步推動我國數(shù)學(xué)文化的傳播與普及。

“走美”活動已連續(xù)舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導(dǎo)員工作綱要(試行)》,向全國少年兒童推廣。

“走美”作為數(shù)學(xué)競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發(fā)展,近年來在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注??陀^地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。

1、活動對象。

全國各地小學(xué)三年級至初中二年級學(xué)生。

2、總成績計算。

筆試獲獎率:

一等獎5%,二等獎10%,三等獎15%。

3、筆試時間。

每年3月上、中旬。

報名截止時間:每年12月底。

走美杯比賽流程。

1、全國組委會下發(fā)通知,各地組委會開始組織工作。

2、學(xué)生到當(dāng)?shù)亟M委會報名,填寫《報名表》。

3、各地組委會將報名學(xué)生名單全部匯總至全國組委會。

4、全國“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國統(tǒng)一筆試)。

6、全國組委會公布初賽獲獎名單并頒發(fā)獲獎證書。

7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學(xué)數(shù)學(xué)交流活動。

8、各地按照組委會要求提交數(shù)學(xué)建模小論文。

9、前各地組委會上報參加全國總論壇學(xué)生名單。

10、全國總論壇和表彰活動。

數(shù)學(xué)竟賽建模論文篇十三

信息化時代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實(shí)問題化為數(shù)學(xué)問題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對解決現(xiàn)實(shí)問題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。

大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。

2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。

2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對課程體系進(jìn)行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。

2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開展融入式教學(xué)的實(shí)驗(yàn)班級,對數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計相應(yīng)的考察量表,從運(yùn)用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對策。

3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。

這樣,在解決實(shí)際問題的時候,學(xué)生就會有意識地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。

此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。

數(shù)學(xué)竟賽建模論文篇十四

將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過程中去,是我們當(dāng)前開展應(yīng)用數(shù)學(xué)教育的未來發(fā)展趨勢,怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會經(jīng)濟(jì)的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實(shí)際問題解決中的重要作用,是我們當(dāng)前進(jìn)行應(yīng)用數(shù)學(xué)研究的核心問題,而建模思想在應(yīng)用數(shù)學(xué)中的運(yùn)用則能夠很好的解決這一問題。

數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實(shí)際問題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機(jī)地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問題的有效方法。事實(shí)上,數(shù)學(xué)發(fā)展的根本原動力,它的最初的根源,是來自客觀實(shí)際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來龍去脈,揭示數(shù)學(xué)概念和公式的實(shí)際來源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會生產(chǎn)力的不斷發(fā)展,多個學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運(yùn)用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會經(jīng)濟(jì)發(fā)展的各個行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應(yīng)用數(shù)學(xué)發(fā)展的新機(jī)遇。

數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計算機(jī)網(wǎng)絡(luò)在社會生活中的廣泛運(yùn)用,人們對于實(shí)踐問題的解決要求越來越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運(yùn)用帶來了前所未有的機(jī)遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識,開展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識,而且還能夠?qū)I(yè)知識同建模密切結(jié)合在一起,對于專業(yè)知識的有效掌握是非常有益的。

3.1充分重視建模的橋梁作用。

建模是實(shí)現(xiàn)數(shù)學(xué)知識與現(xiàn)實(shí)問題相聯(lián)系的橋梁與紐帶,通過進(jìn)行建模能夠有效的`將實(shí)際問題進(jìn)行簡化。在這一轉(zhuǎn)化的過程中,應(yīng)當(dāng)深入實(shí)際進(jìn)行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對象的獨(dú)特特征及規(guī)律,構(gòu)建起反映實(shí)際問題的數(shù)學(xué)關(guān)系,運(yùn)用數(shù)學(xué)理論進(jìn)行問題的解決。這正是各個學(xué)科之間進(jìn)行有效聯(lián)系的結(jié)合點(diǎn),通過引進(jìn)建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實(shí)踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。

3.2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來。

我國當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計等幾個部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的建設(shè)以及其他學(xué)科對這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進(jìn)行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們在課堂上就能夠獲得更多的思考和討論的機(jī)會,能夠充分調(diào)動學(xué)生們的積極性,使其能夠立足實(shí)際進(jìn)行思考,這樣一來就形成了以實(shí)際問題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。

3.3積極參加數(shù)學(xué)模型課等相關(guān)課程與活動。

數(shù)學(xué)應(yīng)用綜合性的實(shí)驗(yàn),要求我們掌握數(shù)學(xué)知識的綜合性運(yùn)用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實(shí)例,然后學(xué)生上機(jī)實(shí)踐,強(qiáng)調(diào)學(xué)生的動手實(shí)踐。數(shù)學(xué)實(shí)驗(yàn)課應(yīng)該說是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。

上述幾個部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強(qiáng)建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過程中認(rèn)真掌握數(shù)學(xué)理論知識,還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實(shí)際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實(shí)踐過程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來看,加強(qiáng)創(chuàng)新意識以及將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題能力的培養(yǎng),提升綜合運(yùn)用本專業(yè)知識以來解決實(shí)踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。

[1]余荷香,趙益民.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].出國與就業(yè)(就業(yè)版),20xx(10).

[2]關(guān)淮海.培養(yǎng)數(shù)學(xué)建模思想與方法高職高專數(shù)學(xué)教改之趨勢[j].職大學(xué)報,20xx(02).

[3]李傳欣.數(shù)學(xué)建模在工程類專業(yè)數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].中國科教創(chuàng)新導(dǎo)刊,20xx(35).

[4]李秀林.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的探討[j].吉林省教育學(xué)院學(xué)報(學(xué)科版),20xx(08).

[5]吳健輝,黃志堅,汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教.學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報,20xx(04).

數(shù)學(xué)竟賽建模論文篇十五

高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個重要課題。在高校數(shù)學(xué)教學(xué)中開展數(shù)學(xué)建模競賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學(xué)的應(yīng)用能力。本文對高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)進(jìn)行了分析闡述,并對此進(jìn)行了一定的思考。

數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過運(yùn)用抽象性的數(shù)學(xué)語言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問題。當(dāng)前很多高校中開始引入數(shù)學(xué)建模思想來加強(qiáng)學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運(yùn)用數(shù)學(xué)邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學(xué)建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開始參與美國的數(shù)學(xué)建模大賽,促進(jìn)了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國首屆數(shù)學(xué)建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。

2.1數(shù)學(xué)建模競賽自主性較強(qiáng)。自主性首先體現(xiàn)在在數(shù)學(xué)建模過程中學(xué)生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進(jìn)行資料查閱和收集,建模比賽隊員可以根據(jù)自己的意見和思維進(jìn)行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競賽的組織形式呈現(xiàn)多元化特點(diǎn),組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒有標(biāo)準(zhǔn)答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數(shù)學(xué)建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學(xué)建模頗為重視,參賽隊伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團(tuán)隊在國際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓(xùn)日益加強(qiáng)。數(shù)學(xué)建模競賽對學(xué)生數(shù)學(xué)知識的掌握及靈活運(yùn)用、口套表達(dá)、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時間很長,培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競賽取得好成績奠定了堅實(shí)的基礎(chǔ)。

3.1學(xué)生的團(tuán)隊協(xié)作能力和意識得到增強(qiáng)。數(shù)學(xué)建模競賽的團(tuán)隊組織形式活潑自由,通常采用學(xué)生組隊模式開展,數(shù)學(xué)建模競賽隊伍形成一個團(tuán)結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽(yù),還一定程度上展示著國家的形象。經(jīng)過長時間的培訓(xùn),對數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢和特長,進(jìn)行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個數(shù)學(xué)建模,在建模過程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團(tuán)隊協(xié)作能力和意識得到鍛煉,責(zé)任感和榮譽(yù)感進(jìn)一步增強(qiáng),通過建模競賽彰顯團(tuán)隊的合作能力和中國數(shù)學(xué)建模方面的發(fā)展。

3.2高校學(xué)生參賽積極性高漲。近年來大學(xué)生數(shù)學(xué)建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。

3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運(yùn)用知識的能力得到提升。數(shù)學(xué)建模競賽充滿著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個展示。在數(shù)學(xué)建模競賽中,學(xué)生不僅要需要扎實(shí)豐厚的數(shù)學(xué)知識儲備,還需要具備清晰的數(shù)學(xué)邏輯思維和語言表達(dá)能力。同時要有機(jī)智的臨場發(fā)揮能力和應(yīng)變能力,不怯場、不驚慌,有充分的思想準(zhǔn)備,能輕松應(yīng)對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進(jìn)行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計清晰完整的傳達(dá)給評委和其他參賽選手。在這個過程中,無疑會使學(xué)生的數(shù)學(xué)邏輯思維和語言表達(dá)能力及靈活運(yùn)用數(shù)學(xué)知識的能力有一個較大的提升。

3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競賽對參賽學(xué)生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f數(shù)學(xué)建模過程中,有許多高深的知識難于理解,有的日常學(xué)習(xí)過程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時培訓(xùn)中的知識積淀,通過借助大量的工具書及參考資料,加上團(tuán)隊的`理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識,無疑這對學(xué)生的自學(xué)能力培養(yǎng)是一個很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學(xué)生的堅毅不畏難的品質(zhì)是一個很好的培養(yǎng)和磨煉。

3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀念得到增強(qiáng),能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學(xué)的嚴(yán)謹(jǐn)推導(dǎo)也使學(xué)生養(yǎng)成認(rèn)真細(xì)心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實(shí)踐,數(shù)學(xué)素養(yǎng)進(jìn)一步得到提升。

綜上所述,高校學(xué)生數(shù)學(xué)建模競賽的開展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團(tuán)隊合作能力、競爭能力、表達(dá)交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學(xué)建模競賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵全體學(xué)生參與數(shù)學(xué)建模競賽,通過競賽實(shí)現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。

[1]趙剛.高校數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).

[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實(shí)踐及其對培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).

[3]趙建英.數(shù)學(xué)建模競賽對高校創(chuàng)新人才培養(yǎng)的促進(jìn)作用分析[j].科技展望,20xx(08)5.

[4]畢波,杜輝.關(guān)于高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).

數(shù)學(xué)竟賽建模論文篇十六

數(shù)學(xué),源于人們對生產(chǎn)與生活實(shí)際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會各個領(lǐng)域.中考實(shí)際應(yīng)用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實(shí)際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實(shí)際問題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問、自主解決,體驗(yàn)做數(shù)學(xué)的過程,從而提高解決實(shí)際問題的能力.

一是教師未能實(shí)現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開學(xué)生“做”數(shù)學(xué)的過程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實(shí)際問題,其題目長、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.

1.自主探索原則.

學(xué)生長期處于師講、生聽的教學(xué)模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問題的`能力.

2.因材施教原則.

教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問題的解決方法。

3.可接受性原則.

數(shù)學(xué)建模內(nèi)容的設(shè)計,要符合學(xué)生的年齡特點(diǎn)和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計的問題不切實(shí)際,往往會扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實(shí)際,讓學(xué)生有能力解決問題.

數(shù)學(xué)竟賽建模論文篇十七

隨著社會的不斷發(fā)展和科學(xué)技術(shù)的進(jìn)步,數(shù)學(xué)在現(xiàn)實(shí)生活中的應(yīng)用越來越廣泛,尤其是計算機(jī)技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會各個領(lǐng)域中的實(shí)際問題的應(yīng)用越來越深入。本文筆者簡要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義和方法。

所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過程,也就是說用公式、符號和圖表等數(shù)學(xué)語言來刻畫和描述一個實(shí)際問題,再經(jīng)過計算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語對一部分現(xiàn)實(shí)世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實(shí)際,將實(shí)際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來解決問題的一種思想。

在新形勢下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。

(1)數(shù)學(xué)知識在各個領(lǐng)域的應(yīng)用越來越廣泛。如今數(shù)學(xué)知識在各個領(lǐng)域的應(yīng)用越來越廣泛,尤其是在經(jīng)濟(jì)學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟(jì)學(xué)獎以來,就有不少理論成果來自利用數(shù)學(xué)工具分析經(jīng)濟(jì)問題。事實(shí)上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎?wù)?,其中擁有?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計占52.8%;其中共有29位諾貝爾經(jīng)濟(jì)學(xué)獎的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟(jì)學(xué)獎獲得者都運(yùn)用了數(shù)學(xué)方法來研究經(jīng)濟(jì)學(xué)理論。除了在經(jīng)濟(jì)領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進(jìn)了基因科學(xué),例如基因表達(dá)的定型、基因組測序、基因分類等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型??梢姅?shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對其他領(lǐng)域的發(fā)展起著重要的推動作用。

(2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識的講解和傳授,對知識點(diǎn)的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類型題”的方式去復(fù)習(xí)知識點(diǎn)。這樣的方式雖然能夠讓學(xué)生掌握一部分?jǐn)?shù)學(xué)知識,可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運(yùn)用數(shù)學(xué)知識來解決生活中的實(shí)際問題,這樣就使數(shù)學(xué)活了起來,而不是死的理論知識。運(yùn)用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會數(shù)學(xué)的價值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動力,讓學(xué)生主動參與學(xué)習(xí)而非被動學(xué)習(xí),取得的教學(xué)效果會更好。

(3)是加強(qiáng)數(shù)學(xué)教學(xué)改革,適應(yīng)時代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動中,許多學(xué)生常常陷入這樣的困惑之中:花費(fèi)了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門很有用的課程,但是卻舉不出現(xiàn)實(shí)的例子。并且傳統(tǒng)的教學(xué)方式也只是教會學(xué)生掌握簡單的理論知識,并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類課程之中就能很好地解決這些問題。因?yàn)閷?shù)學(xué)建模思想運(yùn)用到數(shù)學(xué)類課程中,就能夠讓學(xué)生在獨(dú)立思考和探索中感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的實(shí)用價值,提高學(xué)生運(yùn)用數(shù)學(xué)的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識。

(1)教師在教學(xué)過程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開展大學(xué)數(shù)學(xué)類課程時,仍然只是停留在數(shù)學(xué)知識的教學(xué)方面,并沒有對學(xué)生進(jìn)行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對日常的教學(xué)工作能夠認(rèn)真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少??梢姸鄶?shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識及經(jīng)驗(yàn),在實(shí)際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運(yùn)用。

(2)開設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動較少。雖然數(shù)學(xué)建模思想得到了越來越廣泛的應(yīng)用,但是在高校中實(shí)際開設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實(shí)驗(yàn)以及計算機(jī)應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實(shí)際的教學(xué)過程中并沒有創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開展的有關(guān)數(shù)學(xué)建模競賽和活動并不多,宣傳力度也不夠,無法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價值,更無法參與到數(shù)學(xué)建?;顒又腥?。

(3)學(xué)生對數(shù)學(xué)的態(tài)度和觀念還未改變,對數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對大學(xué)數(shù)學(xué)類課程以及數(shù)學(xué)建模沒有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒有見識到數(shù)學(xué)的應(yīng)用性,覺得數(shù)學(xué)是一門純理論的課程,沒有實(shí)用價值。同時很多學(xué)生對數(shù)學(xué)建模思想的運(yùn)用并不夠了解,不知道如何將數(shù)學(xué)知識和數(shù)學(xué)方法應(yīng)用到實(shí)際的生活中去,覺得數(shù)學(xué)沒有用,也沒有深入學(xué)習(xí)的意義。

(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類課程主要有“線性代數(shù)”、“高等數(shù)學(xué)”、“運(yùn)籌學(xué)”、“數(shù)學(xué)建模”、“概率論與數(shù)理統(tǒng)計”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對于主修數(shù)學(xué)的學(xué)生,要加強(qiáng)對計算機(jī)軟件和語言的學(xué)習(xí),系統(tǒng)性地對數(shù)學(xué)原理進(jìn)行剖解和分析,合理運(yùn)用數(shù)學(xué)知識和數(shù)學(xué)方法解決社會實(shí)際問題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對生活問題和科學(xué)問題的深入研究,主動結(jié)合自己的課程理論知識和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個學(xué)習(xí)過程中去。對于非數(shù)學(xué)領(lǐng)域的問題,要啟發(fā)學(xué)生運(yùn)用計算機(jī)軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問題。

(2)多開設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類課程。例如除了開設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機(jī)會,為學(xué)生拓展知識領(lǐng)域,為其解決該領(lǐng)域的問題提供有效的方法。例如,經(jīng)濟(jì)學(xué)有關(guān)專業(yè)的學(xué)生就可以通過選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟(jì)學(xué)中遇到的問題,因?yàn)楹芏喔?jīng)濟(jì)學(xué)有關(guān)的問題僅僅靠經(jīng)濟(jì)學(xué)的知識是無法解決的,像貸款計算這樣的問題就要將數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系起來才能解決實(shí)際問題。

(3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價值。學(xué)生是教學(xué)過程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的參與性,促進(jìn)數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程的融合就必須加強(qiáng)宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時,在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對社會實(shí)際生活的重要作用,轉(zhuǎn)變他們對數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。

(4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點(diǎn)放在數(shù)學(xué)知識在生活中的應(yīng)用問題上,而不是將知識與實(shí)際生活割裂開來。同時在教學(xué)中要注重證明和推理,加強(qiáng)學(xué)生對數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對實(shí)際問題的邏輯分析、簡化、抽象并運(yùn)用數(shù)學(xué)語言表達(dá)的能力。也就是說教學(xué)的重點(diǎn)在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強(qiáng)數(shù)學(xué)意識和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識的人才。

(5)多開展數(shù)學(xué)建?;顒雍透傎?,提高學(xué)生參與性。在高校內(nèi)部要多開展跟數(shù)學(xué)有關(guān)的活動和競賽以及專家講座等,一方面加強(qiáng)學(xué)生對數(shù)學(xué)建模的認(rèn)識,另一方面也提高了學(xué)生的參與性。通過專家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價值,也加強(qiáng)了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過數(shù)學(xué)建模競賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺。同時,競賽也可以讓學(xué)生在競賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過讓學(xué)生探究跟生活實(shí)際有關(guān)的例子,提高學(xué)生對數(shù)學(xué)建模的興趣,加強(qiáng)學(xué)生對模型應(yīng)用的直觀性認(rèn)識,促進(jìn)學(xué)校應(yīng)用型人才的培養(yǎng)。

總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類課程的融合,對于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運(yùn)用數(shù)學(xué)思想和數(shù)學(xué)方法分析問題、解決問題和抽象思維的能力。高校教師要加強(qiáng)數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實(shí)際問題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專業(yè)課的學(xué)習(xí)奠定堅實(shí)的數(shù)學(xué)基礎(chǔ)。

數(shù)學(xué)竟賽建模論文篇十八

就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對學(xué)生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實(shí)例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動力。

(二)教學(xué)方法傳統(tǒng)化。

教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動參與學(xué)習(xí)。

二、建模在高等數(shù)學(xué)教學(xué)中的作用。

對學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進(jìn)行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動以及教研活動,其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實(shí)的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識、實(shí)際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會對復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。

高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實(shí)世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達(dá)能力。在實(shí)際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗(yàn)現(xiàn)實(shí)的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動地、客觀的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。

三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施。

(一)在公式中使用建模思想。

在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對計算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實(shí)例開展教學(xué)。

(二)講解習(xí)題的時候使用數(shù)學(xué)模型的方式。

課本例題使用建模思想進(jìn)行解決,老師通過對例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認(rèn)識在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。

(三)組織學(xué)生積極參加數(shù)學(xué)建模競賽。

一般而言,在競賽中可以很好地鍛煉學(xué)生競爭意識以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競賽,在實(shí)踐中鍛煉學(xué)生的實(shí)際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨(dú)自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學(xué)習(xí),改正錯誤,提升自身的能力。

四、結(jié)束語。

高等數(shù)學(xué)主要對學(xué)生從理論學(xué)習(xí)走向解決實(shí)際問題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對高數(shù)知識更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。

參考文獻(xiàn)。

[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等專科學(xué)校學(xué)報,20xx(02):119—120。

[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實(shí)踐[j]。教育實(shí)踐與改革,20xx(04):177—178,189。

[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長春教育學(xué)院學(xué)報,20xx(30):89,95。

[4]劉合財。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽學(xué)院學(xué)報,20xx(03):63—65。

數(shù)學(xué)竟賽建模論文篇十九

高校學(xué)生社團(tuán)是一種具有共同興趣愛好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂和學(xué)術(shù)型的活動的團(tuán)體。學(xué)生社團(tuán)以其鮮明的開放性、自主性以及多樣性等特點(diǎn),為一些有特長的學(xué)生提供了廣闊的舞臺,讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進(jìn)其更好的成才。全國大學(xué)生數(shù)學(xué)建模競賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會共同承辦的一個科技性的賽事,該比賽要通過數(shù)學(xué)和計算機(jī)的知識來解決實(shí)際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊員是件費(fèi)神的事情,因此,為了更好的為數(shù)學(xué)建模競賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團(tuán)“數(shù)學(xué)建模協(xié)會”也就應(yīng)運(yùn)而生。數(shù)學(xué)建模協(xié)會的成立,可以更好的為學(xué)生提供一個展示自己的機(jī)會,可以增強(qiáng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會為例,探討高職數(shù)學(xué)建模社團(tuán)活動開展的形式和意義。

(一)數(shù)學(xué)建模社團(tuán)有利于數(shù)學(xué)建模競賽的開展。高職數(shù)學(xué)建模協(xié)會為數(shù)學(xué)建模競賽搭建了一個平臺,是數(shù)學(xué)建模競賽強(qiáng)有力的后盾,數(shù)學(xué)建模競賽成績的取得與這個平臺密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團(tuán)的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競賽中。大學(xué)校園中有許多數(shù)學(xué)愛好者,他們對數(shù)學(xué)建模也有一定的認(rèn)識,只要有參加數(shù)學(xué)建模活動的愿望的,都可以利用數(shù)學(xué)建模協(xié)會招新的機(jī)會,加入數(shù)學(xué)建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學(xué)生邀請加入數(shù)學(xué)建模協(xié)會,對進(jìn)一步擴(kuò)大數(shù)學(xué)建模協(xié)會,夯實(shí)數(shù)學(xué)建?;A(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會起著知識傳播的作用高職院校學(xué)生在校學(xué)習(xí)時間較短,學(xué)業(yè)較為繁重,課余時間較少,數(shù)學(xué)建模培訓(xùn)的時間不足,無法讓學(xué)生在短時期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識。因此,利用數(shù)學(xué)建模協(xié)會活動可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識。采用“老帶新”的模式進(jìn)行數(shù)學(xué)建模知識的普及。通過制定系統(tǒng)的培訓(xùn)方案,在每年秋季競賽后,參加過競賽的同學(xué)對新入?yún)f(xié)會的成員可以進(jìn)行初級培訓(xùn),為今后的競賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團(tuán)起著選拔學(xué)生的作用每年數(shù)學(xué)建模競賽的隊員需要通過校內(nèi)賽等形式進(jìn)行選拔,此時,數(shù)學(xué)建模協(xié)會就起著校內(nèi)賽命題及選拔隊員的作用,當(dāng)然這種選拔方式也有的弊端,就是所有隊員都是來自校內(nèi)賽成績優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計算機(jī)技術(shù)水平優(yōu)秀的學(xué)生就沒法參加數(shù)學(xué)建模競賽。為確保每一位有能力的學(xué)生都能夠加入到建模競賽隊伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競賽。(二)數(shù)學(xué)建模社團(tuán)有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團(tuán)屬于專業(yè)的學(xué)術(shù)性社團(tuán),成立的目的是為了參加全國大學(xué)生數(shù)學(xué)建模競賽,數(shù)學(xué)建模社團(tuán)活動的趣味性和實(shí)踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競賽的熱情。社團(tuán)活動中的培訓(xùn)使學(xué)生可以更好的應(yīng)對競賽,取得更好的成績。另外,競賽之余還可以進(jìn)行其他領(lǐng)域的學(xué)術(shù)交流,比如計算機(jī),經(jīng)濟(jì),工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進(jìn)行一些創(chuàng)新創(chuàng)業(yè)的活動,具有更多的實(shí)踐的機(jī)會。比如,可以利用平時社團(tuán)所學(xué)的知識,以團(tuán)體的形式進(jìn)行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進(jìn)行一些微信群講座等等。這樣可以讓學(xué)生真正體會到數(shù)學(xué)的用處,達(dá)到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的學(xué)術(shù)性社團(tuán),社團(tuán)的組織機(jī)構(gòu)都是學(xué)生在擔(dān)任,社團(tuán)的活動也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時候社團(tuán)的老成員都可以輔助老師進(jìn)行社團(tuán)的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時還鍛煉了他們的處事應(yīng)變能力團(tuán)隊合作的能力,可以說提高了學(xué)生的綜合素質(zhì)。

(一)數(shù)學(xué)建模社團(tuán)的管理形式。數(shù)學(xué)建模協(xié)會作為一個學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個管理面”來進(jìn)行社團(tuán)管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個主要是通過“社團(tuán)內(nèi)部進(jìn)行學(xué)術(shù)交流活動”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報告。老帶新培訓(xùn)是指社團(tuán)主席團(tuán)成員(一般是參加過前一年全國大學(xué)生數(shù)學(xué)建模競賽的學(xué)生)為新入社團(tuán)的學(xué)生進(jìn)行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對他們集訓(xùn)時的內(nèi)容,這種培訓(xùn)方式可以提升社團(tuán)成員的授課和理解問題的能力,對于在校大學(xué)生來說是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺等開展社團(tuán)成員之間的交流互動,社團(tuán)宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會每一屆社團(tuán)都有相應(yīng)的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學(xué)建模,擴(kuò)大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)?!钡牧己玫慕逃h(huán)境,使建?;顒訌V泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團(tuán)聯(lián)誼會等交流活動,既可以豐富數(shù)學(xué)建模社團(tuán)學(xué)生的知識面,又能促進(jìn)數(shù)學(xué)知識的理解和吸收,通過與其他社團(tuán)的聯(lián)誼,豐富了社團(tuán)學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團(tuán)好的管理經(jīng)驗(yàn),促進(jìn)社團(tuán)管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學(xué)生社團(tuán)。(二)數(shù)學(xué)建模社團(tuán)的特色活動。數(shù)學(xué)建模社團(tuán)在開展學(xué)術(shù)活動和輔助教師進(jìn)行競賽培訓(xùn)的同時,還不定期的舉行一些活動,在提高學(xué)生學(xué)習(xí)興趣的同時也以擴(kuò)大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建模活動。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會納新,數(shù)學(xué)建模創(chuàng)新協(xié)會趣味運(yùn)動會,數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識競賽,數(shù)學(xué)建模經(jīng)驗(yàn)交流會,數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團(tuán)活動貫穿整個學(xué)年,不僅可以“由點(diǎn)及面、由淺入深”的對全國大學(xué)生數(shù)學(xué)建模競賽進(jìn)行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團(tuán)變得豐富多彩,成為學(xué)生課后獲取知識的一種平臺,同時也是社團(tuán)蓬勃發(fā)展的利器。

總之,數(shù)學(xué)建模社團(tuán)活動的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動了學(xué)生參加學(xué)術(shù)型社團(tuán)的積極性,同時也是高職院校組織參加數(shù)學(xué)建模競賽的強(qiáng)有力的后盾。

[1]胡建茹,王搖娟.加強(qiáng)專業(yè)社團(tuán)建設(shè)推進(jìn)大學(xué)生創(chuàng)新實(shí)踐能力培養(yǎng)[j].中國石油大學(xué)學(xué)報:社會科學(xué)版,20xx(12)。

[2]王珍娥,宋維,孫潔.?dāng)?shù)學(xué)社團(tuán)建設(shè)的探索與實(shí)踐[j].機(jī)械職業(yè)教育,20xx(7)。

[3]李湘玲,王泳興.大學(xué)生社團(tuán)發(fā)展與創(chuàng)新型人才培養(yǎng)互動機(jī)制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)。

[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)。

作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識教育學(xué)院。

數(shù)學(xué)竟賽建模論文篇二十

對于高職院校的學(xué)生來講,數(shù)學(xué)在其教學(xué)過程中起著基礎(chǔ)性的作用,對于學(xué)生后續(xù)的學(xué)習(xí)相當(dāng)關(guān)鍵。但是從現(xiàn)階段高職院校數(shù)學(xué)教學(xué)的基本情況來看,數(shù)學(xué)教師的教學(xué)方法以及教學(xué)策略都相當(dāng)落后,對于學(xué)生數(shù)學(xué)興趣的提升造成了不同程度的影響。在這樣的背景下,相關(guān)專家提出了數(shù)學(xué)建模的方式,希望以此提升高職院校高等數(shù)學(xué)的教學(xué)效率。本文結(jié)合數(shù)學(xué)建模在高職高專人才培養(yǎng)當(dāng)中的意義和作用入手,對于其中的應(yīng)用策略進(jìn)行全面的分析,希望為相關(guān)單位提供一個全面的參考。

隨著我國社會的發(fā)展,經(jīng)濟(jì)產(chǎn)業(yè)結(jié)構(gòu)日益升級,因此高等院校的人才需求日益擴(kuò)大,對于高職教育的發(fā)展提供了前所未有的契機(jī)。在這樣的背景下,從數(shù)學(xué)建模入手,將其思想融入到高等教育的數(shù)學(xué)教學(xué)當(dāng)中,對于其中的策略和方法進(jìn)行全面的研究應(yīng)該是一項(xiàng)具有普遍現(xiàn)實(shí)意義的工作。

從近些年的發(fā)展來看,參加過數(shù)學(xué)競賽的學(xué)生在科研能力等方面都具有比其他同學(xué)更強(qiáng)的優(yōu)勢,因此數(shù)學(xué)建模在提升學(xué)生創(chuàng)新能力、提高學(xué)生知識水平以及調(diào)動學(xué)生的.學(xué)習(xí)興趣都具有十分重要的意義。比如在解決實(shí)際問題的時候,數(shù)學(xué)建模通過利用各種技巧,可以使得學(xué)生分析問題、創(chuàng)造能力得以全面的提升,進(jìn)而使得學(xué)生在摒棄原始思考問題方式的基礎(chǔ)上,敢于向傳統(tǒng)的知識發(fā)出挑戰(zhàn),對于學(xué)生的綜合能力的全面提升相當(dāng)關(guān)鍵。其次,數(shù)學(xué)知識本就源于生活,因此在建模的基礎(chǔ)上學(xué)生就可以帶著問題去思考,這對于數(shù)學(xué)知識整體性的發(fā)揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統(tǒng)數(shù)學(xué)的解決方式,很多學(xué)生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數(shù)學(xué)建模方式,學(xué)生會發(fā)現(xiàn)數(shù)學(xué)方法的靈活性,進(jìn)而使得他們解決問題的能力得以全面的提升。

3.1制定切實(shí)可行的教學(xué)大綱,從而使得教學(xué)進(jìn)度得以保障。教學(xué)大綱在高職教學(xué)當(dāng)中起著十分重要的作用,這對于教學(xué)內(nèi)容的合理性以及提升學(xué)生學(xué)習(xí)的針對性都具有十分重要的意義[1]。比如在教學(xué)高等數(shù)學(xué)(一)的選修模塊時,教學(xué)大綱的制定應(yīng)該結(jié)合學(xué)生的專業(yè),從而使得學(xué)生的數(shù)學(xué)學(xué)習(xí)真正取得實(shí)效。比如可以為理工類的學(xué)生選擇無窮級數(shù)以及傅里葉變換的內(nèi)容;機(jī)械類的學(xué)生選擇線性代數(shù)以及解析幾何作為教學(xué)內(nèi)容,從而使得學(xué)生的綜合能力得以全面的提升。3.2開展“三段式”的教學(xué)模式。數(shù)學(xué)建模在以解決實(shí)際問題為核心的過程中,使得學(xué)生分析問題以及組織問題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學(xué)模式分割開來,這就需要相關(guān)部門開展“三段式”的教學(xué)模式,使得學(xué)生的數(shù)學(xué)興趣得以全面的提升。其中,第一段需要還原數(shù)學(xué)知識的原創(chuàng)過程,使得學(xué)生明確數(shù)學(xué)知識的產(chǎn)生過程,進(jìn)而讓學(xué)生從生活案例當(dāng)中發(fā)現(xiàn)數(shù)學(xué)的價值,比如知道極限是由人影的長度變化引起的,導(dǎo)數(shù)是由于駕車的速度引入的,使得學(xué)生發(fā)現(xiàn)知識的價值,進(jìn)而就會大大提升自己的學(xué)習(xí)興趣和探究意識。第二段:講解數(shù)學(xué)知識。數(shù)學(xué)建模是在實(shí)際問題當(dāng)中引入的,因此要通過具體數(shù)學(xué)知識的講解使得學(xué)生明確數(shù)學(xué)建模的真正價值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學(xué)生對于數(shù)學(xué)的分析能力真正得以提升[2]。然后在為學(xué)生積極引入大量數(shù)學(xué)圖表的基礎(chǔ)上,為增強(qiáng)學(xué)生的感性認(rèn)識,進(jìn)而提升學(xué)生的綜合能力奠定堅實(shí)的基礎(chǔ)。第三段:數(shù)學(xué)知識的運(yùn)用。隨著社會的發(fā)展,數(shù)學(xué)的應(yīng)用在各行各業(yè)都發(fā)揮出巨大的作用,因此對于高等數(shù)學(xué)在實(shí)際生活當(dāng)中發(fā)揮出來的作用進(jìn)行全面的探究是實(shí)現(xiàn)這種知識價值的真正途徑。在這樣的背景下,高等數(shù)學(xué)教師要將每個知識點(diǎn)的運(yùn)用真正灌輸給學(xué)生,比如指數(shù)增長在銀行計息當(dāng)中的應(yīng)用、定積分在學(xué)習(xí)曲線當(dāng)中的應(yīng)用、再生資源在數(shù)學(xué)開發(fā)以及管理當(dāng)中的應(yīng)用等等。從而使得學(xué)生數(shù)學(xué)學(xué)習(xí)中的創(chuàng)新意識以及應(yīng)用能力得以全面的提升。3.3開設(shè)數(shù)學(xué)實(shí)驗(yàn),提升學(xué)生的綜合素質(zhì)。數(shù)學(xué)建模為學(xué)生提供了一種真正的“數(shù)學(xué)實(shí)驗(yàn)”,在這種實(shí)驗(yàn)的過程中,學(xué)生對于數(shù)學(xué)知識的發(fā)展以及由來過程都會得到進(jìn)行全面的考慮,這對于他們數(shù)學(xué)探索意識的提升具有十分重要的意義。另外,在計算機(jī)輔助實(shí)驗(yàn)的過程中,學(xué)生的動腦能力也會得到全面的提升,這對于學(xué)生主動的學(xué)習(xí)數(shù)學(xué)相當(dāng)關(guān)鍵。因此在教學(xué)過程中,教師要積極利用這種方式對于學(xué)生進(jìn)行全面的培養(yǎng)。

總之,隨著我國經(jīng)濟(jì)水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當(dāng)中數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)當(dāng)中的應(yīng)用進(jìn)行全面的分析是實(shí)現(xiàn)學(xué)生綜合素質(zhì)得以全面提升的關(guān)鍵措施,這對于學(xué)生的長遠(yuǎn)發(fā)展也相當(dāng)關(guān)鍵,相關(guān)教育工作者要加大在這方面的研究力度,力求將高職院校的學(xué)生培養(yǎng)成為新時代所需要的人才。

[1]吳健輝,黃志堅,汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報,20xx,(4).

[2]張卓飛.將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)的探討[j].湘潭師范學(xué)院學(xué)報(自然科學(xué)版),20xx,(1).

【本文地址:http://mlvmservice.com/zuowen/18859221.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔