絕對值與相反數(shù)教案(優(yōu)質(zhì)16篇)

格式:DOC 上傳日期:2023-11-27 07:53:14
絕對值與相反數(shù)教案(優(yōu)質(zhì)16篇)
時間:2023-11-27 07:53:14     小編:念青松

教案可以幫助教師更好地組織教學資源和教學活動。教案的編寫應該注意教學資源的選擇和利用。以下是小編為大家整理的一些優(yōu)秀教案范例,供大家參考借鑒。

絕對值與相反數(shù)教案篇一

一、學習與導學目標:

情感態(tài)度:通過創(chuàng)設情境,初步感悟?qū)W習絕對值的必要性,促進責任心的形成。

二、學程與導程活動:

a、創(chuàng)設情境(幻燈片或掛圖)。

1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。

再如測量誤差問題、排球重量誰更接近標準問題……。

2、在討論數(shù)軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。

b、學習概念:

1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。

如在數(shù)軸上表示數(shù)-6的點和表示數(shù)6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)。

2、嘗試回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;。

(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;。

(3)︱0︱=。(幻燈片)。

思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導學生得出:(幻燈片)。

性質(zhì):一個正數(shù)的絕對值是它本身;。

如果用字母a表示有理數(shù),上述性質(zhì)可表述為:

當a是正數(shù)時,︱a︱=a;。

當a是負數(shù)時,︱a︱=-a;。

當a=0時,︱a︱=0。

解答課本p19/7及p15練習,由p19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數(shù)軸,引出問題:

在引入負數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負數(shù)的大小?

3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導閱讀p16(幻燈片)。

顯然,結(jié)合問題的實際意義不難得到:-4-3-2-1012……。

因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。

再找?guī)讉€量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用p19/6,8為素材)。

通過以上探究活動得到:正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);。

4、師生活動比較下列各對數(shù)的大小:p17例,p18練習。

5、師生小結(jié)歸納(幻燈片)。

三、筆記與板書提綱:

1、幻燈片。

2、師生板演練習p15/1。

四、練習與拓展選題:

p19/4,5,9,10。

絕對值與相反數(shù)教案篇二

1、略2、+3千米,-2千米3、3,5,8;4、2,±2.

【課堂重點】。

5、(1)非負(2)06、3。

7、第5個最標準,第6個誤差最小,第7個誤差最大.

【課后鞏固】。

2、(1)18.6(2)7.49(3)-(4)3、8.

絕對值與相反數(shù)教案篇三

一、教學目標:

1、掌握絕對值的概念,有理數(shù)大小比較法則。

2、學會絕對值的計算,會比較兩個或多個有理數(shù)的大小。

3、體驗數(shù)學的概念、法則來自于實際生活,滲透數(shù)形結(jié)合和分類思想。

二、教學難點:

兩個負數(shù)大小的比較。

三、知識重點:

絕對值的概念。

四、教學過程:

(一)設置情境。

1、引入課題。

星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正:

(1)用有理數(shù)表示黃老師兩次所行的路程。

(2)如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?

2、學生思考后,教師作如下說明:

實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關。

3、觀察并思考:

畫一條數(shù)軸,原點表示學校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離。

4、學生回答后,教師說明如下:

數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數(shù)的正負性無關;一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a|。

例如,上面的問題中|20|=20,|―10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負數(shù)表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關注它們所表示的意義。為引入絕對值概念做準備。使學生體驗數(shù)學知識與生活實際的聯(lián)系。因為絕對值概念的幾何意義是數(shù)形轉(zhuǎn)化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備。

(二)合作交流。

1、探究規(guī)律例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對有什么規(guī)律?

―3,5,0,+58,0.6。

2、要求小組討論,合作學習。

3、教師引導學生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結(jié)合相反數(shù)的意義,最后總結(jié)得出求絕對值法則。

(三)鞏固練習。

1、其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數(shù)和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區(qū)別。求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例。學生能做的盡量讓學生完成,教師在教學過程中只是組織者。本著這個理念,設計這個討論。

2、結(jié)合實際發(fā)現(xiàn)新知引導學生看教科書第16頁的圖,并回答相關問題:

(1)把14個氣溫從低到高排列。

(2)把這14個數(shù)用數(shù)軸上的點表示出來。

3、觀察并思考:

(2)學生交流后,教師總結(jié):

14個數(shù)從左到右的順序就是溫度從低到高的順序:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則。

4、想象練習:

想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)―100和―90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關系。要求學生在頭腦中有清晰的圖形。讓學生體會到數(shù)學的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。

數(shù)在大小比較法則第2點學生較難掌握,要從絕對值的意義和數(shù)軸上的.數(shù)左小右大這方面結(jié)合起來來了解,所以配置想象練習,加強數(shù)與形的想象。

5、課堂練習例2,比較下列各數(shù)的大小。

比較大小的過程要緊扣法則進行,注意書寫格式。

6、練習:第18頁練習。

(三)小結(jié)與作業(yè)。

課堂小結(jié)怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大?。?/p>

(四)本課作業(yè)。

1、必做題:教產(chǎn)書第19頁習題1,2,第4,5,6,10。

2、選做題:教師自行安排。

五、本課教育評注。

1、情景的創(chuàng)設出于如下考慮:

(1)體現(xiàn)數(shù)學知識與生活實際的緊密聯(lián)系,讓學生在這些熟悉的日常生活情境中獲得數(shù)學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發(fā)學習的興趣。

(2)教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質(zhì)是將數(shù)轉(zhuǎn)化為形來解釋,是難點),然后通過練習歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受。

2、一個數(shù)絕對值的法則,實際上是絕對值概念的直接應用,也體現(xiàn)著分類的數(shù)學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發(fā)展和學生的能力培養(yǎng)角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。

3、有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學生較難理解,教學中要結(jié)合絕對值的意義和規(guī)定:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,幫助學生建立數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小這個數(shù)形結(jié)合的模型。為此設置了想象練習。

4、本節(jié)課的內(nèi)容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學內(nèi)容很多,學生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學。

絕對值與相反數(shù)教案篇四

《絕對值與相反數(shù)》選自義務教育課程標準實驗教科書《數(shù)學》(蘇科版)七年級上冊,是初一數(shù)學的一個難點,也是重點。本節(jié)課是在引入有理數(shù)和數(shù)軸等基本概念后的又一重要的內(nèi)容,本節(jié)課要求從代數(shù)與幾何兩個角度初步理解絕對值的概念,能求一個數(shù)的絕對值。通過應用絕對值解決實際問題,使學生體會絕對值的意義,感受數(shù)學在生活中的價值。對于從來沒有學習過類似知識的初一學生來說,接受起來比較困難,尤其在理解絕對值的意義方面有一定的難度。但初一學生有思維活躍、富有激情的特點,教學時應充分把握和利用這一特點。

二、教學目標。

知識目標:

1.理解有理數(shù)的絕對值的意義。

2.會求已知數(shù)的絕對值(絕對值符號內(nèi)不含字母)。

3.會比較兩個數(shù)的絕對值大小。

能力目標:

1.通過小組交流合作,培養(yǎng)學生協(xié)作和探究問題的能力。

2.通過說明的理由,初步了解“推理要有依據(jù)”的思想(學生作業(yè)和考試時不作。

要求)。

情感目標。

經(jīng)歷將實際問題數(shù)學化的過程,體會數(shù)學與生活的關系。

三、教學重點、難點及關鍵。

重點:理解絕對值的意義,會求一個數(shù)的絕對值,會比較兩個數(shù)的絕對值的大小。

難點:理解絕對值的意義,經(jīng)歷將實際生活問題數(shù)學化的過程,感受數(shù)學與生活的關系。

突破難點的關鍵:通過實際生活的例子引入絕對值的意義,采用類比的思想,同時安排小組交流與合作,達到突破難點的目的。

四、教法與學法分析。

數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此,在教學中,對學生不僅要“授之以魚”,更要“授之以漁”;不僅要“知其然”,而且要使學生“知其所以然”,因此基于本節(jié)課的特點我著重采用情景教學與問題教學相結(jié)合的教學方法,充分發(fā)揮初一學生思維活躍、富有激情的特點,組織學生合作交流,體驗學習的全過程,讓學生在活動中增長知識、鍛煉思維。

五、教學用具。

多媒體、紙片(寫上自己喜歡的數(shù)字)。

六、教學過程。

(一)、創(chuàng)設情景,導入主題。

師:同學們,你們的家在學校的哪一邊?

(學生有的說東邊,有的說西邊……)。

師:同學們,我們從家到學校有沒有一定的距離?

生:有。

生:是。無論向哪個方向走,汽車都耗油。

生:有。無論投到哪個方向,它們之間都有距離。

生:沒有。

師:讓我們來看一看一個具體的例子。

(教師利用多媒體演示書上的引例。)。

【1、聯(lián)系實際生活,學生感覺親近、熟悉,使學生充分相信日常生活中確實有一些量和方向無關,也是學生產(chǎn)生疑問:“到底什么是絕對值?和上面的例子有什么關系?”從而為學習新知打下基礎。

2、利用多媒體演示,使學生產(chǎn)生學習和探究的興趣】。

(二)、探索新知。

師:如果把學校門前的大街看成一條數(shù)軸,學??醋髟c,1km為一個單位長度,你能將小明家、小麗家和學校的位置在數(shù)軸上表示出來嗎?動手操作一下。

生:能。(學生動手操作)。

師:從數(shù)軸上看,那家離學校近?哪家離學校較遠?

生:小明家。

師:請同學們在練習本上畫一條數(shù)軸,并觀察表示3的點與原點之間有幾個單位長度?

學生畫并回答:有3個單位長度。

師:哪一個數(shù)表示的點與原點也相距3個單位長度?

生1:-3與原點也相距3個單位長度。

師:剛才這位同學的說法對不對?有什么問題嗎?

(多數(shù)學生很茫然。)。

生:沒有。

師:我們應該怎么敘述剛才那句話呢?

生(豁然開朗):表示-3的點與原點相距3個單位長度。

師:同學們說得非常好!所以我說+3與-3的絕對值相等,+5和-5的絕對值相等(指數(shù)軸)。同學們,就剛才我們所講的內(nèi)容,你們猜一猜:什么是絕對值呢?大家分組討論。

【培養(yǎng)學生的合作能力和競爭意識。】。

生1:我認為絕對值是指兩個地方之間的距離。

生2:我認為絕對值是指兩個點之間的距離。

師:誰能聯(lián)系數(shù)軸再具體說一說?

生2:我認為一個數(shù)的絕對值就是數(shù)軸上表示這個數(shù)的點與原點之間的距離。

師:這位同學說的非常好!你們能靠自己的理解和和你的同桌互相交流一下嗎?

(學生積極響應,教師板書絕對值的定義。)。

(三)嘗試應用。

1、利用絕對值的定義求一個數(shù)的絕對值。

師:請同學們把你們準備好的紙片拿出來,一個同學把你喜歡的數(shù)字讀出來,同位的同學說出這個數(shù)的絕對值。

(學生積極踴躍,相互提問。)。

師:老師也有一題,誰愿意做?

(多媒體展示書上例1,學生口答。教師強調(diào)利用數(shù)軸來解題和解題步驟。)。

教師:剛才我們的用文字寫下來的方法,是不是有些麻煩?

學生:是!

教師:我教給大家一種很簡單的表示方法。

(教師展示絕對值符號“︱︱”以及它的用法。學生認識、模仿、理解。)。

師:同學們,現(xiàn)在請你們把自己的紙片交給同桌,由他(她)利用絕對值符號“︱︱”來寫出這些數(shù)的絕對值,看誰做的又對又快!

(學生們興奮地寫起來,老師巡視。)。

(四)鞏固練習、歸納小結(jié)。

師:下面我們共同來解決解決幾個問題。

練習:1、書上例2。(學生板演)。

2、第25頁練一練(1)(2)。(口答)。

(學生暢所欲言,教師適當歸納。)。

【1、通過練習,進一步鞏固所學內(nèi)容,同時教師也可以檢驗本節(jié)課的教學效果,為后面的教學做好準備。

2、通過提問方式對這堂課進行小結(jié),學生再一次回顧梳理所學知識,】。

七、課后記。

《數(shù)學課程標準》強調(diào):“從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程,進而使學生獲得對數(shù)學理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到進步和發(fā)展?!币虼吮菊n意在讓學生主動地參與數(shù)學活動,并通過一系列探索性的問題及游戲,讓學生在掌握新知的同時,體驗成功的樂趣。突出表現(xiàn)在以下兩點:

1、由貼近生活的實例引導學生猜想,不僅培養(yǎng)了學生的想象力和探究新知的能力,而且能讓學生感到數(shù)學在生活中的價值。

2、在檢測學生學習的效果時,采用同位之間交流、互相檢測的方式,注重學生間的相互評價的運用,更好地激發(fā)了學生的學習興趣,更重要的是培養(yǎng)了學生的創(chuàng)新意識和創(chuàng)造能力。

當然也存在著不盡如人意的地方,如由于前面的情景引入由于時間占用教多,后面的練習略顯倉促,希望在以后的教學中注意調(diào)整,以期達到最佳的效果。

下一篇:相反數(shù)與絕對值練習。

絕對值與相反數(shù)教案篇五

本節(jié)課我首先復習相反數(shù)的知識,從一對相反數(shù)在數(shù)軸上的位置,自然引出它們距離原點相等。接著舉例:出租車從車站出發(fā),向南行了10千米,又從車站出發(fā)向北行了5千米。如果用正負數(shù)表示兩次運行的情況,需要先規(guī)定一個正方向,假設向北為正,則分別是-10千米和+5千米??墒且胫肋@兩次運行中,出租車一共用了多少油,與方向還有關系嗎?該與什么有關呢?面對這些問題,學生紛紛說出,只與從出發(fā)點到目的地的距離有關。

我及時給予鼓勵,并在黑板上板書“距離”二字。

(1)3到原點的距離是3個單位長度。

(2)-3到原點的距離是3個單位長度。

這時,我問學生,“這句話文字太多,想不想簡化一下?”

學生齊答“想”!

“好,那么用三個字就可以代替這句話?!庇械膶W生已經(jīng)小聲說出了,是“絕對值”。

于是板書課題――絕對值。

接下來又問,“寫這三個字也有點麻煩,想不想再簡化一下?”

“想”,我看到學生已經(jīng)笑了,好像這是很好玩的事,越來越簡單了。于是我又及時給出符號“||”的寫法。

到此時,學生已經(jīng)明白“絕對值”就是“一個數(shù)到原點的距離”。學生自己總結(jié)出來了。

為了講清絕對值的意義,我設計了循序漸進的幾個例子。

(1)|-5|=(2)|7|=(3)|-1/3|=(4)|0|=。

當學生說出以上四個式子的結(jié)果后,又出示了第五個(5)|a|=。

很多學生沒有思考馬上就答出“等于a"。

針對學生的回答,我問“上節(jié)課,在學習相反數(shù)的時候,我告訴大家,字母可以表示哪些數(shù)?”

學生立即回答,“任意有理數(shù)”。那么這里的a也應該是任意有理數(shù)。

在此基礎上,我引導學生得出|a|的.三種情況。尤其當a0時,|a|=-a,讓學生明白,字母a中包含著一個看不見的“-”號。-a實際上是a的相反數(shù),也是一個正數(shù)。

就這樣,在我的預謀中,學生自然的明白了絕對值的意義,并學會了化簡絕對值的符號,也理解了非負數(shù)的含義。

再次面對初一的新生,我覺得很多非常熟悉的知識,可以用不同的說法讓學生理解,而且,教師一定要思路清晰。整個新知識的處理,要一氣呵成,讓學生在環(huán)環(huán)相扣的緊張狀態(tài)中,形成知識系統(tǒng),直到講完新課.

當所有的內(nèi)容已經(jīng)胸有成竹的時候,再來教給學生,竟然可以深入淺出,四兩拔千斤,尤其當你啟發(fā)點撥的到位,學生水到渠成的自己得出你想要講解的新課時,心里會有一種成就感,當然學生在不知不覺中自己掌握了新知識的主要內(nèi)容,他們也不會覺得難以接受。

絕對值與相反數(shù)教案篇六

在教學過程中,結(jié)合學生實際情況給枯燥的數(shù)學概念賦予生活的意味,貼近學生生活,使學生不再被動地接受知識,可以有自己獨到的見解,學生也可以大膽說出心中的想法。

2、激勵學生去發(fā)現(xiàn)問題、解決問題。

《新課程標準》明確地把“形成解決問題的一些基本策略”作為一個重要的課程目標。為此數(shù)學教學中設置一些具有挑戰(zhàn)性的問題情境,激發(fā)學生進行思考,提出具有一定跨度的問題串引導學生進行自主探索,用“試一試,你能行”、“請與同學交流你的想法”等語言鼓勵學生進行交流,使學生在探索的過程中進一步理解。

3、面向每一個學生,使每個人都獲得成功。

課堂教學中,我們投入一“石”,激起了學生學習的“千層浪”,使得課堂變成了學生思維操練的場所。教師引導學生去尋找和發(fā)現(xiàn),自己只是一個組織者和參與者,和學生一起共同探索。學生真正成為學習的主任,學生不僅積極地參與每一個教學環(huán)節(jié),情緒高昂,切身感受了學習的快樂,品嘗了學生求知、參與、成功、交流和自尊的需要。我鼓勵學生“你學會多少就匯報多少…..”這充分調(diào)動了學生學習的積極性、主動性,大大引發(fā)了學生潛在的創(chuàng)造動因,創(chuàng)設了有利于個性發(fā)展的情境,因而引出了不同的學習結(jié)果,激發(fā)了學生學習的興趣,提高了課堂效率。

將本文的word文檔下載到電腦,方便收藏和打印。

絕對值與相反數(shù)教案篇七

表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。

3、情感態(tài)度與價值觀:

借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結(jié)合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。

理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。

1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)2.在組長的組織下進行討論、交流。(約5分鐘)3、小組分任務展示。(約25分鐘)4、達標檢測。(約5分鐘)5、總結(jié)(約5分鐘)。

(一)、溫故知新:。

(二)小組合作交流,探究新知。

1、觀察下圖,回答問題:(五組完成)。

大象距原點多遠?兩只小狗分別距原點多遠?

歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:.

4的絕對值記作,它表示在上與的距離,所以|4|=。

2、做一做:

(1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2(2)、求下列各組數(shù)的絕對值:(一組完成)。

(1)4,-4;(2)0.8,-0.8;。

從上面的結(jié)果你發(fā)現(xiàn)了什么?

3、議一議:(八組完成)。

(1)|+2|=,

你能從中發(fā)現(xiàn)什么規(guī)律?

小結(jié):正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。

4、試一試:(二組完成)。

若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?

(通過上題例子,學生歸納總結(jié)出一個數(shù)的絕對值與這個數(shù)的關系。)。

5:做一做:(三組完成)。

1、(1)在數(shù)軸上表示下列各數(shù),并比較它們的大?。?/p>

-3,-1。

(2)求出(1)中各數(shù)的絕對值,并比較它們的大小。

(3)你發(fā)現(xiàn)了什么?

2、比較下列每組數(shù)的大小。

(1)-1和–5;(五組完成)(2)?

(3)-8和-3(七組完成)。

5和-2.7(六組完成)6五、達標檢測:

1:填空:

|+15|=()|–4|=()。

|0|=()|4|=()2:判斷(1)、絕對值最小的數(shù)是0。()(2)、一個數(shù)的絕對值一定是正數(shù)。()(3)、一個數(shù)的絕對值不可能是負數(shù)。()。

(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。

1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值.

2.絕對值的性質(zhì):正數(shù)的絕對值是它本身;。

負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.

3、會利用絕對值比較兩個負數(shù)的大?。簝蓚€負數(shù)比較大小,絕對值大的反而小.

p50頁,知識技能第1,2題.

絕對值與相反數(shù)教案篇八

1、化簡:

2、若一個數(shù)的相反數(shù)是2,則這個數(shù)是_____,若一個數(shù)的相反數(shù)是-3,則這個數(shù)是___,若一個數(shù)的相反數(shù)是它本身,則這個數(shù)是______.

3、的絕對值的相反數(shù)是_______,0.7的相反數(shù)的絕對值是_______.

4、絕對值最小的數(shù)是____,絕對值不小于3的整數(shù)有個,分別是.

【課堂重點】。

1、完成教材23頁填空.

2、觀察教材上填空的結(jié)果思考:一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?與同學交流.

正數(shù)的絕對值是_______;負數(shù)的絕對值是_______;零的絕對值是_______.

3、學習教材23頁例5,完成教材24頁“練一練”第一題.思考:

4、想一想:兩個數(shù)比較大小,絕對值大的那個一定大嗎?

結(jié)論:

5、學習教材23頁例6,完成教材24頁“練一練’第二題.

6、練習:

|0|=_______;|-1|=_______;|2|=_______;。

+|-1.5|=_______;-|-2|=_______;。

+(-5)=_______;―(-4)=_______;-(+5)=_______.

(2)若|x|=x,則x_______0;。

若|x|=-x,則x_______0.

(3)絕對值等于5的數(shù)是______.

(4)絕對值小于5的負整數(shù)是______.

(5)絕對值不大于5而又不小于2的整數(shù)是______.

(6)絕對值不大于5.3而又不小于2的整數(shù)是______.

(7)已知ab0,-a_____-b.

7、這節(jié)課主要學習了什么?你有什么收獲?

【課后鞏固】。

1、用“”“=”或“”號填空。

+|-5|___-|-4|;-(+5)___-[-|-5|]。

2、|x|=3,則x=_____;|-x|=|-2|,則x=______.

3、相反數(shù)大于-2而又小于3的整數(shù)有__________;-(+7)的相反數(shù)是________.

4、比-3大且比4小的整數(shù)有_______個,分別是__________.

5、絕對值大于1且不大于4的負整數(shù)有__________個,分別為__________.

6、若分別求x,y的值.

絕對值與相反數(shù)教案篇九

2.會求已知數(shù)的相反數(shù)和絕對值.

4.經(jīng)歷將實際問題數(shù)學化的過程,感受數(shù)學與生活的關系.

【教學過程設計建議(第一課時)】。

1.情境創(chuàng)設。

走了3km,你能在數(shù)軸上表示出小明昨天到達的位置嗎?

2.探索活動。

“議一議”的活動,應引導學生從利用“形(數(shù)軸)”比較有理數(shù)大小轉(zhuǎn)化為用“數(shù)(絕對值)”來比較.

(2)用相同的方法歸納出兩個負數(shù)的大小與這兩個負數(shù)的絕對值的大小關系;

(3)在經(jīng)歷了(1)、(2)之后,引導學生歸納,得出用絕對值比較有理數(shù)大小的方法.

3.例題教學。

例2的第(1)小題是兩個正數(shù)的大小比較;第(2)小題是兩個負數(shù)的大小比較,在比較一3與一6的大小時,可讓學生再次觀察溫度計上的刻度,借助“一6℃比一3℃冷”的生活經(jīng)驗,認識兩個負數(shù)的大小與這兩個負數(shù)的絕對值的大小關系.

【教學過程設計建議(第二課時)】。

1.情境創(chuàng)設。

數(shù)軸上點a在原點的左邊,點b在原點的右邊,并且點a與點b到原點的距離相同.根據(jù)小明、小麗的觀察發(fā)現(xiàn),討論5與一5的關系.如:

小明、小麗的觀察結(jié)論正確嗎?

你能說得比小明、小麗更完整一些嗎?

此外,還可以設計一些距離相同但方向相反的實際問題,引入互為相反數(shù)的概念.

2.探索活動。

(1)給出相反數(shù)的描述性定義后,要讓學生大量舉例以鞏固概念.

(2)圍繞“只有符號不同”展開討論,讓學生充。

分發(fā)表看法.搞清它的意義是判斷兩個數(shù)是否互為相反數(shù)的需要,要及時肯定學生中的較好的解釋,如:

“兩個數(shù)的符號不同,絕對值相等.”

“除0以外,絕對值相等的數(shù)有兩個,一個是正數(shù),一個是負數(shù),它們僅僅是符號不同.”

“寫已知數(shù)的相反數(shù),只要在這個數(shù)的前面添一個負號.”

“有理數(shù)由符號和絕對值兩部分組成,如果改變有理數(shù)的符號,那么數(shù)軸上表示有理數(shù)的點就從原點的一側(cè)變到另一側(cè).”

(3)通過“議一議”,歸納出一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)的關系.需要注意的是,在寫一個數(shù)的絕對值時,要緊扣課本第27頁上的結(jié)論,要求學生首先關注對該數(shù)的判斷:是正數(shù)還是?負數(shù);然后再選擇法則:正數(shù)該如何,負數(shù)該如何,0該如何;最后給出結(jié)果.否則今后極易發(fā)生這樣的錯誤:|a|=a,|-a|=a.

3.例題教學。

例4的解答中標注的理由,例5的卡通人旁白,

都只是為了強調(diào)本節(jié)課的重要結(jié)論和相反數(shù)的定義,滲透“推理要有依據(jù)”,學生作業(yè)和考試時不作要求.

上一篇:相反數(shù)與絕對值練習。

下一篇:沒有了。

絕對值與相反數(shù)教案篇十

教學目標:

1.知道一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系;。

2.會利用絕對值比較兩個有理數(shù)大小;。

3.在具體進行兩個負數(shù)的大小比較中,培養(yǎng)推理論證能力,體會數(shù)形結(jié)合與轉(zhuǎn)化的思想方法.

教學重點:

知道一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系;會利用絕對值比較兩個有理數(shù)大小.

教學難點:

會利用絕對值比較兩個有理數(shù)大小.

教學過程:

一、議一議:

1.根據(jù)絕對值與相反數(shù)的意義填空:

(1)|2.3|=,=,|6|=;。

(3)|0|=______,0的相反數(shù)是______.

2.(1)任意說出一個負數(shù),并說出它的絕對值、它的相反數(shù).

(2)一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?

3.(1)2與3哪個大?這兩個數(shù)的絕對值哪個大?

(2)-1與-4哪個大?這兩個數(shù)的絕對值哪個大?

(3)任意寫出兩個負數(shù),并說出這兩個負數(shù)哪個大?他們的絕對值哪個大?

(4)兩個有理數(shù)的大小與這兩個數(shù)的'絕對值的大小有什么關系?

二、展示交流。

活動一、探究一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)之間的關系。

小組討論:

1.一個數(shù)的絕對值一定與這個數(shù)本身相等嗎?

2.一個數(shù)的絕對值一定與它的相反數(shù)相等嗎?

3.舉例說明一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?

活動二、探究兩個有理數(shù)的大小與這兩個數(shù)的絕對值的大小有什么關系。

議一議:

1.數(shù)軸上的點的大小是如何排列的?

2.兩個數(shù)比較大小,絕對值大的那個數(shù)一定大嗎?

3.比較下列兩個數(shù)的大小。

(1)與;(2)-3.5與-4.6;。

(3)-|-與-(-2).

三、課堂反饋。

1.-2的符號是______,絕對值是______;3.5的符號是______,絕對值是______.

3.符號是-,絕對值是4.3的數(shù)是______.

5.計算:(1)|-+|-=;(2)|-3|-|-2.5|=.

6.比較下面有理數(shù)的大小并且說明理由.

(1)-0.7與-1.7;(2)-與-0.273;。

(3)+(-5)與-(-3).

7.用將各數(shù)從小到大排列起來:(直接寫出結(jié)論,不必說明理由)。

-4,+(-),-(-1.5),0,|-3|。

四、課堂作業(yè):

課本p29習題2.4第5,7題。

絕對值與相反數(shù)教案篇十一

1、能借助數(shù)軸初步理解絕對值的概念,會求一個數(shù)的絕對值。

2、正確理解絕對值的代數(shù)意義和幾何意義,滲透數(shù)形結(jié)合與分類討論思想。重點和難點:理解絕對值的概念,能求一個數(shù)的絕對值。

任務一、復習舊知:

1、什么叫互為相反數(shù)?在數(shù)軸上表示互為相反數(shù)的兩點和原點的位置關系怎樣?

2、數(shù)軸上與原點的距離是2的點表示的數(shù)有_____個,他們表示的數(shù)是_____;與原點的距離是5的點有____個、任務二、新知理解:

1、自讀課本p11-p12,體會絕對值的意義。

a的絕對值記作_______,如5的絕對值記作______,結(jié)果是_____、

(2)|0|=_______;

絕對值的代數(shù)意義:(1)一個正數(shù)的絕對值是__________;。

(2)一個負數(shù)的絕對值是___________(3)0的絕對值是___________。

上述可以用式子表示為:(1)當a是正數(shù)時,|a|=_______,

任務三:鞏固練習。

1、求下列各數(shù)的絕對值:?7。

12,?

110。

4、7510、5。

2.計算|-2|+|+8||34|?|?815。

||-20|?|?45|。

(2)如果一個數(shù)是正數(shù),那么這個數(shù)的絕對值是它本身;(3)如果一個數(shù)的絕對值是它本身,那么這個數(shù)是正數(shù)(4)一個數(shù)的絕對值越大,表示它的'點在數(shù)軸上越靠右。歸納:(1)不論有理數(shù)a取何值,它的絕對值總是______。

(2)兩個互為相反數(shù)的絕對值____。能力提升:

4)若|a-2|=3,則a=______。

絕對值與相反數(shù)教案篇十二

各位專家領導:

你們好!

首先,我對本節(jié)教材進行一些分析:

一、教材分析(說教材):

(一)、教材所處的地位與作用:

本節(jié)內(nèi)容在全書及章節(jié)的地位是:《絕對值》是七年級數(shù)學教材上冊1、2、4節(jié)內(nèi)容。在此之前,學生已學習了有理數(shù),數(shù)軸與相反數(shù)等基礎內(nèi)容,這為過渡到本節(jié)的學習起著鋪墊作用。絕對值不僅可以使學生加深對有理數(shù)的認識,還為以后學習兩個負數(shù)的比較大小以及有理數(shù)的運算作好必要的準備!所以說本講內(nèi)容在有理數(shù)這一節(jié)中,占據(jù)了一個承上啟下的位置。

(二)、教育教學目標:

根據(jù)新課標的要求及七年級學生的認知水平我特制定的本節(jié)課的教學目標如下:

1、知識目標:。

1)使學生了解絕對值的表示法,會計算有理數(shù)的絕對值。

2)能利用數(shù)形結(jié)合思想來理解絕對值的幾何定義;理解絕對值非負的意義。

3)能利用分類討論思想來理解絕對值的代數(shù)定義;理解字母a的任意性。

2、能力目標:

通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析、收集處理信息、團結(jié)協(xié)作、語言表達的能力,以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力。

3、思想目標:。

通過對絕對值的教學,讓學生初步認識到數(shù)學知識來源于實踐,引導學生從現(xiàn)實生活的經(jīng)歷與體驗出發(fā),激發(fā)學生對數(shù)學問題的興趣,使學生了解數(shù)學知識的功能與價值,形成主動學習的態(tài)度。

(三):重點,難點以及確定的依據(jù):

本課中絕對值的兩種定義是重點,絕對值的代數(shù)定義是本課的難點,其理論依據(jù)是如何突破絕對值符號里字母a的任意性這一難點,由于學生年齡小,解決實際問題能力弱,對數(shù)學分類討論思想理解難度大。

下面,為了講清重難點,使學生能達到本節(jié)課設定的教學目標,我再從教法與學法上談談:

二、教學策略(說教法)。

(一)、教學手段:

由于七年級學生的理解能力與思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數(shù)中的正負數(shù),相反數(shù),對正負數(shù),相反數(shù)的概念理解不一定非常深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節(jié)課以觀察、思考、討論貫穿于整個教學環(huán)節(jié)之中,采用啟發(fā)式教學法與師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。

教學中積極利用多媒體課件,向?qū)W生提供更多的活動機會和空間,使學生在動腦、動手的過程中獲得充足的體驗與發(fā)展,從而培養(yǎng)學生的數(shù)形結(jié)合的思想。

為充分發(fā)揮學生的主體性與教師的主導輔助作用,教學過程中我設計了七個教學環(huán)節(jié):

1、溫故知新,激發(fā)情趣。

2、得出定義,揭示內(nèi)涵。

3、手腦并用,深入理解。

4、啟發(fā)誘導,初步運用。

5、反饋矯正,注重參與。

6、歸納小結(jié),強化思想。

7、布置作業(yè),引導預習。

(二)、教學方法及其理論依據(jù):

堅持“以學生為主體,以教師為主導”的原則,即“以學生活動為主,教師講述為輔,學生活動在前,教師點撥評價在后”的原則,根據(jù)七年級學生的心理發(fā)展規(guī)律,聯(lián)系實際安排教學內(nèi)容。采用學生參與程度高的學導式討論教學法。在學生看書、討論基礎上,在教師啟發(fā)引導下,運用問題解決式教學法,師生交談法、問答法、課堂討論法,引導學生來理解教材中的理論知識。

在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)的機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效地開發(fā)各層次學生的潛在智能,力求使每個學生都能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐,學以致用,落實教學目標。

三:學情分析:(說學法)。

1、知識掌握上,七年級學生剛剛學習有理數(shù)中的相反數(shù),對相反數(shù)的概念理解不一定非常深刻,許多學生容易造成知識遺忘,所以應全面系統(tǒng)的去講述。

2、學生學習本節(jié)課的知識障礙。學生對絕對值兩種概念,不易理解,容易出錯,所以教學中教師應予以簡單明白、深入淺出的分析。

3、由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用多媒體課件,引發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生學習的主動性。

4、心理上,學生對數(shù)學課的重視與興趣,老師應抓住這有利因素,引導學生認識到數(shù)學課的科學性,學好數(shù)學有利于其他學科的學習以及學科知識的滲透性。

最后我來具體談一談這一堂課的教學過程:

四、教學程序設計。

(一)、溫故知新,激發(fā)情趣:

首先打出第一張幻燈片復習提問:什么叫做相反數(shù)?學生回答后讓大家討論:你能找出互為相反數(shù)的兩個數(shù)在數(shù)軸上表示的點的共同特點嗎?學生會積極回答第一個問題,但第二個問題學生可能難以準確回答,于是打出第二張幻燈片引導學生仔細觀察,認真思考。從而引出課題:絕對值。結(jié)合實例使學生以輕松愉快的心情進入了本節(jié)課的學習,也使學生體會到數(shù)學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。

(二)、得出定義,揭示內(nèi)涵:

由于學生是第一次接觸絕對值這樣比較深奧的數(shù)學名詞,所以我利用數(shù)軸在第三張幻燈片里直接給出絕對值的幾何定義:一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,(absolutevalue)這個定義學生接受起來比較容易。

給出定義后引導學生討論:“定義里的數(shù)a可以表示什么樣的數(shù)?

(通過教師親切的語言啟發(fā)學生,以培養(yǎng)師生間的默契)通過討論由師生共同得到絕對值定義里的數(shù)a可以是正數(shù),負數(shù)和0。

然后再回到第一張幻燈片里提出的問題:互為相反數(shù)的兩個數(shù)的絕對值有什么關系?

(三)、手腦并用,深入理解:

1、在上一環(huán)節(jié)與學生一起理解了絕對值的定義后,我再提出問題:如何由文字語言向數(shù)學符號語言的轉(zhuǎn)化,即如何簡單地標記絕對值,而不用漢字?在此不用提問學生,采取自問自答形式給出絕對值的記法。

2、為進一步強化概念,在對絕對值有了正確認識的基礎上,請學生做教材的課堂練習第一題,寫出一些數(shù)的絕對值??梢哉垖W生起立回答。我就學生的回答情況給出評價,如“非常好”“非常規(guī)范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的發(fā)展;并再次強調(diào)絕對值的定義。

3、在完成第一題的練習后,我又給出一新的幻燈片,并提出問題:議一議一個數(shù)的絕對值與這個數(shù)有什么關系?啟發(fā)學生舉一些實際的例子來發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律。從而引出絕對值的第二個定義。

(四)、啟發(fā)誘導,初步運用:

有了絕對值的兩個定義后,我安排了10道不同層次的判斷題讓學生思考。特別注重對于不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)的機會,培養(yǎng)其自信心,激發(fā)其學習熱情。

(五)、反饋矯正,注重參與:

為鞏固本節(jié)的教學重點我再次給出三道問題:

1)絕對值是7的數(shù)有幾個?各是什么?有沒有絕對值是-2的數(shù)?

2)絕對值是0的數(shù)有幾個?各是什么?

3)絕對值小于3的整數(shù)一共有多少個?

先讓學生通過小組討論得出結(jié)果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。

視學生的反饋情況以及剩余時間的多少我還預備了五道課堂升華的思考題,再次強化訓練,啟發(fā)學生的思維。

(六)、歸納小結(jié),強化思想:

(七)、布置作業(yè),引導預習:

1、全體學生必做課本習題1、23,4,5,10。

2、選作兩道思考題:

總之,在教學過程中,我始終注意發(fā)揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發(fā)現(xiàn)結(jié)論,實現(xiàn)師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養(yǎng)學生良好的數(shù)學素養(yǎng)和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。

以上是我對本節(jié)課的設想,不足之處請老師們多多批評、指正,謝謝!

絕對值與相反數(shù)教案篇十三

(一)?教學內(nèi)容:

《絕對值》是七年級數(shù)學教材上冊1.2.4節(jié)內(nèi)容,此前,學生已經(jīng)學習了有理數(shù)的分類,數(shù)軸與相反數(shù)等基礎知識,為本課學習的基礎。絕對值不僅可以使學生加深對有理數(shù)的認識,還會為以后學習兩個負數(shù)的大小比較以及有理數(shù)的運算做準備。所以本課在有理數(shù)一章起到承上啟下的作用。

(二)教學目標:

根據(jù)數(shù)學課程內(nèi)容標準要求及教學內(nèi)容的特點,以及學生的認知水平,確定本節(jié)課的教學目標如下:

1,理解、掌握絕對值概念.體會絕對值的作用與意義;

2,能正確求出一個數(shù)的絕對值;

(三)教學重、難點分析:

教學重點:掌握絕對值的概念會求已知數(shù)的絕對值.

教學難點:掌握有理數(shù)的概念及分類。

(四)教學輔助手段。

利用多媒體(實物投影)、學案進行輔助教學。

第二部分:教學設計。

教學過程。

師生互動。

設計意圖。

一、創(chuàng)設情境、引入新課。

二、合作交流、探索新知。

問題1:什么叫做絕對值?

怎么用數(shù)學符號表示一個數(shù)的絕對值?

問題2:互為相反數(shù)的絕對值的關系怎樣?

問題3:正數(shù)的絕對值是什么數(shù)?零的絕對值是什么數(shù)?負數(shù)的絕對值是什么數(shù)?

問題4:設?a表示一個數(shù),?|a|等于什么?

三、拓展提高、應用鞏固。

1.判斷下列說法是否正確:

(1)符號相反的數(shù)互為相反數(shù)(??).

(2)符號相反且絕對值相等的數(shù)互為相反數(shù)(??)。

(3)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上越靠右.(??)。

(4)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離遠點越遠.(??)。

2.??求下列各數(shù)的絕對值:?,,0,,.

四、?概括總結(jié)、布置作業(yè)。

課堂小結(jié):

1、?本節(jié)課收獲:由學生進行總結(jié),其他同學幫忙補充,教師提示。

2、?對于本節(jié)課的知識,如果還有不明白的地方請?zhí)岢鰜?,同學和老師共同幫助解決。

布置作業(yè):

課本p11第1,2,3,??。

教師展示投影,甲乙兩車相向而行問題?,學生在學案上畫出數(shù)軸,并根據(jù)學案的要求,思考甲乙兩車行駛的距離引出的三個問題。

本環(huán)節(jié)教師關注重點:

學生能否區(qū)分方向和距離的不同。

學生能夠理解從距離角度看數(shù)即絕對值的意義。

學生口頭回答老師的問題。

對絕對值意義理解后教師讓學生用自己的語言概括絕對值的定義?

學生相互討論發(fā)言,教師進行補充并板書在黑板上,給出絕對值的數(shù)學符號書寫規(guī)范。

學生鞏固練習。

本環(huán)節(jié)教師關注重點:

學生是否正確理解了絕對值的概念并自己概括出來。

通過以下表格內(nèi)容:

數(shù)值。

-3。

-2。

2

3

絕對值。

讓學生填寫表格后并通過表格小組討論這些數(shù)能發(fā)現(xiàn)哪些規(guī)律?

學生進行小組討論共同分析總結(jié),得出組內(nèi)結(jié)論。

本環(huán)節(jié)教師關注重點:

學生能否從正負數(shù)的角度看數(shù)的絕對值。

組織好小組討論,使小組能真正發(fā)揮作用。

教師根據(jù)小組結(jié)論內(nèi)容進行提問,得出絕對值的規(guī)律。

教師提醒和引導從正負數(shù)零的角度來思考。

學生小組討論后教師進行補充。

給學生2分鐘時間完成習題。

學生完成后,教師在黑板上進行板演寫出完整的解題過程。

學生獨立完成,找兩名學生到黑板進行板演,對比過程的書寫并由學生進行糾錯,總結(jié)出完成的解題過程。

計算結(jié)果正確的學生舉手示意教師;

本環(huán)節(jié)教師關注重點:

(1)?學生對于絕對值概念的掌握及靈活應用。

(2)?培養(yǎng)學生的分類的數(shù)學思維。

有本題引出下節(jié)課所要研究的重點內(nèi)容。

本環(huán)節(jié)教師關注重點:

(1)?注重學生數(shù)學思維的形成。

(2)?提高學生的解題能力。

學生總結(jié)本節(jié)課內(nèi)容后,小組間互相提問,看哪組將問題處理的正確、清晰。

用一個小情境讓學生在興趣中體驗絕對值所代表的距離的意義,有實際問題引出絕對值的概念。

讓學生通過實際的意義來正確的了解絕對值的概念,并通過討論自己發(fā)表對絕對值概念的理解,發(fā)散學生的思維。

讓學生通過自主學習找答案,觀察數(shù)的規(guī)律自己總結(jié)不同數(shù)的絕對值的規(guī)律,提高學生的觀察力和思考能力。

讓學生自己總結(jié),既鍛煉學生的語言表達能力,又能加深學生對知識的掌握和理解。培養(yǎng)學生的數(shù)學語言及分類的數(shù)學思維。

通過習題加深學生的記憶和對絕對值的概念的掌握。

通過總結(jié)和提問幫助學生記憶本節(jié)課知識點,并加深理解,進行實際運用。

絕對值與相反數(shù)教案篇十四

(1)、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負數(shù)的大小。

(2)、通過應用絕對值解決實際問題,體會絕對值的意義和作用。

2、過程與方法目標:

(3)、通過對“做一做”“議一議”“試一試”的交流和討論,培養(yǎng)學生有條理地用語言表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。

3、情感態(tài)度與價值觀:

借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結(jié)合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。

理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。

1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)。

2.在組長的組織下進行討論、交流。(約5分鐘)。

3、小組分任務展示。(約25分鐘)。

4、達標檢測。(約5分鐘)。

5、總結(jié)(約5分鐘)。

(一)、溫故知新:。

(二)小組合作交流,探究新知。

1、觀察下圖,回答問題:(五組完成)。

大象距原點多遠?兩只小狗分別距原點多遠?

歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:4的絕對值記作,它表示在上與的距離,所以|4|=。

2、做一做:

(1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2。

(2)、求下列各組數(shù)的絕對值:(一組完成)。

(1)4,-4;。

(2)0.8,-0.8;。

從上面的結(jié)果你發(fā)現(xiàn)了什么?

3、議一議:(八組完成)。

你能從中發(fā)現(xiàn)什么規(guī)律?

小結(jié):正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。

4、試一試:(二組完成)。

若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?

(通過上題例子,學生歸納總結(jié)出一個數(shù)的絕對值與這個數(shù)的關系。)。

5:做一做:(三組完成)。

1、

(1)在數(shù)軸上表示下列各數(shù),并比較它們的大?。?/p>

-3,-1。

(2)求出(1)中各數(shù)的絕對值,并比較它們的大小。

(3)你發(fā)現(xiàn)了什么?

2、比較下列每組數(shù)的大小。

(1)-1和–5;(五組完成)。

(2)-8和-3(七組完成)。

5和-2.7(六組完成)。

1、填空:

絕對值是10的數(shù)有()。

|+15|=()|–4|=()。

|0|=()|4|=()。

2、判斷。

(1)、絕對值最小的數(shù)是0。()。

(2)、一個數(shù)的絕對值一定是正數(shù)。()。

(3)、一個數(shù)的絕對值不可能是負數(shù)。()。

(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()。

(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。

1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。

2絕對值的性質(zhì):正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

3、會利用絕對值比較兩個負數(shù)的大?。簝蓚€負數(shù)比較大小,絕對值大的反而小。

p50頁,知識技能第1,2題。

絕對值與相反數(shù)教案篇十五

一教材分析:

教材所處的地位及作用:

本節(jié)課選自新人教版七年級數(shù)學上冊§1.2節(jié),是學生進入初中階段后,在學習了正、負數(shù)、數(shù)軸以及相反數(shù)的基礎上,對絕對值進行探究、學習的一個課題。絕對值是本章的一個重點,是比較有理數(shù)大小的又一工具,也是以后學習有理數(shù)混和運算的基礎。另外,這一節(jié)課與前面所學的知識有千絲萬縷的聯(lián)系:絕對值的幾何意義是在數(shù)軸的基礎上得出的,代數(shù)意義又是運用前面所學的相反數(shù)知識來解決的。因此,這節(jié)課是一節(jié)承上啟下的課。

二學情分析:

七年級學生剛剛跨入少年期,他們在身體發(fā)育、知識經(jīng)驗、心理品質(zhì)方面,依然保留這小學生的天真活潑、對新生事物很感興趣,求知欲望強、具有強烈的好奇心與求知欲,直觀思維已比較成熟,但理性思維的發(fā)展還很有限,于是我用學生常見的行程問題導入這節(jié)課。

三教學目標:

知識目標:

(1)是學生掌握有理數(shù)的絕對值概念及表示方法。

(2)使學生熟練掌握有理數(shù)絕對值的求法和有關計算問題。

能力目標:

(1)在絕對值概念形成的過程中,滲透數(shù)形結(jié)合等思想方法,并注意培養(yǎng)學生的概括能力(2)能根據(jù)一個數(shù)的絕對值表示“距離”,初步理解絕對值的概念。

(3)給出一個數(shù),能求出它的絕對值。

情感態(tài)度與價值觀:

從上節(jié)課學的相反數(shù)到本節(jié)的絕對值,使學生感知數(shù)學知識具有普遍的聯(lián)系性。

四教學重點、難點:

根據(jù)學生的實際和本節(jié)課的要求,確定以下重、難點:

重點:給出一個數(shù)會求它的絕對值。

難點:絕對值的幾何意義,代數(shù)意義的導出;負數(shù)的絕對值是它的相反數(shù)。

五教學方法與教學手段:

教法分析:

基于本節(jié)課內(nèi)容的特點和七年級學生的心理特征,我在我在教學中選擇互動是學習模式,與學生建立平等融洽的關系,營造自主探究與合作交流的氛圍,共同演示、操作、觀察、練習等活動中運用多媒體來提高教學效果,驗證結(jié)論,激發(fā)學生學習興趣。

學法分析:

教學過程是師生互相交流的過程,教師起引導作用,學生在教師的啟發(fā)下充分發(fā)揮主體性作用。結(jié)合七年級學生的特點,讓學生自己通過觀察、類比、猜想、歸納,共同探討交流,利用課件和圖片自主探索等方式,激發(fā)學習興趣,培養(yǎng)應用意識和發(fā)散思維。

六教學過程:

創(chuàng)設情境。

2)它們行駛的路程的遠近相同嗎?

思考:-8與8是相反數(shù),把它們在數(shù)軸上表示出來,它們有什么相同之處和不同之處?(讓學生充分發(fā)揮主體作用,()從自己的視點去觀察、歸納、總結(jié)得出絕對值的幾何意義。)2、形成概念:一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absoutevalue),記作:|a|.

3、例題講解。

例1求下列各數(shù)的絕對值。

-19,0,-2.3,+0.56,-6,+6,。

練習:求下列各數(shù)的絕對值。

|9||-2.5||-9||2.5||0|議一議:上述各數(shù)的絕對值與這些數(shù)本身有什么關系?(通過練習求三種類型數(shù)的絕對值,得出絕對值的代數(shù)意義。)4、引出法則:正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.

議一議:

(1)當a是正數(shù)(a0)時,|a|=____;。

(2)當a是負數(shù)(a0)時,|a|=__;。

(3)當a=0時,(a=0)時|a|=__.

想一想:

(1)絕對值是3的數(shù)有幾個?各是什么?

(2)絕對值是0的數(shù)有幾個?各是什么?

(3)絕對值是-2的數(shù)是否存在?若存在,請說出來?

判斷。

(1)+7的絕對值與-7的絕對值互為相反數(shù)。()(2)既不是正數(shù)也不是負數(shù)的有理數(shù)的絕對值是零。()(3)數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點與原點的距離。()(4)絕對值最小的數(shù)是0.()。

如何求一個數(shù)的絕對值。

作業(yè)布置。

必做題:

寫出下列各數(shù)的絕對值:

-125,+23,-3.5,0,-0.05。

上面的數(shù)中那個數(shù)的絕對值最大?那個數(shù)的絕對值最?。?/p>

選做題:(通過這一活動可以拓寬學生的知識視野,1、讓學生了解一點分類討論的思想;2、把所學應用于生活)1、已知|x|=3,|y|=4,求x+y的值。

2、正式排球比賽對所用的排球重量是有嚴格規(guī)定的,現(xiàn)檢查5個排球的重量,超過規(guī)定重量的克數(shù)記作正數(shù),不足規(guī)定重量的克數(shù)記作負數(shù),檢查結(jié)果如下表:

+15。

-10。

+30。

-20。

-40。

問題:

(1)指出哪個排球的質(zhì)量好一些(即重量最接近規(guī)定質(zhì)量)?

絕對值與相反數(shù)教案篇十六

《絕對值》是選自人教版初一數(shù)學第一章第二節(jié)第四部分的內(nèi)容。這部分內(nèi)容之前已經(jīng)學習了有理數(shù)、數(shù)軸、相反數(shù)的內(nèi)容,這是本節(jié)課學習的基礎。絕對值的內(nèi)容主要包括含義及有理數(shù)之間的大小比較,這也為后面學習有理數(shù)的加減法奠定了基礎。

(六)教學目標。

根據(jù)對教材內(nèi)容的分析,以及在新課改理念的指導下,制定了如下三維目標:

(一)知識與技能。

理解、掌握絕對值的含義,并且會比較有理數(shù)之間的大小。

(二)過程與方法。

運用數(shù)軸來推理數(shù)的絕對值,并在推理的過程中清晰的闡述自己的觀點,從而逐步發(fā)展發(fā)生的抽象思維。

(三)情感態(tài)度與價值觀。

體驗數(shù)學活動的探索性和創(chuàng)造性,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性。

教學重難點。

通過以上對教材內(nèi)容及教學目標的分析,以及學生已有的知識水平,本節(jié)課的教學重難點如下:

重點:絕對值的理解以及有理數(shù)的比較。

難點:負數(shù)的絕對值的理解及比較。

二、說學情。

以上就是我對教材的分析,由于教學目標及重難點的確定也是在學生情況的基礎上進行的,所以下面我對學情進行分析。

初一學生的抽象思維開始有了一定的發(fā)展,但還需一定的感性材料作支撐,同時思維比較活躍和積極,所以教學過程中會注重直觀材料的運用,然后引導學生自主思考并理解知識,以激發(fā)學生的學習興趣,調(diào)動學生的積極性和主動性。

三、說教材。

基于以上對教材、學情的分析,以及新課改的要求,我在本課中采用的教法有:講授法、演示法和引導歸納法。演示法中需要的教具有多媒體和溫度計。

四、說教法。

新課改理念告訴我們,學生不僅要學到具體的知識,更重要的是學生要學會怎樣自己學習,為終身學習奠定扎實的基礎。所以本課中我將引導學生通過自主探究、合作交流的學法來更好的掌握本節(jié)課的內(nèi)容。

五、說教學程序。

為了更好的實現(xiàn)三維目標、突破重難點,我將本課的教學程序設計為以下五個環(huán)節(jié):

(一)情境導入。

出示溫度計,"北方某一城市的溫度是零下15攝氏度,南方某一城市的溫度是15攝氏度",學生在稿紙上畫一條數(shù)軸,標出這兩個溫度,并請一位學生畫在黑板上。

(二)新授。

1、從上面的問題中,我引出今天的"絕對值"概念,然后和學生一起從數(shù)軸上推導出絕對值。

2、使用多媒體呈現(xiàn)一組數(shù)字,包括幾個正數(shù),幾個負數(shù)。讓大家在數(shù)軸上畫出,并寫出每個數(shù)字的絕對值。然后學生來依次說出每個絕對值,以鞏固概念的掌握。

3、和大家一起寫出這些絕對值,把負數(shù)、正數(shù)、0的絕對值分別寫在三個地方,引導學生觀察這些絕對值,并思考其中的規(guī)律,然后和學生一起得出結(jié)論,即正數(shù)的絕對值是本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值的0、得出這個結(jié)論后順勢提問:數(shù)a的絕對值是多少?進行分組討論,在討論一段時間后提醒學生剛剛的結(jié)論。

4、在每組的回答后,和學生一起總結(jié)出數(shù)a的絕對值,分三種情況,當a大于0,絕對值為a;等于0時,為0;小于0時,為-a、這三種情況的分析后,學生就充分理解了絕對值的含義。

5、回到大家畫的數(shù)軸,大家很容易比較出原點0右邊的正數(shù)的大小,那么左邊的.負數(shù)的大小怎么比較呢?提出這個問題后不急于讓學生回答,而是把學生引入一個情境,即把數(shù)軸上的數(shù)都看成是溫度,比較溫度的大小就比較容易,然后回到數(shù)的比較。在這個引導后,得出的結(jié)論是:離0越遠的數(shù),越小;也可以說絕對值越大的負數(shù)越小。

(三)鞏固練習。

在ppt上呈現(xiàn)一些數(shù)的絕對值,以及一些負數(shù)、正數(shù)、絕對值之間的比較的題。

(四)小結(jié)。

引導學生總結(jié)出今天的學習內(nèi)容,培養(yǎng)學生的歸納以及邏輯思維能力。

(五)布置作業(yè)。

布置作業(yè)不是目的,目的是學生能夠更好的掌握并運用本節(jié)課的內(nèi)容。所以我會布置這樣一個作業(yè):請學生回家可以在父母的幫助下,找出南方和北方分別三個城市的溫度,比較這些溫度的大小,并寫出每個溫度的絕對值并進行比較。

(六)說板書設計。

為了學生能夠更清晰的掌握內(nèi)容,我用寫關鍵詞的方式來有邏輯性的呈現(xiàn)我的板書。

以上就是我說課的全部內(nèi)容,謝謝!

【本文地址:http://mlvmservice.com/zuowen/15570542.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔