教案是教學(xué)設(shè)計(jì)的具體體現(xiàn),包含了教學(xué)目標(biāo)、內(nèi)容、方法、手段等要素。教案的編寫需要不斷更新和改進(jìn),適應(yīng)教育改革和教學(xué)發(fā)展的需求。教案的編寫需要遵循一定的原則和規(guī)范,小編整理了一些教案寫作的技巧和經(jīng)驗(yàn),供大家參考。
圓柱體積教案篇一
運(yùn)用遷移規(guī)律,讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡(jiǎn)單的實(shí)際問題。
2、過程方法。
讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、情感態(tài)度價(jià)值觀。
通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
圓柱體積教案篇二
本節(jié)課是學(xué)生在學(xué)習(xí)了長(zhǎng)方體和立方體的基礎(chǔ)上進(jìn)行教學(xué)的,它是一種比較常見的立體圖形,學(xué)生對(duì)圓柱都有初步的感性認(rèn)識(shí)。本節(jié)重點(diǎn)是圓柱的特征和圓柱側(cè)面積的計(jì)算。上課伊始,我先組織學(xué)生復(fù)習(xí)圓柱的特征、長(zhǎng)方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程,由此引出圓柱的體積一課題。為了讓學(xué)生更好地理解和掌握?qǐng)A柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識(shí)的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。
反思不足:1、練習(xí)有些少。在學(xué)生練習(xí)這個(gè)環(huán)節(jié)中,最能反映學(xué)生掌握情況。應(yīng)該再從不同的角度設(shè)計(jì)多種練習(xí)題目來考察學(xué)生的知識(shí)掌握情況。2、本節(jié)課節(jié)奏較快,沒有去檢測(cè)一下學(xué)生每個(gè)環(huán)節(jié)掌握了沒有。3、數(shù)學(xué)要應(yīng)用于生活,應(yīng)該多出些有關(guān)生活實(shí)際的練習(xí)題。
圓柱體積教案篇三
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。這樣學(xué)生親身參與操作,有了空間感覺的體驗(yàn),也有了充分的思考空間。這樣設(shè)計(jì)我覺得能突破難點(diǎn),課堂效果很好。
在課的設(shè)計(jì)上以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,在學(xué)生動(dòng)手實(shí)踐、交流討論和思考的時(shí)間上教師應(yīng)合理把握。
圓柱體積教案篇四
談話:前面我們認(rèn)識(shí)了圓柱,學(xué)習(xí)了圓柱的底面積、側(cè)面積和表面積,今天學(xué)習(xí)“圓柱的體積”。(教師板書,學(xué)生齊讀)。
啟發(fā):看到這個(gè)課題,你們會(huì)想到什么?這堂課要解決什么問題呀?(可能學(xué)生會(huì)提出以下幾個(gè)問題)。
引導(dǎo):
(1)什么是圓柱的體積?
(2)圓柱的體積和什么有關(guān)?
(3)圓柱的體積公式是怎樣推導(dǎo)出來的?
(4)圓柱的體積是怎樣求出來的?
(5)學(xué)習(xí)圓柱的體積公式有什么用?
談話:對(duì)!剛才這幾位同學(xué)跟老師想的一樣。
啟發(fā):圓柱的體積就是圓柱所占空間的大小。
談話:這堂課我們主要解決三個(gè)問題:(出示探究問題)。
1、圓柱的體積和什么有關(guān)?
2、這個(gè)公式是怎樣推導(dǎo)出來的?
3、學(xué)習(xí)了圓柱的體積能解決什么實(shí)際問題?
【設(shè)計(jì)意圖】直接揭示課題,啟發(fā)學(xué)生自己提出教學(xué)的要求,這樣既創(chuàng)設(shè)了問題情境,激發(fā)學(xué)生學(xué)習(xí)的興趣,又使學(xué)生明確這堂課的教學(xué)目標(biāo)。
1、提出問題。
談話:現(xiàn)在請(qǐng)大家回憶一下,我們以前學(xué)過哪些立體圖形的體積計(jì)算。是怎樣計(jì)算的?
引導(dǎo):我們已經(jīng)學(xué)過長(zhǎng)方體、正方體的體積計(jì)算。(教師隨著學(xué)生的回答,逐一出示出上述圖形)。
談話:長(zhǎng)方體的體積=長(zhǎng)×寬×高。
正方體的體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng)。
統(tǒng)一為:長(zhǎng)方體或正方體的體積=底面積×高。
談話:長(zhǎng)方體和正方體和今天學(xué)習(xí)的圓柱有什么顯著的區(qū)別?
引導(dǎo):長(zhǎng)方體的面都是平面圖形,圓柱的側(cè)面是一個(gè)曲面。
引導(dǎo):它的側(cè)面是一個(gè)曲面,用體積單位直接量是有困難的。
2、引發(fā)猜想。
談話:圓柱的體積和什么有關(guān)系呢?(準(zhǔn)備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)。
引導(dǎo):圓柱體的體積既和底面積有關(guān),又和高有關(guān)。
3、自學(xué)課本。
談話:圓柱體的體積和底面積、高到底有什么關(guān)系呢?如何求圓柱體的體積?
啟發(fā):請(qǐng)大家閱讀課本,在課本中尋找答案。(教師要求學(xué)生利用預(yù)先準(zhǔn)備好的平均分成16份圓柱學(xué)具拼一拼,學(xué)生一邊看書,一邊操作。學(xué)生閱讀課本后,全班交流。)。
引導(dǎo):我們用圖形轉(zhuǎn)化的方法,求圓柱的體積。
談話:這個(gè)辦法很好。那么把圓柱轉(zhuǎn)化成什么圖形呢?
引導(dǎo):長(zhǎng)方體。
談話:以前我們學(xué)習(xí)圓的面積時(shí)也是運(yùn)用轉(zhuǎn)化的策略,把圓轉(zhuǎn)化成近似的長(zhǎng)方形,“化曲為直”、“化圓為方”推導(dǎo)出圓的面積計(jì)算公式。
(用多媒體演示圓形的轉(zhuǎn)化過程,邊出示、邊交流)。
【設(shè)計(jì)意圖】在不能用體積單位直接量的情況下,啟發(fā)學(xué)生運(yùn)用轉(zhuǎn)化的數(shù)學(xué)思想解決問題。通過復(fù)習(xí)了舊知識(shí),又為學(xué)習(xí)新知識(shí)作好鋪墊,能夠促進(jìn)學(xué)生充分運(yùn)用遷移規(guī)律把新舊知識(shí)聯(lián)系起來組成一個(gè)新的知識(shí)結(jié)構(gòu)。
談話:同學(xué)們觀察一下,拼成的是什么圖形?
引導(dǎo):近似的長(zhǎng)方體。
啟發(fā):說得很好,為什么說是近似的長(zhǎng)方體,哪里不太像?
引導(dǎo):長(zhǎng)都是許多弧線組成,不是直的。
談話:這里我們把圓柱分成16等分,還能分嗎?
談話:究竟能分多少份呢?
引導(dǎo):無數(shù)份,可以永遠(yuǎn)分下去。
談話:對(duì)。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長(zhǎng)就越接近于直線段,這個(gè)圖形就越接近于長(zhǎng)方體。
談話:從分割、拼接的操作過程中,比較拼成的近似長(zhǎng)方體與原來的圓柱,你發(fā)現(xiàn)了什么?
匯報(bào):把圓柱體轉(zhuǎn)化為近似的`長(zhǎng)方體,形狀變了,體積沒有變。
談話:要求圓柱的體積,我們只要求轉(zhuǎn)化后的長(zhǎng)方體的體積就可以了。
匯報(bào):
(1)轉(zhuǎn)化后的近似長(zhǎng)方體的底面積與原來的圓柱體的底面積相等。
(2)轉(zhuǎn)化后的近似長(zhǎng)方體的高與原來的圓柱體的高相等。
因?yàn)椋洪L(zhǎng)方體的體積=底面積×高。
(教師要求學(xué)生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導(dǎo)的過程。)。
長(zhǎng)方體的體積=底面積×高。
交流:我們也可以用字母表示圓柱的體積計(jì)算公式:v=sh(板書)。
引導(dǎo):剛才我們的猜想是正確的,圓柱的體積既和底面積有關(guān),又和高有關(guān)。
現(xiàn)在請(qǐng)同學(xué)們把圓柱體積公式的推導(dǎo)過程再完整地說一遍。
談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關(guān)。
通過分一分、拼一拼我們把圓柱轉(zhuǎn)化成了近似的長(zhǎng)方體。
通過比一比、算一算成功地推導(dǎo)出圓柱的體積計(jì)算公式,解決了我們前兩個(gè)要探究的問題。
【設(shè)計(jì)意圖】要求每個(gè)學(xué)生動(dòng)手操作,打破了過去教師演示教具學(xué)生看的框框,并滲透轉(zhuǎn)化、無限等數(shù)學(xué)思想,讓學(xué)生自己從嘗試中推導(dǎo)圓柱體積的公式。
圓柱體積教案篇五
面對(duì)復(fù)習(xí)的問題,學(xué)生回答的很好,長(zhǎng)方體的體積=長(zhǎng)×寬×高,當(dāng)我指著長(zhǎng)方體的底面時(shí),學(xué)生就說,長(zhǎng)方體的體積=底面積×高。學(xué)生對(duì)于圓的面積計(jì)算公式的的推導(dǎo)記憶猶新,這是很值得我高興的。面對(duì)本課的重點(diǎn)解決問題,我滿懷信心(兩個(gè)復(fù)習(xí)問題的鋪墊,學(xué)生會(huì)首先想起來把圓柱體按照?qǐng)A的面積推導(dǎo)過程一樣,來等分圓柱體),開始引導(dǎo)學(xué)生獨(dú)立思考,怎樣計(jì)算圓柱體的體積?正當(dāng)大家苦思冥想的時(shí)候,一只手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個(gè)舉手,把別人的風(fēng)頭都給搶去了,他是一個(gè)愛表現(xiàn)的學(xué)生,為了不影響其他學(xué)生思考,每次我總是壓一壓他的積極性。給大家留一點(diǎn)思考的時(shí)間,等一會(huì)再說你的方法,誰知道這個(gè)積極分子不容我把話說完,已經(jīng)拿著自己的圓柱體跑到講臺(tái)上了,(哎,讓我怎么評(píng)價(jià)他呢,耐不住性子啊,再穩(wěn)重一些多好啊?):我是這樣想的,這是一個(gè)圓柱體的生日蛋糕,我想把它橫著切成一個(gè)個(gè)圓片,分給你們吃。霎時(shí)間,下面的同學(xué)都笑了,過了一會(huì),一個(gè)學(xué)生提問:切蛋糕,和圓柱體的體積有什么關(guān)系?。坑邪?,這個(gè)圓柱體蛋糕的體積就是每一個(gè)圓片的面積乘上圓片的個(gè)數(shù)。這樣解釋完,下面的學(xué)生有的在笑,有的在議論,還有的再思考。我想想了,這是我該出手的時(shí)候了:你給大家解釋一下,圓片是什么?圓片的個(gè)數(shù)又是什么?圓片就是圓柱的底面積,圓片的個(gè)數(shù)就是圓柱的高。
這種推導(dǎo)圓柱體體積的'計(jì)算方法,是出乎我意料之外的,因?yàn)椋鉀Q問題前,已經(jīng)復(fù)習(xí)了長(zhǎng)方體體積計(jì)算方法與圓的面積的推導(dǎo)方法,都是為把圓柱體進(jìn)行等分轉(zhuǎn)化成長(zhǎng)方體體積來推導(dǎo)做鋪墊的。誰曾向,這種用堆的過程來說明“底面積×高”計(jì)算圓柱體體積的道理,實(shí)際是積分思想,這是要到中學(xué)才學(xué)習(xí)的,學(xué)生不好理解的,竟然跑到預(yù)想方法之前了。真是計(jì)劃不如變化快啊。課堂上的精彩總是不期而至啊。試想,如果,剛開始他舉手,我就像以往一樣”壓一壓他,讓他和其他學(xué)生同步思考,說不定,這個(gè)想法在他腦海里轉(zhuǎn)瞬即逝,那么這個(gè)精彩的火花就不會(huì)在課堂上呈現(xiàn)。
由此感悟到,課堂上,要給學(xué)生即興發(fā)言的機(jī)會(huì),及時(shí)的捕捉學(xué)生的思維靈感,精彩就會(huì)不期而至?!秷A柱體的體積》這一課我學(xué)到了很多東西。
圓柱體積教案篇六
在進(jìn)行圓柱的體積的導(dǎo)入時(shí),課本上是先讓學(xué)生回憶“長(zhǎng)方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,那么再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜,《圓柱體積》教學(xué)反思。
猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn),理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,我認(rèn)為,不妨在回憶了長(zhǎng)方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。
二、新課時(shí),要實(shí)現(xiàn)人人參與,主動(dòng)學(xué)習(xí)。
根據(jù)課標(biāo)要求:學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份,還可以再多一些),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生如果沒有親身參與操作,就缺乏情感空間感覺的體驗(yàn),而且這部分又是小學(xué)階段立體圖形的教學(xué)難點(diǎn),學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、練習(xí)時(shí),要形式多樣,層層遞進(jìn)。
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思去考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。在鞏固練習(xí)中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學(xué)生才能真正掌握好計(jì)算圓柱體積的方法。練習(xí)方式可以是填空、選擇、判斷、看圖計(jì)算、應(yīng)用題等。達(dá)到掌握。
圓柱體積教案篇七
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長(zhǎng)方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。我認(rèn)為,不妨在回憶了長(zhǎng)方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。
學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗(yàn),而且這部分又是小學(xué)階段立體圖形的教學(xué)難點(diǎn),學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思。
圓柱體積教案篇八
本節(jié)課是在學(xué)習(xí)了圓柱的體積公式后進(jìn)行的解決問題。這要求學(xué)生對(duì)圓柱的體積公式掌握的比較扎實(shí),并要求理論與實(shí)際生活相結(jié)合。讓學(xué)生通過經(jīng)歷發(fā)現(xiàn)和提出問題、分析和解決問題的完整過程,掌握問題解決的策略。使學(xué)生在解決問題的過程中體會(huì)轉(zhuǎn)化、推理和變中有不變的數(shù)學(xué)思想。
在教學(xué)中教學(xué)我采用操作和演示、講解和嘗試練習(xí)相結(jié)合的方法,是新課與練習(xí)有機(jī)地融為一體,做到講與練相結(jié)合。整節(jié)課我采用啟發(fā)式教學(xué)。從導(dǎo)入新授到獨(dú)立解答問題,環(huán)節(jié)清晰,教學(xué)目的明確。通過提問引導(dǎo)學(xué)生自主研究問題找到重難點(diǎn),突破重難點(diǎn)。通過2個(gè)瓶子的倒置,把不規(guī)則的物體轉(zhuǎn)化成規(guī)則物體,再來求它們的體積。在進(jìn)行轉(zhuǎn)化時(shí),讓學(xué)生明白倒置前空氣的體積在倒置后屬于哪一部分。倒置前水的體積在倒置后屬于哪一部分。不管在倒置前還是倒置后,什么不變,什么變了?要求瓶子的體積實(shí)際是求什么?在課堂中學(xué)生積極參與,積極思考,小組合作學(xué)習(xí)。在學(xué)習(xí)中學(xué)習(xí)探究氛圍高,體現(xiàn)高年級(jí)學(xué)科特點(diǎn),并且靈活運(yùn)用生命化課堂的四自模式、新技術(shù),運(yùn)用熟練,課堂中使用恰當(dāng)有效。但在教學(xué)時(shí)提出的問題應(yīng)該更簡(jiǎn)潔明了。在課堂上如何更好地關(guān)注中等偏下的學(xué)生,我時(shí)常為此感到糾結(jié)。
剛剛嘗試建構(gòu)高效的課堂教學(xué)范式,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學(xué)更高效、更優(yōu)質(zhì)。
圓柱體積教案篇九
使學(xué)生知道圓柱體的體積公式推導(dǎo)過程;理解并掌握?qǐng)A柱體的體積公式及相關(guān)的推論。并能正確運(yùn)用公式解決一些簡(jiǎn)單的實(shí)際問題。通過對(duì)圓柱體體積公式的教學(xué),加深學(xué)生對(duì)立體圖形的認(rèn)識(shí),培養(yǎng)學(xué)生的觀察能力,抽象和概括能力及綜合運(yùn)用能力,發(fā)展學(xué)生的空間觀念,同時(shí)滲透一些關(guān)于極限的辨證唯物主義思想。
1、長(zhǎng)方體的體積公式及推導(dǎo)過程。
2、圓面積公式的推導(dǎo)過程。
1、有目的的運(yùn)用啟發(fā)引導(dǎo)的方法組織教學(xué)。
2、采用演示實(shí)驗(yàn)的方法,讓學(xué)生觀察比較,從而發(fā)現(xiàn)規(guī)律,找出體積公式。
3、適當(dāng)采用“嘗試——失敗——總結(jié)——再嘗試——再總結(jié)”的方法,引導(dǎo)學(xué)生找到推導(dǎo)公式的合理方法。
4、利用多變的練習(xí),加深學(xué)生對(duì)公式的理解,找到公式的根本內(nèi)涵。但是要注意循序漸進(jìn),由易到難,由簡(jiǎn)到繁。
在學(xué)法指導(dǎo)上,主要是讓學(xué)生學(xué)會(huì)觀察、比較,歸納概括出體積公式。通過直觀實(shí)驗(yàn),吸引學(xué)生主動(dòng)、認(rèn)真觀察圖形的拼接過程,積極回答觀察結(jié)果,主動(dòng)參與到教學(xué)中去,并且在教師的啟發(fā)下,進(jìn)行歸納概括。培養(yǎng)學(xué)生的自學(xué)能力及概括能力。
圓柱體割拼組合教具及事先寫好習(xí)題的小黑板。
一是通過復(fù)習(xí)舊知識(shí),為新課作好準(zhǔn)備;
二是引出新課。一開始先復(fù)習(xí)體積的概念及長(zhǎng)方體的體積公式。這個(gè)練習(xí)可采用提問的方式,但是這些知識(shí)已學(xué)過較長(zhǎng)時(shí)間,所以適當(dāng)?shù)臅r(shí)侯教師要加以啟發(fā)提示。接下來,教師引導(dǎo)學(xué)生回憶長(zhǎng)方體體積公式的推導(dǎo)過程,及圓面積公式的推導(dǎo)方法,為新課做準(zhǔn)備。然后,提問:圓柱體的特點(diǎn)是什么?圓柱體的側(cè)面積、表面積公式是什么?由于這些內(nèi)容剛剛學(xué)過,學(xué)生很容易回答,可以提問基礎(chǔ)較差的學(xué)生,并加以鼓勵(lì),使他們樹立信心,提高興趣,以便學(xué)習(xí)新課。
這樣就順利轉(zhuǎn)入了新課的學(xué)習(xí)。
這時(shí)教師出示圓柱體模型。首先引導(dǎo)學(xué)生用長(zhǎng)方體公式的推導(dǎo)方法嘗試。提問:“我們學(xué)過的長(zhǎng)方體體積是用單位體積的小正方體塊來量出的,現(xiàn)在我們也用同樣的方法來量一下,現(xiàn)在這個(gè)圓柱體的體積是多少?”
學(xué)生反復(fù)嘗試后回答:“無法量出?!?/p>
這時(shí)教師再問:“什么地方量不出來?為什么?”
學(xué)生回答:“圓柱體的側(cè)面是曲面,無法量出?!?/p>
在學(xué)生嘗試失敗的基礎(chǔ)上,促使他們改變思路,去尋找新的方法。這樣充分利用學(xué)生的好奇心理,調(diào)動(dòng)學(xué)生情緒,轉(zhuǎn)入圓柱體體積公式的教學(xué)。
教師啟發(fā)提問:“圓柱體上下兩面是什么形?圓面積公式是怎么得到的?”通過學(xué)生的回答,引出新思路:用割拼的方法將它轉(zhuǎn)化為其他的圖形。
得到了新的方法以后,教師進(jìn)行演示實(shí)驗(yàn)1:先將圓柱沿底面平分割成8等份,對(duì)拼成一個(gè)近似長(zhǎng)方體。學(xué)生觀察割拼過程。
教師提出問題:“這個(gè)圓柱體拼成了一個(gè)近似的什么立體圖形?為什么說它是近似的?它的哪一部分不是長(zhǎng)方體的組成部分?”
學(xué)生回答后,接著再進(jìn)行演示實(shí)驗(yàn)2:將圓柱體沿底面平分16等份,再拼成近似的長(zhǎng)方體。
再問:“這次是不是更象長(zhǎng)方體了?”
這時(shí)教師啟發(fā)學(xué)生想象;“把它平分成很多很多等份,這樣拼成的圖形將會(huì)怎樣?”
教師總結(jié):
“將會(huì)無限趨近于長(zhǎng)方體,并且最終會(huì)得到一個(gè)長(zhǎng)方體?!?/p>
然后及時(shí)引導(dǎo)學(xué)生觀察這個(gè)長(zhǎng)方體,并把它與圓柱體進(jìn)行比較,提問:“這個(gè)長(zhǎng)方體的哪部分與圓柱體相同?”因?yàn)槟P透髅娴念伾煌?,所以學(xué)生會(huì)很快回答出來:“底面積與高?!?/p>
“那么這個(gè)長(zhǎng)方體體積與圓柱體體積有什么關(guān)系?”學(xué)生回答:“相同?!?/p>
“長(zhǎng)方體的體積是怎樣計(jì)算的?”學(xué)生回答:“底面積乘以高。”
“那么圓柱體是否也可以這樣算呢?”學(xué)生回答:“是的?!?/p>
這時(shí)教師根據(jù)學(xué)生的回答,及時(shí)板書這兩個(gè)公式。
通過以上的教學(xué),引導(dǎo)學(xué)生歸納概括出了圓柱體的體積公式。這樣先通過復(fù)習(xí)做知識(shí)的鋪墊,然后由學(xué)生進(jìn)行嘗試,充分運(yùn)用思維的遷移規(guī)律,用圓面積公式的推導(dǎo)方法搭起了橋梁,順利地實(shí)現(xiàn)了本節(jié)課的第一個(gè)目標(biāo)。并且在推導(dǎo)過程中滲透了關(guān)于極限的辨證唯物主義思想。
學(xué)生通過嘗試得到了成功的喜悅,思想高度興奮。教師及時(shí)利用這一時(shí)機(jī),將公式向深處拓展。設(shè)問:“如果不知道圓柱體的底面積和高,怎么求體積?”學(xué)生考慮,教師出示嘗試題:
1、已知圓柱體的底面半徑和高,怎樣求體積?
2、已知圓柱體的底面直徑和高,怎樣求體積?
3、已知圓柱體的底面周長(zhǎng)和高,怎樣求體積?
4、已知圓柱體的側(cè)面積和高,怎樣求體積?
學(xué)生分組討論。討論完畢后,每組選一名代表回答,其他同學(xué)做適當(dāng)補(bǔ)充。學(xué)生回答完畢后,教師及時(shí)進(jìn)行總結(jié),并且板書有關(guān)公式的推論。
通過以上練習(xí),避免了學(xué)生只注意了公式的表面特征,而忽略了公式的本質(zhì)特征。使學(xué)生明確,不論條件怎樣變化,最終都要?dú)w到底面積乘以高上來。從而使學(xué)生理解了本公式的內(nèi)涵,為靈活運(yùn)用公式做好了知識(shí)的準(zhǔn)備。
最后要求學(xué)生用字母表示公式。由于此方法學(xué)生早已熟悉,所以可全班集體回答。
學(xué)生理解和掌握了公式后,教師及時(shí)出示習(xí)題,指導(dǎo)學(xué)生將公式應(yīng)用于實(shí)際:
(出示準(zhǔn)備好的小黑板)。
提問:“這兩道題是否要進(jìn)行單位換算?各應(yīng)選用什么公式?”學(xué)生回答完畢后,一起獨(dú)立完成。教師巡視檢查,發(fā)現(xiàn)問題,及時(shí)補(bǔ)救。
1、仔細(xì)審題,弄清條件的變化。
2、單位名稱要統(tǒng)一。
圓柱體積教案篇十
大家好!今天,我說課的內(nèi)容是北師大版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)《圓柱的體積》。
《圓柱的體積》是在學(xué)生初步認(rèn)識(shí)了圓柱體的基礎(chǔ)上,進(jìn)一步研究圓柱體的特征,讓學(xué)生比較深入地研究立體幾何圖形,是學(xué)生發(fā)展空間觀念的又一次飛躍。圓柱體是基本的立體幾何圖形,通過學(xué)習(xí),可以培養(yǎng)學(xué)生形成初步的空間觀念,為下一步學(xué)習(xí)“圓錐的體積”打下基礎(chǔ)。根據(jù)本節(jié)課的性質(zhì)特點(diǎn)和六年級(jí)學(xué)生以形象思維為主、空間觀念還比較薄弱的特點(diǎn),我確定本節(jié)課的教學(xué)目標(biāo)為:
1、知識(shí)與能力:通過推導(dǎo)圓柱體積公式的過程,向?qū)W生滲透轉(zhuǎn)化思想,建立空間觀念,培養(yǎng)學(xué)生判斷、推理的能力和遷移能力。
2、過程與方法:結(jié)合具體情境和實(shí)踐活動(dòng),理解圓柱體積的含義。探索并掌握?qǐng)A柱體積的計(jì)算方法,能正確計(jì)算圓柱的體積,并會(huì)解決一些簡(jiǎn)單的實(shí)際問題。
3、情感、態(tài)度、價(jià)值觀:感悟數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)的重點(diǎn)和難點(diǎn):
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。其中,圓柱體積計(jì)算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來推導(dǎo),推導(dǎo)過程要有一定的邏輯推理能力,因此,推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點(diǎn)。
(一)學(xué)情分析。
六年級(jí)的學(xué)生已經(jīng)有了較豐富的生活經(jīng)驗(yàn),這些感性經(jīng)驗(yàn)是他們進(jìn)一步學(xué)習(xí)的基礎(chǔ),本節(jié)課的學(xué)習(xí)過程正是讓學(xué)生的感性經(jīng)驗(yàn)上升到理性經(jīng)驗(yàn)的過程,符合學(xué)生的年齡特征和認(rèn)知規(guī)律,在這一過程中,能使學(xué)生體會(huì)到認(rèn)識(shí)事物和歸納事物特征的方法,學(xué)會(huì)運(yùn)用數(shù)學(xué)的思維方式去認(rèn)識(shí)世界。
(二)、選擇教法,實(shí)踐課題。
《新課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)教學(xué)應(yīng)聯(lián)系現(xiàn)實(shí)生活,使學(xué)生從中獲得數(shù)學(xué)學(xué)習(xí)的積極情感體驗(yàn),感受數(shù)學(xué)的力量。同時(shí)我緊密結(jié)合自己的課題“培養(yǎng)學(xué)生自主合作學(xué)習(xí)能力與學(xué)生數(shù)學(xué)素養(yǎng)的策略研究”、“在數(shù)學(xué)課上如何激發(fā)學(xué)生的學(xué)習(xí)興趣”。通過教學(xué)實(shí)踐,使學(xué)生學(xué)會(huì)自主學(xué)習(xí)和小組合作,培養(yǎng)學(xué)生的創(chuàng)新精神和小組合作及應(yīng)用數(shù)學(xué)意識(shí)。因此,在本節(jié)課中,我認(rèn)為運(yùn)用活動(dòng)教學(xué)形態(tài),多媒體演示形態(tài),采取“引導(dǎo)-合作-自主—探究”的教學(xué)方法,使每個(gè)學(xué)生都能參與到學(xué)習(xí)中,感受到學(xué)習(xí)的樂趣,從而突破本課的難點(diǎn)。
現(xiàn)代教育心理學(xué)認(rèn)為:小學(xué)生思維的發(fā)展是從具體形象思維向抽象思維過渡的。因此,按小學(xué)認(rèn)知規(guī)律從“具體感知-形成表象-進(jìn)行抽象”的過程,我打算主要采用觀察發(fā)現(xiàn)法、實(shí)驗(yàn)法,以及分組討論、合作學(xué)習(xí)等形式,并運(yùn)用多媒體課件輔助教學(xué),讓學(xué)生在觀察、感知各種實(shí)物的基礎(chǔ)上,動(dòng)手操作,分組討論、合作學(xué)習(xí),教師恰當(dāng)點(diǎn)撥,適時(shí)引導(dǎo)等方法及手段,激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,讓學(xué)生通過動(dòng)手操作、觀察、實(shí)驗(yàn)得出結(jié)論,體現(xiàn)了以學(xué)生為主體、教師為主導(dǎo)的教學(xué)原則。
教師活動(dòng):創(chuàng)設(shè)情境協(xié)作指導(dǎo)拓展延伸。
學(xué)生活動(dòng):操作感悟自主探究實(shí)踐應(yīng)用。
具體為三個(gè)環(huán)節(jié)進(jìn)行教學(xué):
1.直觀演示,操作發(fā)現(xiàn)。
讓學(xué)生充分利用直觀教具觀察、比較、動(dòng)手操作、討論交流,使學(xué)生在豐富感性認(rèn)識(shí)的基礎(chǔ)上,在老師的指導(dǎo)下,推導(dǎo)出圓柱體積計(jì)算的公式。從而使學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),體會(huì)知識(shí)的由來,并通過已學(xué)知識(shí)解決實(shí)際問題,充分發(fā)揮了直觀教學(xué)在知識(shí)形成過程中的積極作用,同時(shí)也培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的能力和學(xué)習(xí)習(xí)慣。
2.巧設(shè)疑問,體現(xiàn)兩“主”
教師通過設(shè)疑,指明觀察方向,營造探究新知識(shí)的氛圍,在引導(dǎo)學(xué)生歸納推理等方面充分發(fā)揮了其主導(dǎo)作用,有目的、有計(jì)劃、有層次地啟迪學(xué)生的思維,充分發(fā)揮了學(xué)生的主體作用。把學(xué)生當(dāng)作教學(xué)活動(dòng)的主體,成為學(xué)習(xí)活動(dòng)的主人,使學(xué)生在觀察、比較、討論、研究等一系列活動(dòng)中參與教學(xué)全過程,從而達(dá)到掌握新知識(shí)和發(fā)展能力的目的。
3.運(yùn)用遷移,深化提高。
運(yùn)用知識(shí)的遷移規(guī)律,培養(yǎng)學(xué)生利用舊知學(xué)習(xí)新知的能力,從而使學(xué)生主動(dòng)學(xué)習(xí),掌握知識(shí),形成技能。
現(xiàn)代課堂教學(xué)中,不是老師單純地傳授知識(shí),而是在老師的指引下,讓學(xué)生自己學(xué),任何人都不能替代學(xué)生學(xué)習(xí)。所以要把教法融于學(xué)法中,在學(xué)法中體現(xiàn)教法。
本節(jié)課的教學(xué),使學(xué)生掌握一些基本的學(xué)習(xí)方法。
1.學(xué)會(huì)通過觀察、比較、推理能概括出圓柱體積的推導(dǎo)過程。
2.學(xué)會(huì)利用舊知轉(zhuǎn)化成新知,解決新問題的能力。
3.學(xué)會(huì)利用知識(shí)的遷移規(guī)律,把知識(shí)轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力。
具體教學(xué)程序:
(2)你能想辦法計(jì)算出這些水的體積嗎?
(3)討論后匯報(bào):把水倒入長(zhǎng)方體容器中,量出數(shù)據(jù)后再計(jì)算。
2、創(chuàng)設(shè)問題情景。
如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時(shí)候,有沒有像求長(zhǎng)方體或正方體體積那樣的計(jì)算公式呢?今天,我們就來一起研究圓柱體積的計(jì)算方法。(板書課題:圓柱的體積)通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,積極思考,去探索和解決實(shí)際問題,并能制造認(rèn)知沖突,形成"任務(wù)驅(qū)動(dòng)"的探究氛圍。
(二)、新課教學(xué):
設(shè)疑揭題:同學(xué)們想一想,我們當(dāng)初是如何推導(dǎo)出圓的面積計(jì)算公式的呢?課件演示推導(dǎo)圓的面積公式的轉(zhuǎn)化過程。我們能把一個(gè)圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計(jì)算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形來求它的體積呢?引導(dǎo)學(xué)生小組合作交流、觀察、既而動(dòng)手操作。沿著圓柱底面把圓柱切開,可以得到大小相等的16塊或更多塊,啟發(fā)學(xué)生說出轉(zhuǎn)化成我們熟悉的長(zhǎng)方體。同時(shí)引導(dǎo)學(xué)生觀察轉(zhuǎn)化前后兩種幾何形體之間的內(nèi)在聯(lián)系,圓柱的底面與長(zhǎng)方體的底面有什么關(guān)系?圓柱的高與長(zhǎng)方體的高又有什么關(guān)系?學(xué)生交流、進(jìn)行驗(yàn)證、自己推導(dǎo)出圓柱體體積計(jì)算的公式。教師再用多媒體課件演示驗(yàn)證整個(gè)的具體操作過程,最后讓學(xué)生說一說圓柱體計(jì)算公式的整個(gè)推導(dǎo)過程。引導(dǎo)學(xué)生用字母表示出來。
根據(jù)教材特點(diǎn),學(xué)生的認(rèn)知過程,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)求知欲望,調(diào)動(dòng)學(xué)生的各種感官,親自完成從演示——觀察——操作——比較——?dú)w納——推理的認(rèn)識(shí)過程,讓知識(shí)在觀察、操作、比較中內(nèi)化,實(shí)現(xiàn)由感性到理性,由具體到抽象,這種教學(xué)方法符合學(xué)生的認(rèn)知規(guī)律,有助于突破難點(diǎn),化解難點(diǎn)。
關(guān)于難點(diǎn)的突破,我主要從以下幾個(gè)方面著手:
(1)引導(dǎo)學(xué)生自己動(dòng)手通過觀察比較,明確圓柱體的體積與它的底面積和高有關(guān)。
(2)運(yùn)用知識(shí)遷移的規(guī)律,啟發(fā)引導(dǎo),層層深入促進(jìn)學(xué)生在積極的思維中獲得新知識(shí)。
(3)充分利用直觀教具,師生互動(dòng),小組合作,通過演示操作,幫助學(xué)生找出兩種幾何形體轉(zhuǎn)化前后的關(guān)系。
(4)根據(jù)新舊知識(shí)的連接點(diǎn),精心設(shè)計(jì)討論內(nèi)容,分散難點(diǎn),促進(jìn)知識(shí)的形成。
3.運(yùn)用。出示例1:先由學(xué)生自己嘗試練習(xí),請(qǐng)一位學(xué)生板演,集體講評(píng)時(shí)提問學(xué)生,在解題時(shí)要注意什么?讓學(xué)生自己來概括總結(jié),通過學(xué)生的語言說出:(1)單位要統(tǒng)一(2)求出的是體積要用體積單位。在掌握了圓柱體積計(jì)算的方法之后,安排例1進(jìn)行嘗試練習(xí),這樣既可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性和主動(dòng)性,又可以培養(yǎng)學(xué)生學(xué)習(xí)新知識(shí)的能力,同時(shí)把所學(xué)知識(shí)轉(zhuǎn)化為相應(yīng)的技能。
(三)鞏固練習(xí),檢驗(yàn)?zāi)繕?biāo)。
1.練一練1題:計(jì)算各圓柱的體積,目的是讓學(xué)生進(jìn)一步理解鞏固圓柱的體積公式。
2.完成練習(xí)第2題。通過練習(xí),鞏固新知識(shí),加深對(duì)新知識(shí)的理解,把所學(xué)知識(shí)進(jìn)一步轉(zhuǎn)化為能力,在練習(xí)中發(fā)展智力,培養(yǎng)優(yōu)良的思維品質(zhì)和學(xué)習(xí)習(xí)慣。
3.變式練習(xí):已知圓柱的體積、底面積,求圓柱的高。
這道題的安排是對(duì)所學(xué)內(nèi)容的深化,在掌握基礎(chǔ)知識(shí)的前提下,培養(yǎng)思維的靈活性,同時(shí)深化教學(xué)內(nèi)容,防止思維定式。
4.動(dòng)手實(shí)踐:讓學(xué)生測(cè)量自帶的圓柱體。
這道題的設(shè)計(jì),一方面培養(yǎng)了學(xué)生解決實(shí)際問題的能力,另一方面也加深了對(duì)圓柱體積計(jì)算公式的理解,同時(shí)數(shù)學(xué)知識(shí)也和學(xué)生的生活實(shí)際結(jié)合起來,使學(xué)生明白,我們所學(xué)的數(shù)學(xué)是身邊的數(shù)學(xué),是有趣的、有用的數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)興趣。
(四)總結(jié)全課,深化教學(xué)目標(biāo)。
結(jié)合板書,引導(dǎo)學(xué)生說出本課所學(xué)的內(nèi)容,我是這樣設(shè)計(jì)的:這節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?圓柱體積的計(jì)算公式是怎樣推導(dǎo)出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學(xué)習(xí),我們懂得了新知識(shí)的得來是通過已學(xué)的知識(shí)來解決的,以后希望同學(xué)們多動(dòng)腦,勤思考,在我們的生活中還有好多問題需要利用所學(xué)知識(shí)來解決的,望同學(xué)們能學(xué)會(huì)運(yùn)用,善于用轉(zhuǎn)化的思想來豐富自己的頭腦,思考問題。
圓柱體積教案篇十一
圓柱的體積這部分知識(shí)是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)和技能上,通過對(duì)圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會(huì)計(jì)算圓柱的體積;在方法的選擇上,抓信新舊知識(shí)的聯(lián)系,通過想象、實(shí)際操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探究。
《課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測(cè)、交流、反思等活動(dòng)中體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會(huì)求嗎?圓柱形橡皮泥的體積你會(huì)求嗎?)學(xué)生聽到教師提的問題訓(xùn)在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長(zhǎng)方體(已知)的知識(shí)聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實(shí)際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機(jī)滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實(shí)驗(yàn)、模擬、推斷等探索性與挑戰(zhàn)性活動(dòng),因此,動(dòng)手實(shí)踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨(dú)立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長(zhǎng)方體。那么怎樣來切割呢?此時(shí)采用小組討論交流的形式。同愛們有了圓面積計(jì)算公式推導(dǎo)的經(jīng)驗(yàn),經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動(dòng)手操作,拼成了一個(gè)近似的長(zhǎng)方體。同學(xué)們?cè)诓僮鳌⒈容^中,圍繞圓柱體和長(zhǎng)方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個(gè)過程,學(xué)生從形象具體的知識(shí)形成過程(想象、操作、演示)中,認(rèn)識(shí)得以升華(較抽象的認(rèn)識(shí)——公式)。
在探究的過程中,我不是安排了一整套指令讓學(xué)生進(jìn)行程序操作,獲得一點(diǎn)基本技能,而是提供了相關(guān)知識(shí)背景、實(shí)驗(yàn)素材,使用“對(duì)我們有幫助嗎?”“你有什么發(fā)現(xiàn)?”“你是怎么想的?”等這樣一些指向探索的話語鼓勵(lì)學(xué)生獨(dú)立思考、動(dòng)手操作、合作探究,讓學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn)創(chuàng)造性地建構(gòu)自己的數(shù)學(xué)。通過實(shí)驗(yàn)、操作、自主探究,實(shí)現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。教學(xué)中通過等分、切、拼將圓柱體拼成一個(gè)近似的長(zhǎng)方體,再運(yùn)用多媒體顯示由圓柱體到近似的長(zhǎng)方體的變換過程,讓學(xué)生觀察、比較近似長(zhǎng)方體與圓柱的關(guān)系,使圓柱體體積的計(jì)算公式推導(dǎo)過程完全展示在學(xué)生面前。使學(xué)生感悟到轉(zhuǎn)化的思想在幾何學(xué)習(xí)中的妙用。從而產(chǎn)生一種自我嘗試、主動(dòng)探究、樂于發(fā)現(xiàn)的需要、動(dòng)機(jī)和能力。
學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個(gè)教具。為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生基本沒有親身參與操作,非常遺憾。
本節(jié)課我采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實(shí)踐和思考的時(shí)間較多,練習(xí)的時(shí)間較少。
將本文的word文檔下載到電腦,方便收藏和打印。
圓柱體積教案篇十二
一.老師的基本素質(zhì)很高。
語速的控制得當(dāng)、教態(tài)從容大方,板書整齊認(rèn)真、練習(xí)題設(shè)計(jì)極具梯度性,并且有新意,這一點(diǎn)體現(xiàn)在練習(xí)題的設(shè)計(jì)思路和題目的取名上。
二.教學(xué)設(shè)計(jì)充分體現(xiàn)新課標(biāo)對(duì)小學(xué)課堂的要求。
首先:引導(dǎo)學(xué)生從生活事件出發(fā),感受生活中的數(shù)學(xué)現(xiàn)象。
新課標(biāo)指出在教學(xué)空間與圖形時(shí)應(yīng)注重所學(xué)知識(shí)與日常生活的密切關(guān)系,應(yīng)注重使學(xué)生在觀察、操作獲得對(duì)簡(jiǎn)單幾何和平面圖形的直觀經(jīng)驗(yàn)。老師注重創(chuàng)設(shè)情景、設(shè)計(jì)疑問,讓學(xué)生在與同伴合作中探索問題;與同伴交流中得出結(jié)論,嘗試獲取成功的喜悅。其次:充分體現(xiàn)了學(xué)生的主體作用,老師的組織、引導(dǎo)和合作作用。
合作探索階段,老師給出明確的要求之后,便大膽的把時(shí)間交給了學(xué)生,讓他們經(jīng)歷沖突、探索、結(jié)論得出的整個(gè)過程;還有一個(gè)亮點(diǎn)就是在練習(xí)環(huán)節(jié),老師設(shè)置了一個(gè)量一量、算一算的環(huán)節(jié),很多老師都會(huì)給學(xué)生點(diǎn)出來應(yīng)該先求出半徑,但翟老師沒有,而是設(shè)計(jì)了兩種情況,一種是底面沒有圓心的情況,另一種是底面有圓心的情況。她讓學(xué)生自己去摸索,收到了很好的效果,也讓學(xué)生體驗(yàn)到了通過努力獲取成功的喜悅。
三.整節(jié)課體現(xiàn)了從問題—猜想—驗(yàn)證—解決實(shí)際問題的整個(gè)新課標(biāo)的課程理念,符合學(xué)生的認(rèn)知規(guī)律。
四.給學(xué)生充分的獨(dú)立思考和合作探索的時(shí)間。
不但讓學(xué)生體驗(yàn)到了數(shù)學(xué)學(xué)習(xí)的樂趣,而且在闡述結(jié)論的同時(shí)鍛煉了孩子的語言表達(dá)能力,使孩子得到多方面的發(fā)展。
幾點(diǎn)建議:
一:語言再豐富一些,語調(diào)再抑揚(yáng)頓挫一點(diǎn)。
二:在恰當(dāng)?shù)臅r(shí)候給孩子獨(dú)立總結(jié)的機(jī)會(huì),比如在復(fù)習(xí)完圓面積推導(dǎo)過程之后,可以讓學(xué)生自己總結(jié)所用的數(shù)學(xué)思想。
三.給孩子獨(dú)立思考的時(shí)間,不要急著替孩子解釋問題,這樣容易掩蓋問題。
圓柱體積教案篇十三
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問題。
3、進(jìn)一步提高學(xué)生解決問題的能力。
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問題。
3、理解圓柱體積公式的推導(dǎo)過程。
圓柱切割組合模具、小黑板。
一、創(chuàng)設(shè)情境,生成問題。
1、什么是體積?(物體所占空間的大小叫做物體的體積。)。
2、長(zhǎng)方體的體積該怎樣計(jì)算?歸納到底面積乘高上來。
3、圓的面積怎樣計(jì)算?
二、探索交流,解決問題。
(啟發(fā)學(xué)生思考。)。
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會(huì)拼成怎樣的圖形?教師演示,引導(dǎo)學(xué)生進(jìn)行觀察。
3、思考:
(1)圓柱切開后可以拼成一個(gè)什么形體?(長(zhǎng)方體)。
(2)通過實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?小組討論:實(shí)驗(yàn)前后,什么變了?什么沒變?討論后,整理出來,再進(jìn)行匯報(bào)。
(拼成的近似長(zhǎng)方體體積大小沒變,形狀變了,拼成的近似長(zhǎng)方體和圓柱相比,底面形狀變了,由圓變成了近似長(zhǎng)方形,而底面的面積大小沒有發(fā)生變化。近似長(zhǎng)方形的高就是圓柱的高,沒有變化。)。
小組討論:怎樣計(jì)算圓柱的體積?
學(xué)生匯報(bào)討論結(jié)果。
長(zhǎng)方體的體積可以用底面積乘高來計(jì)算,而在推導(dǎo)過程中,長(zhǎng)方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計(jì)算。
師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?
板書:v=sh。
5、算一算:已知一根柱子的底面半徑為米,高為5米。你能算出它的體積嗎?
三、鞏固應(yīng)用練習(xí)。
四:課堂小結(jié):
通過這節(jié)課你學(xué)會(huì)了哪些知識(shí),有什么收獲?
五:課后作業(yè):
教材第9頁,練一練第1、3、4、題。
圓柱體積教案篇十四
今天聽了覃老師的公開教學(xué)課——圓柱的體積。本節(jié)課的教學(xué)內(nèi)容是:圓柱的體積計(jì)算公式的推導(dǎo),例題4,并完成“做一做”的第一題和練習(xí)八中的第1——2題。本節(jié)課的教學(xué)目標(biāo)是:使學(xué)生知道圓柱體體積的推導(dǎo)過程,理解并掌握求圓柱體體積的計(jì)算公式,并能正確地應(yīng)用公式計(jì)算圓柱體積。本節(jié)課的教學(xué)重點(diǎn)是:圓柱體體積計(jì)算公式。教學(xué)難點(diǎn)是:圓柱體割拼組合教學(xué)。聽完這節(jié)課后,讓我收獲很多,我覺得覃老師氣質(zhì)佳、形象美,課上得實(shí)實(shí)在在。下面我就以以下兩方面對(duì)這節(jié)課發(fā)表自己的觀點(diǎn):
1、教師能圍繞本節(jié)課的教學(xué)內(nèi)容有目的、有針對(duì)性地進(jìn)行復(fù)習(xí),為后面圓柱體體積的計(jì)算埋下伏筆。
2、傳統(tǒng)教學(xué)與現(xiàn)代化教學(xué)相結(jié)合。圓柱體體積的推導(dǎo)過程中,教師首先把實(shí)物圓柱體模型進(jìn)行分解,再組合成一個(gè)已學(xué)過的長(zhǎng)方體進(jìn)行推導(dǎo),但覃老師覺得還不夠透徹,因此,又利用多媒體現(xiàn)代化教學(xué)手段把推導(dǎo)過程重新回顧一遍,這樣就把傳統(tǒng)教學(xué)與現(xiàn)代化教學(xué)有機(jī)地結(jié)合再一起,突破了教學(xué)難點(diǎn)。
3、針對(duì)本節(jié)課所學(xué)知識(shí)內(nèi)容,安排練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識(shí),并通過練習(xí)達(dá)到一定技能。
4、本節(jié)課,讓學(xué)生動(dòng)手、動(dòng)腦,參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系,達(dá)到了一定的教學(xué)效果。
1、課堂教學(xué)環(huán)節(jié)如能先復(fù)習(xí)圓的面積計(jì)算公式及立體圖形的體積計(jì)算公式,再出示課題進(jìn)而傳授新知識(shí),整堂課的結(jié)構(gòu)應(yīng)該會(huì)更完整一些。
2、本節(jié)課學(xué)生的主體性沒有充分展示出來,例如:在體積公式的推導(dǎo)過程中,教師如能讓學(xué)生自己去探討長(zhǎng)方體的底面積和高與圓柱的底面積和高的關(guān)系,從而推出圓柱體的體積公式,這樣學(xué)生在課堂中的主體性就能充分發(fā)揮出來。
3、在“討論”這一環(huán)節(jié)中,應(yīng)該是“已知圓柱的底面半徑和高,怎樣求圓柱的體積”而不是“已知圓的半徑和高”,圓哪來的高,因此這里表述的不夠準(zhǔn)確。
總之,這節(jié)課從學(xué)生的練習(xí)來看,達(dá)到了預(yù)定的教學(xué)效果,是一堂成功的課,也希望年輕的覃老師今后繼續(xù)發(fā)揚(yáng)教學(xué)激情,發(fā)揮自己的個(gè)人專長(zhǎng),在教學(xué)上有新的突破。
圓柱體積教案篇十五
教學(xué)目標(biāo)是:使學(xué)生知道圓柱體的體積公式推導(dǎo)過程;理解并掌握?qǐng)A柱體的體積公式及相關(guān)的推論。并能正確運(yùn)用公式解決一些簡(jiǎn)單的實(shí)際問題。通過對(duì)圓柱體體積公式的教學(xué),加深學(xué)生對(duì)立體圖形的認(rèn)識(shí),培養(yǎng)學(xué)生的觀察能力,抽象和概括能力及綜合運(yùn)用能力,發(fā)展學(xué)生的空間觀念,同時(shí)滲透一些關(guān)于極限的辨證唯物主義思想。
學(xué)習(xí)本節(jié)課應(yīng)具備的舊知識(shí)是:
1、長(zhǎng)方體的體積公式及推導(dǎo)過程。
2、圓面積公式的推導(dǎo)過程。
在教學(xué)中就是要運(yùn)用圓面積公式的推導(dǎo)方法,將圓柱體轉(zhuǎn)化為長(zhǎng)方體,從而由長(zhǎng)方體體積公式推導(dǎo)出圓柱體體積公式。因此根據(jù)本節(jié)課的特點(diǎn)我采用的教學(xué)方法是:
1、有目的的運(yùn)用啟發(fā)引導(dǎo)的方法組織教學(xué)。
2、采用演示實(shí)驗(yàn)的方法,讓學(xué)生觀察比較,從而發(fā)現(xiàn)規(guī)律,找出體積公式。
3、適當(dāng)采用“嘗試——失敗——總結(jié)——再嘗試——再總結(jié)”的方法,引導(dǎo)學(xué)生找到推導(dǎo)公式的合理方法。
4、利用多變的練習(xí),加深學(xué)生對(duì)公式的理解,找到公式的根本內(nèi)涵。但是要注意循序漸進(jìn),由易到難,由簡(jiǎn)到繁。
在學(xué)法指導(dǎo)上,主要是讓學(xué)生學(xué)會(huì)觀察、比較,歸納概括出體積公式。通過直觀實(shí)驗(yàn),吸引學(xué)生主動(dòng)、認(rèn)真觀察圖形的拼接過程,積極回答觀察結(jié)果,主動(dòng)參與到教學(xué)中去,并且在教師的啟發(fā)下,進(jìn)行歸納概括。培養(yǎng)學(xué)生的自學(xué)能力及概括能力。
本節(jié)課所需教具為:圓柱體割拼組合教具及事先寫好習(xí)題的小黑板。
教學(xué)一開始,首先復(fù)習(xí)。目的是:一是通過復(fù)習(xí)舊知識(shí),為新課作好準(zhǔn)備;二是引出新課。
一開始先復(fù)習(xí)體積的概念及長(zhǎng)方體的體積公式。這個(gè)練習(xí)可采用提問的方式,但是這些知識(shí)已學(xué)過較長(zhǎng)時(shí)間,所以適當(dāng)?shù)臅r(shí)侯教師要加以啟發(fā)提示。
接下來,教師引導(dǎo)學(xué)生回憶長(zhǎng)方體體積公式的推導(dǎo)過程,及圓面積公式的推導(dǎo)方法,為新課做準(zhǔn)備。
然后,提問:圓柱體的特點(diǎn)是什么?圓柱體的側(cè)面積、表面積公式是什么?由于這些內(nèi)容剛剛學(xué)過,學(xué)生很容易回答,可以提問基礎(chǔ)較差的學(xué)生,并加以鼓勵(lì),使他們樹立信心,提高興趣,以便學(xué)習(xí)新課。
通過以上復(fù)習(xí),鞏固了舊知識(shí),為學(xué)習(xí)新知識(shí)做好了鋪墊,同時(shí)調(diào)動(dòng)了全體學(xué)生的學(xué)習(xí)興趣。利用這一有利時(shí)機(jī),教師及時(shí)引導(dǎo)、設(shè)疑:
這樣就順利轉(zhuǎn)入了新課的學(xué)習(xí)。
這時(shí)教師出示圓柱體模型。
首先引導(dǎo)學(xué)生用長(zhǎng)方體公式的推導(dǎo)方法嘗試。提問:“我們學(xué)過的長(zhǎng)方體體積是用單位體積的小正方體塊來量出的,現(xiàn)在我們也用同樣的方法來量一下,現(xiàn)在這個(gè)圓柱體的體積是多少?”
學(xué)生反復(fù)嘗試后回答:“無法量出?!?/p>
這時(shí)教師再問:“什么地方量不出來?為什么?”
學(xué)生回答:“圓柱體的側(cè)面是曲面,無法量出?!?/p>
在學(xué)生嘗試失敗的基礎(chǔ)上,促使他們改變思路,去尋找新的'方法。這樣充分利用學(xué)生的好奇心理,調(diào)動(dòng)學(xué)生情緒,轉(zhuǎn)入圓柱體體積公式的教學(xué)。
教師啟發(fā)提問:“圓柱體上下兩面是什么形?圓面積公式是怎么得到的?”通過學(xué)生的回答,引出新思路:用割拼的方法將它轉(zhuǎn)化為其他的圖形。
得到了新的方法以后,教師進(jìn)行演示實(shí)驗(yàn)1:先將圓柱沿底面平分割成8等份,對(duì)拼成一個(gè)近似長(zhǎng)方體。學(xué)生觀察割拼過程。
教師提出問題:“這個(gè)圓柱體拼成了一個(gè)近似的什么立體圖形?為什么說它是近似的?它的哪一部分不是長(zhǎng)方體的組成部分?”
學(xué)生回答后,接著再進(jìn)行演示實(shí)驗(yàn)2:將圓柱體沿底面平分16等份,再拼成近似的長(zhǎng)方體。
再問:“這次是不是更象長(zhǎng)方體了?”
這時(shí)教師啟發(fā)學(xué)生想象;“把它平分成很多很多等份,這樣拼成的圖形將會(huì)怎樣?”
教師總結(jié):“將會(huì)無限趨近于長(zhǎng)方體,并且最終會(huì)得到一個(gè)長(zhǎng)方體?!?/p>
然后及時(shí)引導(dǎo)學(xué)生觀察這個(gè)長(zhǎng)方體,并把它與圓柱體進(jìn)行比較,提問:“這個(gè)長(zhǎng)方體的哪部分與圓柱體相同?”因?yàn)槟P透髅娴念伾煌?,所以學(xué)生會(huì)很快回答出來:“底面積與高?!?/p>
“那么這個(gè)長(zhǎng)方體體積與圓柱體體積有什么關(guān)系?”學(xué)生回答:“相同。”
“長(zhǎng)方體的體積是怎樣計(jì)算的?”學(xué)生回答:“底面積乘以高?!?/p>
“那么圓柱體是否也可以這樣算呢?”學(xué)生回答:“是的。”
這時(shí)教師根據(jù)學(xué)生的回答,及時(shí)板書這兩個(gè)公式。
通過以上的教學(xué),引導(dǎo)學(xué)生歸納概括出了圓柱體的體積公式。這樣先通過復(fù)習(xí)做知識(shí)的鋪墊,然后由學(xué)生進(jìn)行嘗試,充分運(yùn)用思維的遷移規(guī)律,用圓面積公式的推導(dǎo)方法搭起了橋梁,順利地實(shí)現(xiàn)了本節(jié)課的第一個(gè)目標(biāo)。并且在推導(dǎo)過程中滲透了關(guān)于極限的辨證唯物主義思想。
學(xué)生通過嘗試得到了成功的喜悅,思想高度興奮。教師及時(shí)利用這一時(shí)機(jī),將公式向深處拓展。設(shè)問:“如果不知道圓柱體的底面積和高,怎么求體積?”學(xué)生考慮,教師出示嘗試題:
1、已知圓柱體的底面半徑和高,怎樣求體積?
2、已知圓柱體的底面直徑和高,怎樣求體積?
3、已知圓柱體的底面周長(zhǎng)和高,怎樣求體積?
4、已知圓柱體的側(cè)面積和高,怎樣求體積?
學(xué)生分組討論。討論完畢后,每組選一名代表回答,其他同學(xué)做適當(dāng)補(bǔ)充。學(xué)生回答完畢后,教師及時(shí)進(jìn)行總結(jié),并且板書有關(guān)公式的推論。
通過以上練習(xí),避免了學(xué)生只注意了公式的表面特征,而忽略了公式的本質(zhì)特征。使學(xué)生明確,不論條件怎樣變化,最終都要?dú)w到底面積乘以高上來。從而使學(xué)生理解了本公式的內(nèi)涵,為靈活運(yùn)用公式做好了知識(shí)的準(zhǔn)備。
最后要求學(xué)生用字母表示公式。由于此方法學(xué)生早已熟悉,所以可全班集體回答。
學(xué)生理解和掌握了公式后,教師及時(shí)出示習(xí)題,指導(dǎo)學(xué)生將公式應(yīng)用于實(shí)際:
(出示準(zhǔn)備好的小黑板)。
提問:“這兩道題是否要進(jìn)行單位換算?各應(yīng)選用什么公式?”學(xué)生回答完畢后,一起獨(dú)立完成。教師巡視檢查,發(fā)現(xiàn)問題,及時(shí)補(bǔ)救。
最后,對(duì)本節(jié)課進(jìn)行小結(jié)。提出應(yīng)用公式時(shí)應(yīng)注意的問題:1、仔細(xì)審題,弄清條件的變化。2、單位名稱要統(tǒng)一。
布置課后作業(yè)。
本節(jié)課到此結(jié)束。
圓柱體積教案篇十六
掌握?qǐng)A柱的體積計(jì)算公式,能夠正確計(jì)算圓柱的體積。
【過程與方法】。
通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。
【情感態(tài)度價(jià)值觀】。
感受數(shù)學(xué)與生活的聯(lián)系,激發(fā)學(xué)習(xí)興趣,提高學(xué)習(xí)數(shù)學(xué)的自信心。
【教學(xué)重點(diǎn)】。
【教學(xué)難點(diǎn)】。
(一)引入新課。
提問:長(zhǎng)方體和正方體的體積公式是什么?
(正方體)體積=底面積×高。今天我們?cè)賮硌芯苛硪粋€(gè)熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。
(二)探索新知。
在大屏幕出示底面積和高都相等的長(zhǎng)方體、正方體和圓柱。
提問:長(zhǎng)方體和正方體的體積相等嗎?
預(yù)設(shè):根據(jù)長(zhǎng)方體(正方體)體積=底面積×高,所以長(zhǎng)方體和正方體體積相等。
預(yù)設(shè):圓柱的體積和底面積、高有關(guān),圓柱的體積公式=底面積×高。
預(yù)設(shè):可以把圓柱轉(zhuǎn)換成長(zhǎng)方體。
預(yù)設(shè):學(xué)生分一分,拼一拼,組合成近似長(zhǎng)方體的圖形。此時(shí)教師應(yīng)借助多媒體設(shè)備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數(shù)越多,拼成的圖形就越接近長(zhǎng)方體。
組織學(xué)生進(jìn)行小組討論:觀察拼成的長(zhǎng)方體和原來的圓柱具有怎樣的關(guān)系?5分鐘后請(qǐng)小組代表進(jìn)行回答。
預(yù)設(shè):長(zhǎng)方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。
提問:圓柱的體積公式是什么?
用大寫字母v表示圓柱的體積,s表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。
預(yù)設(shè):v=sh。
教師強(qiáng)調(diào)字母v、s是大寫,h是小寫。
追問:回顧探究圓柱體積公式的過程,有哪些心得體會(huì)?
預(yù)設(shè)1:可以用長(zhǎng)方體體積公式推導(dǎo)出圓柱體體積公式;
預(yù)設(shè)2:把圓柱轉(zhuǎn)化成長(zhǎng)方體,與探索圓面積的方法類似;
預(yù)設(shè)3:計(jì)算長(zhǎng)方體、正方體、圓柱的體積都可以用底面積乘高。
(三)課堂練習(xí)。
試一試。
一個(gè)圓柱形零件,底面半徑是5厘米,高是8厘米。這個(gè)零件的體積是多少立方厘米?
(四)小結(jié)作業(yè)。
提問:通過本節(jié)課的學(xué)習(xí)有什么收獲?
課后作業(yè):找找生活當(dāng)中的圓柱物體,量一量底面積和高,算一算物體體積。
圓柱體積教案篇十七
大家好!
今天我說課的內(nèi)容是人教版六年級(jí)數(shù)學(xué)下冊(cè)第二單元《圓柱和圓錐》中的第二課時(shí)《圓柱的體積》。本次說課包括五個(gè)內(nèi)容:說教材、說學(xué)情、說教學(xué)目標(biāo)、說教學(xué)重難點(diǎn)、說學(xué)法、說教法、說教學(xué)程序。下面我從幾個(gè)方面對(duì)本節(jié)課進(jìn)行說課。
《圓柱和圓錐》這一單元是在學(xué)習(xí)了長(zhǎng)方體和立方體的基礎(chǔ)上進(jìn)入了小學(xué)里學(xué)習(xí)立體圖形的最后階段,這個(gè)單元知識(shí)的綜合性和對(duì)學(xué)生的要求都比較高,化歸和類比是常用的思想方法要進(jìn)行總結(jié),長(zhǎng)方形正方形以及圓的基礎(chǔ)知識(shí)都是本單元的認(rèn)知基礎(chǔ)。教學(xué)中注重讓學(xué)生積極主動(dòng)地實(shí)踐研究,讓學(xué)生在合作探究的過程中自主發(fā)現(xiàn)規(guī)律,先用想一想的思考,回憶圓面積公式推導(dǎo)過程,激活原先“化曲為直”的極限思想和“轉(zhuǎn)化”的思想方法記憶儲(chǔ)存,接著用較多的篇幅講解切拼的過程,便于學(xué)生理解和感受轉(zhuǎn)化的過程和極限思想,然后推導(dǎo)圓柱體積的計(jì)算公式,并抽象到字母公式。
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識(shí)的最后部分,是幾何知識(shí)的綜合運(yùn)用。《圓柱的體積》一課,是在學(xué)生已經(jīng)學(xué)過了圓面積公式的推導(dǎo)和長(zhǎng)方體、正方體的體積公式的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,學(xué)生已經(jīng)有了把圓形拼成近似的長(zhǎng)方形的經(jīng)驗(yàn),聯(lián)想到把圓柱切拼成長(zhǎng)方體并不難,學(xué)好這部分知識(shí),為今后學(xué)習(xí)復(fù)雜的形體知識(shí)打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
知識(shí)與技能:
讓學(xué)生經(jīng)歷通過用切割拼合的方法借助長(zhǎng)方體的體積公式,推導(dǎo)出圓柱體積公式的教學(xué)活動(dòng)過程,使學(xué)生理解圓柱體積公式的推導(dǎo)過程。能夠運(yùn)用公式正確地計(jì)算圓柱的體積。并會(huì)解決一些簡(jiǎn)單的實(shí)際問題。
過程與方法:
教學(xué)時(shí),要充分利用教具、學(xué)具,引導(dǎo)學(xué)生觀察、操作和交流探索新知。
情感、態(tài)度與價(jià)值觀:
通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積計(jì)算公式及熟練運(yùn)用計(jì)公式解決實(shí)際問題。引導(dǎo)學(xué)生經(jīng)歷圓柱體積計(jì)算方法的探索過程,體會(huì)化曲為直的數(shù)學(xué)思想方法。
從學(xué)生已有的知識(shí)水平和認(rèn)識(shí)規(guī)律出發(fā),為了更好地突出重點(diǎn),化解難點(diǎn),掃清學(xué)生認(rèn)知上的思維障礙,在實(shí)施教學(xué)過程中,充分利用直觀教具,引導(dǎo)學(xué)生觀察比較,再讓學(xué)生動(dòng)手操作討論,使學(xué)生在豐富感性認(rèn)識(shí)的基礎(chǔ)上,在老師的指導(dǎo)下,推導(dǎo)出圓柱體積計(jì)算的公式。從而使學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),體會(huì)知識(shí)的由來,并通過已學(xué)知識(shí)解決實(shí)際問題,充分發(fā)揮了直觀教學(xué)在知識(shí)形成過程中的積極作用,同時(shí)也培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的能力和學(xué)習(xí)習(xí)慣。
課堂教學(xué)中,不是老師單純地傳授知識(shí),而是在老師的指引下,讓學(xué)生自己學(xué),任何人都不能替代學(xué)生學(xué)習(xí)。所以要把教法融于學(xué)法中,在學(xué)法中體現(xiàn)教法。
1.學(xué)會(huì)通過觀察、比較、推理能概括出圓柱體積的推導(dǎo)過程。
2.學(xué)會(huì)利用舊知轉(zhuǎn)化成新知,解決新問題的能力。
3.學(xué)會(huì)利用知識(shí)的遷移規(guī)律,把知識(shí)轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力。
對(duì)本節(jié)課的教學(xué),我們?cè)O(shè)計(jì)了以下幾個(gè)環(huán)節(jié)。
(一)復(fù)習(xí)舊知識(shí),為引入新知識(shí)作準(zhǔn)備。
1.利用實(shí)驗(yàn),引出體積。
復(fù)習(xí)舊知:什么叫體積?你會(huì)計(jì)算下面那些圖形的體積?
2.質(zhì)疑,揭示學(xué)習(xí)目標(biāo)。
揭示學(xué)習(xí)目標(biāo):這節(jié)課我們就來探討圓柱的體積。
通過質(zhì)疑、揭示目標(biāo),學(xué)生就能清楚地知道了學(xué)習(xí)的主要任務(wù)和要求。使學(xué)生帶著目標(biāo),有目的、有準(zhǔn)備地學(xué)習(xí)下一步的新知識(shí),學(xué)生就真正能成為學(xué)習(xí)的主人,也使教學(xué)變得更加明確具體,可操作、可檢測(cè)。同時(shí)也能激發(fā)起全體學(xué)生的參與達(dá)標(biāo)意識(shí),學(xué)生的主體地位就充分地顯示出來了。
(二)觀察、質(zhì)疑、大膽猜想、培養(yǎng)想像能力。
觀察質(zhì)疑:利用兩個(gè)環(huán)節(jié)。
1、等底不同高,
2、不同底等高兩個(gè)環(huán)節(jié),
比較兩個(gè)圓柱的大小,讓學(xué)生體會(huì)圓柱體積的大小與高和底面積有關(guān)。鼓勵(lì)學(xué)生大膽猜想,并說明理由。學(xué)生為了驗(yàn)證自己的猜想是正確的,極力想辦法,找出推導(dǎo)圓柱體積的方法。
(三)演示操作,探究新知。
根據(jù)學(xué)生的猜想,通過課件演示,引導(dǎo)學(xué)生觀察,在交流中探究出圓柱的體積的計(jì)算方法,這一過程讓學(xué)生感受到了成功的喜悅,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(四)運(yùn)用公式,解決實(shí)際問題。
(五)鞏固練習(xí),檢驗(yàn)?zāi)繕?biāo)。
(六)總結(jié)全課,深化教學(xué)目標(biāo)。
結(jié)合板書,引導(dǎo)學(xué)生說出本課所學(xué)的內(nèi)容,我是這樣設(shè)計(jì)的:這節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?圓柱體積的計(jì)算公式是怎樣推導(dǎo)出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學(xué)習(xí),我們懂得了新知識(shí)的得來是通過已學(xué)的知識(shí)來解決的,以后希望同學(xué)們多動(dòng)腦,勤思考,在我們的生活中還有好多問題需要利用所學(xué)知識(shí)來解決的,望同學(xué)們能學(xué)會(huì)運(yùn)用,善于用轉(zhuǎn)化的思想來武裝自己的頭腦,思考問題。
圓柱體積教案篇十八
本節(jié)課是蘇教國標(biāo)教材六年小學(xué)數(shù)學(xué)(下冊(cè))第二單元25頁的例4教學(xué)。內(nèi)容包括圓柱體的體積計(jì)算公式的推導(dǎo)和運(yùn)用公式解決一些簡(jiǎn)單的實(shí)際問題。
2.本節(jié)課在教材中所處的地位和作用。
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識(shí)的最后部分,是幾何知識(shí)的綜合運(yùn)用。學(xué)好這部分知識(shí),為今后學(xué)習(xí)復(fù)雜的形體知識(shí)打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
3.教材的重點(diǎn)和難點(diǎn)。
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。其中,圓柱體積計(jì)算公社的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,推導(dǎo)過程要有一定的邏輯推理能力,因此,等積轉(zhuǎn)化數(shù)學(xué)思想的培養(yǎng)以及觀察比較新舊圖形的聯(lián)系,做出合請(qǐng)推理,從而推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點(diǎn)。
4.教學(xué)目標(biāo)。
(1)讓學(xué)生經(jīng)歷觀察、猜想、操作、驗(yàn)證、交流和歸納等數(shù)學(xué)活動(dòng)過程,探索并掌握?qǐng)A柱的體積公式,初步學(xué)會(huì)應(yīng)用公式計(jì)算圓柱的體積,并解決相關(guān)的簡(jiǎn)單實(shí)際問題。
(2)使學(xué)生進(jìn)一步體會(huì)“轉(zhuǎn)化”方法的價(jià)值,培養(yǎng)應(yīng)用已有知識(shí)解決實(shí)際問題的能力,發(fā)展空間觀念和初步的推理能力。
(3)通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
從學(xué)生已有的知識(shí)水平和認(rèn)知規(guī)律出發(fā),經(jīng)過觀察、比較、猜想、思考、、驗(yàn)證等方法,自主探究,合情推理。
本節(jié)課的教學(xué)過程分為六個(gè)教學(xué)環(huán)節(jié),主要包括:
1、復(fù)習(xí)引導(dǎo),揭示課題。
明確已有的圓柱的特征、體積概念的認(rèn)識(shí)、平面圖形公式的研究方法等知識(shí)水平,建立新的學(xué)習(xí)和探究欲望。
2、觀察比較,建立猜想。
在觀察長(zhǎng)方體、正方體、圓柱體等底等高時(shí),猜想他們的體積是否都想等?猜想后強(qiáng)調(diào)“可能“相等,因?yàn)槭遣孪氲?。圓柱的體積是不是等于底面積乘高,我們還沒有研究出公式來,所以這里只能是一種沒有經(jīng)過驗(yàn)證的猜想,只能用“可能”相等,沒有經(jīng)過驗(yàn)證的觀點(diǎn),不可以用“一定“兩個(gè)字,讓學(xué)生體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
3、激勵(lì)思考,提出驗(yàn)證的方法。
有沒有一個(gè)可以借鑒的好的研究方法,來證實(shí)等底等高的圓柱體與長(zhǎng)方體、正方的體積有可能相等呢?或者說圓柱的體積也有可能等于底面積乘高呢?學(xué)生可以通過回憶平面圖形面積計(jì)算公式時(shí)的推導(dǎo)方法,獲取一些思考。
4、自主探究,合情推理。
在學(xué)生回憶的基礎(chǔ)上,可以提出使用“切割—轉(zhuǎn)化—觀察—比較—分析—推理”等方法,四人一組,來討論下面的問題:
小組討論綱要:
(1)用方法,把圓柱體轉(zhuǎn)化成了體。
(2)在這個(gè)轉(zhuǎn)化的過程中,變了,沒有變。
(3)通過觀察比較,你發(fā)現(xiàn)了什么?
(4)怎么進(jìn)行合情推理?
(5)怎樣用簡(jiǎn)捷的形式表示你推導(dǎo)出來的公式呢?
把課堂還給學(xué)生,教師的角色是組織和引導(dǎo)。
5、學(xué)以致用,解決實(shí)際問題。
應(yīng)用所推導(dǎo)出來的圓柱體積計(jì)算公式,解決一些生活中的簡(jiǎn)單實(shí)際問題,理解生活中處處有數(shù)學(xué),體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值和廣泛領(lǐng)域。
6、全課小結(jié),提升認(rèn)識(shí)水平。
在研究圓柱體積公式的時(shí)候,我們運(yùn)用了哪些方法?這里的切割是指切割舊圖形,還是切割要研究的新圖形?轉(zhuǎn)化是指轉(zhuǎn)化成已學(xué)過的舊圖形,還是轉(zhuǎn)化成沒有學(xué)過的新圖形?觀察比較什么?怎樣分析推理?這里蘊(yùn)藏著什么樣的數(shù)學(xué)思想?最后問大家這樣一個(gè)問題,發(fā)明電燈重要,還是使用電燈重要,哪個(gè)更能造福人類,造福子孫萬代?科學(xué)家、發(fā)明家就是這樣誕生的,他們善于猜想、善于發(fā)現(xiàn),敢于探究。如果我們將來想成為科學(xué)家,我們必須具備這樣的品質(zhì)。通過這節(jié)課的學(xué)習(xí),你敢不敢大膽去嘗試、去探究圓錐體的體積計(jì)算公式,或是更廣泛的研究上下底面都是相等的.三角形、上下底面都是相等的正多邊形等一些直棱柱的體積計(jì)算方法呢?在研究中,你會(huì)發(fā)現(xiàn),數(shù)學(xué)很美,它是思維的體操,有興趣的同學(xué),可以把你研究的成果告訴老師一起分享。
在本節(jié)課的教學(xué)中,我主要讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),在實(shí)踐中提升,從而獲得知識(shí)。講課時(shí),我再利用教具學(xué)具和課件雙重演示,讓學(xué)生通過眼看、腦想、討論等一系列活動(dòng)后,用自己的語言說出圓柱體體積計(jì)算公式的推導(dǎo)過程。我的第一層次是復(fù)習(xí)。通過復(fù)習(xí)來導(dǎo)入新課。第二層次,推導(dǎo)圓柱體的計(jì)算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動(dòng)手切拼,把圓柱體轉(zhuǎn)化成近似的長(zhǎng)方體,找出近似長(zhǎng)方體與原圓柱體各部分相對(duì)應(yīng)部分,從而推出圓柱體積計(jì)算公式。用知識(shí)遷移法,把舊知識(shí)發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識(shí),使學(xué)生認(rèn)識(shí)到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動(dòng)手能力,觀察分析的和歸納能力。第三層次,針對(duì)本節(jié)所學(xué)知識(shí)內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識(shí),并通過練習(xí)達(dá)到一定技能。
這節(jié)課,在設(shè)計(jì)上充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動(dòng)手、動(dòng)腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于樂中學(xué)會(huì)新知識(shí),使學(xué)生愛學(xué)、會(huì)學(xué),培養(yǎng)了學(xué)生動(dòng)手操作能力、口頭表達(dá)能力和邏輯思維能力,讓學(xué)生充分體驗(yàn)成功的喜悅。
當(dāng)然,由于經(jīng)驗(yàn)不足,在教學(xué)過程中還有很多環(huán)節(jié)沒有處理好。懇請(qǐng)大家提出寶貴的意見和建議。
圓柱體積教案篇十九
新課程標(biāo)準(zhǔn)指出,“數(shù)學(xué)課程不僅要考慮教學(xué)自身的特點(diǎn),更應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上?!币虼吮救苏J(rèn)為教學(xué)中成功的關(guān)鍵在于:教師的“教”立足于學(xué)生的“學(xué)”基于這種理念來設(shè)計(jì)教學(xué)的。
根據(jù)新課程理念,本節(jié)課的教學(xué)設(shè)計(jì)主要意在兩個(gè)方面:引導(dǎo)學(xué)生“玩”數(shù)學(xué),幫助學(xué)生“悟”數(shù)學(xué)。
本節(jié)課主要采用操作實(shí)踐、自主探索、合作交流、積極思考等活動(dòng)方式,讓學(xué)生從中感受、理解知識(shí)的產(chǎn)生和發(fā)展的過程,倡導(dǎo)發(fā)現(xiàn)數(shù)學(xué)的樂趣。
1、說教材。
圓柱體的體積是在學(xué)生學(xué)習(xí)長(zhǎng)方體的體積以及圓柱的認(rèn)識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。內(nèi)容包括圓柱體體積計(jì)算公式的推導(dǎo)和運(yùn)用公式計(jì)算它的體積。
2、說教學(xué)目標(biāo)及重難點(diǎn)。
目標(biāo)是:
(1)知道圓柱體體積的推導(dǎo)過程,會(huì)應(yīng)用該公式計(jì)算圓柱的體積。
(2)初步建立空間觀念和邏輯推理能力。
(3)知道知識(shí)間是可以互相轉(zhuǎn)化的。
(1)啟發(fā)引導(dǎo),組織教學(xué)。
(2)直觀演示,操作發(fā)現(xiàn)。
(3)運(yùn)用遷移,循序漸進(jìn)。
(1)學(xué)會(huì)通過觀察、比較、推理能力概括出圓柱體體積的推導(dǎo)過程。
(2)學(xué)會(huì)用舊知轉(zhuǎn)化成新知,解決新問題的能力。
(3)學(xué)會(huì)利用知識(shí)的遷移規(guī)律,把知識(shí)轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力。
1、激趣設(shè)疑,導(dǎo)入新課。
2、回憶圓面積公式推導(dǎo)過程以及長(zhǎng)方體體積公式。
1)用課件出示圓面積公式推導(dǎo)過程。
2)板書長(zhǎng)方體體積公式。
3、猜想:圓柱體積的大小跟哪些條件有關(guān)?
2)學(xué)生用學(xué)具將圓柱體體積轉(zhuǎn)化成長(zhǎng)方體體積。
3)學(xué)生匯報(bào),師課件演示。
4)小組討論。
拼成的圓柱體的底面積與長(zhǎng)方體底面積有什么關(guān)系?
拼成的圓柱體的高與長(zhǎng)方體的高有什么關(guān)系?
拼成的圓柱體的體積與長(zhǎng)方體的體積有什么關(guān)系?
6)總結(jié)出知道底面半徑,直徑,底面周長(zhǎng)和高怎樣求體積。
5、出示例4、例5。
1)例4讓學(xué)生說解題思路,師板書。
2)例5放手讓學(xué)生自學(xué),發(fā)現(xiàn)問題及時(shí)解決。
6、練習(xí)環(huán)節(jié)。
1)基本練習(xí)。
看圖列式,并寫出相應(yīng)的公式。
(設(shè)計(jì)意圖是鞏固新知識(shí),加深對(duì)新知識(shí)的理解。并轉(zhuǎn)化為能力。)。
2)變式練習(xí)。
(設(shè)計(jì)意圖是培養(yǎng)學(xué)生的思維靈活性,防止受定勢(shì)影響。)。
3)拓展練習(xí)。
(設(shè)計(jì)意圖是培養(yǎng)學(xué)生思維的深度和廣度)。
4)升華練習(xí)。
激趣設(shè)疑。
(設(shè)計(jì)意圖是通過學(xué)生親自測(cè)量,仔細(xì)去算,使課堂真正活起來)。
本節(jié)課板書簡(jiǎn)單、明了,既體現(xiàn)新舊知識(shí)之間的轉(zhuǎn)化,又體現(xiàn)新舊知識(shí)之間的聯(lián)系,具有指導(dǎo)性。藝術(shù)性。概括性??偨Y(jié)性。
【本文地址:http://mlvmservice.com/zuowen/15399649.html】