圓柱體積教案(精選16篇)

格式:DOC 上傳日期:2023-11-26 06:23:46
圓柱體積教案(精選16篇)
時間:2023-11-26 06:23:46     小編:FS文字使者

教案的編寫應遵循教學大綱和教材要求,同時兼顧學生的實際情況和學習需求。編寫教案要注重教學目標的明確性和可操作性。教案范文的優(yōu)秀之處在于它的邏輯性和系統(tǒng)性。

圓柱體積教案篇一

談話:前面我們認識了圓柱,學習了圓柱的底面積、側面積和表面積,今天學習“圓柱的體積”。(教師板書,學生齊讀)。

啟發(fā):看到這個課題,你們會想到什么?這堂課要解決什么問題呀?(可能學生會提出以下幾個問題)。

引導:

(1)什么是圓柱的體積?

(2)圓柱的體積和什么有關?

(3)圓柱的體積公式是怎樣推導出來的?

(4)圓柱的體積是怎樣求出來的?

(5)學習圓柱的體積公式有什么用?

談話:對!剛才這幾位同學跟老師想的一樣。

啟發(fā):圓柱的體積就是圓柱所占空間的大小。

談話:這堂課我們主要解決三個問題:(出示探究問題)。

1、圓柱的體積和什么有關?

2、這個公式是怎樣推導出來的?

3、學習了圓柱的體積能解決什么實際問題?

【設計意圖】直接揭示課題,啟發(fā)學生自己提出教學的要求,這樣既創(chuàng)設了問題情境,激發(fā)學生學習的興趣,又使學生明確這堂課的教學目標。

1、提出問題。

談話:現(xiàn)在請大家回憶一下,我們以前學過哪些立體圖形的體積計算。是怎樣計算的?

引導:我們已經(jīng)學過長方體、正方體的體積計算。(教師隨著學生的回答,逐一出示出上述圖形)。

談話:長方體的體積=長×寬×高。

正方體的體積=棱長×棱長×棱長。

統(tǒng)一為:長方體或正方體的體積=底面積×高。

談話:長方體和正方體和今天學習的圓柱有什么顯著的區(qū)別?

引導:長方體的面都是平面圖形,圓柱的側面是一個曲面。

引導:它的側面是一個曲面,用體積單位直接量是有困難的。

2、引發(fā)猜想。

談話:圓柱的體積和什么有關系呢?(準備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)。

引導:圓柱體的體積既和底面積有關,又和高有關。

3、自學課本。

談話:圓柱體的體積和底面積、高到底有什么關系呢?如何求圓柱體的體積?

啟發(fā):請大家閱讀課本,在課本中尋找答案。(教師要求學生利用預先準備好的平均分成16份圓柱學具拼一拼,學生一邊看書,一邊操作。學生閱讀課本后,全班交流。)。

引導:我們用圖形轉化的方法,求圓柱的體積。

談話:這個辦法很好。那么把圓柱轉化成什么圖形呢?

引導:長方體。

談話:以前我們學習圓的面積時也是運用轉化的策略,把圓轉化成近似的長方形,“化曲為直”、“化圓為方”推導出圓的面積計算公式。

(用多媒體演示圓形的轉化過程,邊出示、邊交流)。

【設計意圖】在不能用體積單位直接量的情況下,啟發(fā)學生運用轉化的數(shù)學思想解決問題。通過復習了舊知識,又為學習新知識作好鋪墊,能夠促進學生充分運用遷移規(guī)律把新舊知識聯(lián)系起來組成一個新的知識結構。

談話:同學們觀察一下,拼成的是什么圖形?

引導:近似的長方體。

啟發(fā):說得很好,為什么說是近似的長方體,哪里不太像?

引導:長都是許多弧線組成,不是直的。

談話:這里我們把圓柱分成16等分,還能分嗎?

談話:究竟能分多少份呢?

引導:無數(shù)份,可以永遠分下去。

談話:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長就越接近于直線段,這個圖形就越接近于長方體。

談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發(fā)現(xiàn)了什么?

匯報:把圓柱體轉化為近似的`長方體,形狀變了,體積沒有變。

談話:要求圓柱的體積,我們只要求轉化后的長方體的體積就可以了。

匯報:

(1)轉化后的近似長方體的底面積與原來的圓柱體的底面積相等。

(2)轉化后的近似長方體的高與原來的圓柱體的高相等。

因為:長方體的體積=底面積×高。

(教師要求學生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導的過程。)。

長方體的體積=底面積×高。

交流:我們也可以用字母表示圓柱的體積計算公式:v=sh(板書)。

引導:剛才我們的猜想是正確的,圓柱的體積既和底面積有關,又和高有關。

現(xiàn)在請同學們把圓柱體積公式的推導過程再完整地說一遍。

談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關。

通過分一分、拼一拼我們把圓柱轉化成了近似的長方體。

通過比一比、算一算成功地推導出圓柱的體積計算公式,解決了我們前兩個要探究的問題。

【設計意圖】要求每個學生動手操作,打破了過去教師演示教具學生看的框框,并滲透轉化、無限等數(shù)學思想,讓學生自己從嘗試中推導圓柱體積的公式。

圓柱體積教案篇二

本節(jié)課是學生在學習了長方體和立方體的基礎上進行教學的,它是一種比較常見的立體圖形,學生對圓柱都有初步的感性認識。本節(jié)重點是圓柱的特征和圓柱側面積的計算。上課伊始,我先組織學生復習圓柱的特征、長方體和正方體體積以及圓的面積計算公式推導過程,由此引出圓柱的體積一課題。為了讓學生更好地理解和掌握圓柱體積的計算方法,為后面學習圓錐體積打下堅實的基礎,因此在本節(jié)課的教學設計上我十分注重從生活情境入手,讓學生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學活動,培養(yǎng)學生探究數(shù)學知識的能力和方法,同時在學習活動中體驗學習的樂趣。

反思不足:1、練習有些少。在學生練習這個環(huán)節(jié)中,最能反映學生掌握情況。應該再從不同的角度設計多種練習題目來考察學生的知識掌握情況。2、本節(jié)課節(jié)奏較快,沒有去檢測一下學生每個環(huán)節(jié)掌握了沒有。3、數(shù)學要應用于生活,應該多出些有關生活實際的練習題。

圓柱體積教案篇三

《課程標準》指出:要創(chuàng)設與學生生活環(huán)境、知識背景密切相關的,又是學生感興趣的學習情境,讓學生在觀察、猜測、操作、驗證、歸納等活動中逐步體會數(shù)學知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學的價值,同時掌握必要的基礎知識與基本技能。

在這節(jié)課中,我先是復習了長方體、正方體體積的計算,然后順勢提出“如何計算圓柱體的體積”這一全課的核心問題,從而引發(fā)學生的猜測、操作、交流等數(shù)學活動,如有學生想用單位立方體來擺,可是因圓柱體的側面是曲面,無法量出。在學生嘗試失敗的基礎上,促使他們改變思路,去尋找新的方法。通過學生對“圓柱體上下兩面是什么形?圓面積公式是怎么得到的?”的回答,從而引出:用割拼的方法將它轉化為其他的圖形。出示教具將圓柱沿底面已經(jīng)平分割成16等份,將其插拼成一個近似長方體;接著再啟發(fā)提問將圓柱體沿底面平分32、64等份,再拼成近似的長方體;。使學生知道“把它平分成很多很多等份,拼成的圖形將會越來越接近長方體”。通過讓學生觀察比較,延伸想象發(fā)現(xiàn)聯(lián)系:二者之間什么變了,什么不變?最后,再從長方體的體積公式推導出圓柱體的體積計算公式。由此至終讓學生經(jīng)歷了“做數(shù)學”的過程,并伴隨著問題的圓滿解決,又使學生體驗到了成功的喜悅與滿足。與此同時,使學生理解與感受到了數(shù)學的魅力。

圓柱的體積一課,重點是體積公式的推導。公式導出后,如何進行計算應用。在計算的過程中,發(fā)現(xiàn)學生單位名稱用錯,體積單位用面積單位。為了避免單位名稱的錯誤,可在課前復習中設計單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。對于書中所給的立體圖形,認識不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯。圓柱的高也可以叫做圓柱的長(個別學生不清楚)。在學生利用學具理解公式的推導過程時,應放手讓學動手動腦自己解決,但動手之前一定要把任務布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長方體各部分之間的關系,從而推導出圓柱的體積公式。注意引導學生參與到探索知識的發(fā)生發(fā)展過程中,突破以往數(shù)學學習單一、被動的學習方式,關注學生的實踐活動和直接經(jīng)驗,“通過自己的活動”獲得情感、能力、智力的全面發(fā)展。小學階段,操作活動是數(shù)學活動的重要組成部分,也是學生學習活動的重要方式。

圓柱體積教案篇四

在教學圓柱的體積時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)課的教學,我覺得成功之處有以下幾個方面:

圓柱的體積的導入,在回憶了長方體、正方體體積計算方法,并強調長方體、正方體的體積都可以用底面積乘高,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想:“圓柱體是否可以轉化成我們學過的圖形呢?”激發(fā)學生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導入新知,思維過度自然,易接受新知。

學生在探究新知時,教師要給予充分的思考空間,創(chuàng)設實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,學生親身參與操作,先用小刀把一根火腿腸切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,()圓柱體就轉化成一個近似的長方體。找一找:這個長方體的長相當于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導出圓柱體積的計算公式。

為了直觀、形象,讓學生觀看課件:圓轉化成近似長方形的過程,使學生很容易猜想出圓柱體也可以轉化成近似的長方體來得出體積公式。在推導圓柱體積公式的過程中,要求學生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學生雖然能說出“拼成的物體越來越接近長方體。”但是,到底拼成的圖形怎樣更接近長方體?演示動畫后,學生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉化成近似長方體的轉化方法。

為了培養(yǎng)學生解題的靈活性,進行分層練習,拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

圓柱體積教案篇五

1.結合實際讓學生探索并掌握圓柱體積的計算方法,能正確運用公式解決簡單的實際問題。

2.讓學生經(jīng)歷觀察、猜想、驗證等數(shù)學活動過程,培養(yǎng)學生空間想象能力和探究推理能力,滲透“轉化”、“極限”等數(shù)學思想,體驗數(shù)學研究的方法。

3.通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。

理解并掌握圓柱體積計算公式,并能應用公式計算圓柱的體積。

掌握圓柱體積公式的推導過程。

圓柱的體積演示教具、多媒體課件、圓柱實物2個(一個為橡皮泥)、水槽、水。

一、情境激趣導入新課。

2、提問:“能用一句話說說什么是圓柱的體積嗎?”(板書課題)。

二、自主探究,學習新知。

(一)設疑。

1、從剛才的實驗中你有辦法得到這個圓柱學具的體積嗎?

2、再出示一個用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?

3、如果要求大廳內(nèi)圓柱的體積,或壓路機前輪的體積,還能用剛才的方法嗎?(生搖頭)。

(二)猜想。

1、猜想一下圓柱的體積大小可能與什么有關?理由是什么?

2、大家再來大膽猜測一個,圓柱的體積公式可能是什么?說說你的理由?

(三)驗證。

1、為了證實剛才的猜想,我們可以通過實驗來驗證。怎樣進行這個實驗呢?結合我們以往學習幾何圖形的經(jīng)驗,說說自己的想法。(用轉化的方法,根據(jù)學生敘述課件演示圓的面積公式推導過程)。

2、圓柱能轉化成我們學過的什么圖形呢?它又是怎么轉化成這種圖形的?(小組討論后匯報交流)。

3、指名兩位學生上臺用圓柱體積教具進行操作,把圓柱體轉化為近似的長方體。

4、根據(jù)學生操作,師再次課件演示圓柱轉化成長方體的過程。并引導學生分析當分的份數(shù)越多時,拼成的圖形越接近長方體。

5、通過上面的觀察小組討論:

(1)圓柱體通過切拼后,轉化為近似的長方體,什么變了?什么沒變?

(2)長方體的底面積與原來圓柱體的哪部分有關系?有什么關系?

(3)長方體的高與原來圓柱體的哪部分有關系?有什么關系?

(4)你認為圓柱的體積可以怎樣計算?

(生匯報交流,師根據(jù)學生講述適時板書。)。

小結:把圓柱體轉化成長方體后,形狀變了,體積不變,長方體的底面積等于圓柱的底面積,高等于圓柱的高,因為長方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是v=sh。

6、同桌相互說說圓柱體積的推導過程。

7、完成“做一做”:一根圓形木料,底面積為75cm2,長是90cm。它的體積是多少?(生練習展示并評價)。

8、求圓柱體積要具備什么條件?

9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長和高呢?(學生討論交流)。

小結:可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。

10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個圓柱的體積?(測不同數(shù)據(jù)計算)。

11、練一練:列式計算求下列各圓柱體的體積。

(1)底面半徑2cm,高5cm。

(2)底面直徑6dm,高1m。

(3)底面周長6.28m,高4m。

三、練習鞏固拓展提升。

1、判斷正誤:

(1)等底等高的圓柱體和長方體體積相等?!ǎ?。

(2)一個圓柱的底面積是10cm2,高是5m,它的體積是10×5=50cm3。.....()。

(3)圓柱的底面積越大,它的體積就越大?!ǎ?。

(4)一個圓柱的體積是80cm3,底面積是20cm2,它的高是4cm?!ǎ?/p>

四、全課總結自我評價。

通過這節(jié)課的學習你有什么感受和收獲?

圓柱的體積是幾何知識的綜合運用,它是在學生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計算公式推導過程的基礎上進行教學的。由于圓柱是一種含有曲面的幾何體,這給體積的認識和計算增加了難度。為了降低學習難度,讓學生更好地理解和掌握圓柱體積的計算方法,為后面學習圓錐體積打下堅實的基礎,因此在本節(jié)課的教學設計上我十分注重從生活情境入手,讓學生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學活動,培養(yǎng)學生探究數(shù)學知識的能力和方法,同時在學習活動中體驗學習的樂趣。

從本節(jié)課教學目標的達成來看,較好地體現(xiàn)了以下幾方面:

一、創(chuàng)設生活情境,體現(xiàn)數(shù)學生活化。

《新課程標準》指出:要創(chuàng)設與學生生活環(huán)境、知識背景密切相關的,又是學生感興趣的學習情境,讓學生在觀察、操作、猜測、交流、反思等活動中逐步體會數(shù)學知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學的力量,同時掌握必要的基礎知識與基本技能。在本節(jié)課中,我從生活情境入手,創(chuàng)設了一個裝水的學具槽放入圓柱學具使水面上升的情境,引導學生觀察思考,直觀感知圓柱體積的概念,同時意識到過去學的排水法可以用來求圓柱的體積,緊接著當老師再出示橡皮泥捏成的圓柱體模型,并追問大廳內(nèi)圓柱的體積等問題時,學生意識到前面所說求體積計算方法的局限性,從而產(chǎn)生思維困惑,進一步激發(fā)了探究圓柱體積計算方法的欲望。這樣的導入不僅為學生創(chuàng)造了一個十分寬松的生活化學習環(huán)境,還為學生后面構建數(shù)學模型,發(fā)現(xiàn)圓柱體積公式奠定了基礎。在練習的設計上,為避免純數(shù)學的計算,我以學生熟悉的學校圓柱形花壇為背景,提出求花壇填土體積這樣的問題,讓學生學會靈活應用知識解決簡單的實際問題,在鞏固體積計算方法的同時,進一步感受到數(shù)學知識的使用價值。這樣的教學安排不僅體現(xiàn)了數(shù)學來源于生活,又應用于生活的思想,也使數(shù)學的課堂教學充滿濃濃的生活味。

二、引導學生經(jīng)歷知識探究的全過程。

動手實踐、自主探究、合作交流是《新課程標準》所倡導的數(shù)學學習的主要方式。在本課教學中,由于學具的欠缺,沒能給學生提供小組動手操作的機會,為了彌補這一不足,最大限度發(fā)揮學生自主學習的作用,教學中我努力為學生搭建探究平臺,通過觀察、設疑、猜想、驗證,經(jīng)歷圓柱體積的轉化過程,發(fā)展學生的空間想象能力。在探究圓柱體積的過程中,我從本班學情出發(fā),大膽放手讓學生猜想“圓柱體積大小可能與什么有關,可能怎樣計算,為什么?”,然后再結合以往學習幾何圖形的經(jīng)驗,回顧圓的面積推導過程,實現(xiàn)知識遷移,明確“轉化”思想在數(shù)學研究中的重要意義。為了讓學生直觀感受到圓柱體轉化為長方體的過程,我較好地借助實物模型和多媒體課件演示,把二者有機結合,先讓兩個學生上臺操作演示,然后再課件動態(tài)模擬,在學生充分觀察的基礎上,小組討論交流:當圓柱體轉化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關系?長方體的高與圓柱的高有什么關系?從而得出結論:圓柱的體積等于底面積乘以高。整個探究過程以學生自主學習為主,知識的形成給學生留下深刻的印象。伴隨著問題的圓滿解決,學生體驗到了成功的喜悅與滿足。

三、注重學法指導和數(shù)學思想方法的滲透。

“學會學習”是對學生“學”的最高要求,因此在教學中不但要教給學生知識,更要教給學生學習的方法,讓學生終身受用。在本節(jié)課的教學中,我把“觀察、猜想、驗證”的學法指導,貫穿于整個學習過程,使學生學得主動有效。在探究方法的引導上從回憶圓的面積公式推導入手,確定轉化的方法,體驗轉化的過程,驗證轉化的結果,使“轉化”、“極限”等數(shù)學思想在課中得到良好滲透,學生進一步體會到科學、條理的數(shù)學思維方式,從而發(fā)展了學生的數(shù)學能力。

圓柱體積教案篇六

面對復習的問題,學生回答的很好,長方體的體積=長×寬×高,當我指著長方體的底面時,學生就說,長方體的體積=底面積×高。學生對于圓的面積計算公式的的推導記憶猶新,這是很值得我高興的。面對本課的重點解決問題,我滿懷信心(兩個復習問題的鋪墊,學生會首先想起來把圓柱體按照圓的面積推導過程一樣,來等分圓柱體),開始引導學生獨立思考,怎樣計算圓柱體的體積?正當大家苦思冥想的時候,一只手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個舉手,把別人的風頭都給搶去了,他是一個愛表現(xiàn)的學生,為了不影響其他學生思考,每次我總是壓一壓他的積極性。給大家留一點思考的時間,等一會再說你的方法,誰知道這個積極分子不容我把話說完,已經(jīng)拿著自己的圓柱體跑到講臺上了,(哎,讓我怎么評價他呢,耐不住性子啊,再穩(wěn)重一些多好???):我是這樣想的,這是一個圓柱體的生日蛋糕,我想把它橫著切成一個個圓片,分給你們吃。霎時間,下面的同學都笑了,過了一會,一個學生提問:切蛋糕,和圓柱體的體積有什么關系???有啊,這個圓柱體蛋糕的體積就是每一個圓片的面積乘上圓片的個數(shù)。這樣解釋完,下面的學生有的在笑,有的在議論,還有的再思考。我想想了,這是我該出手的時候了:你給大家解釋一下,圓片是什么?圓片的個數(shù)又是什么?圓片就是圓柱的底面積,圓片的個數(shù)就是圓柱的高。

這種推導圓柱體體積的'計算方法,是出乎我意料之外的,因為,解決問題前,已經(jīng)復習了長方體體積計算方法與圓的面積的推導方法,都是為把圓柱體進行等分轉化成長方體體積來推導做鋪墊的。誰曾向,這種用堆的過程來說明“底面積×高”計算圓柱體體積的道理,實際是積分思想,這是要到中學才學習的,學生不好理解的,竟然跑到預想方法之前了。真是計劃不如變化快啊。課堂上的精彩總是不期而至啊。試想,如果,剛開始他舉手,我就像以往一樣”壓一壓他,讓他和其他學生同步思考,說不定,這個想法在他腦海里轉瞬即逝,那么這個精彩的火花就不會在課堂上呈現(xiàn)。

由此感悟到,課堂上,要給學生即興發(fā)言的機會,及時的捕捉學生的思維靈感,精彩就會不期而至。《圓柱體的體積》這一課我學到了很多東西。

圓柱體積教案篇七

2、提問:“能用一句話說說什么是圓柱的體積嗎?”

(學生互相討論后匯報,教師設疑)。

1、比較大小、探究圓柱的體積與哪些要素有關。

(1)、先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?

(2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。

(3)、讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結果填入實驗報告1中。(課件出示)。

(4)、學生通過動手操作匯報結論:當?shù)椎葧r,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關。

2、大膽猜想,感知體積公式,確定探究目標。

(1)、再次設疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學生想如何計算圓柱的體積。

(2)、引導學生回憶圓的面積公式和長方體的體積公式的推導過程。

(3)、讓學生思考:怎樣計算圓柱的體積呢,依據(jù)學過的知識,你可以做出怎樣的假設?

(4)、學生小組討論交流并匯報:圓柱平均分成若干小扇形體后應該也能夠轉化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。

(5)、讓學生依據(jù)假設結論分組測量圓柱c和圓柱d的有關數(shù)據(jù),用計算器計算體積,并填入實驗報告2中。(課件出示)。

4、確定方法,探究實驗,驗證體積公式。

(1)、首先要求學生利用實驗工具,自主商討確定研究方法。

(2)、學生通過討論交流確定了兩種驗證方案。

方案一:將圓柱c放入水中,驗證圓柱c的體積。

方案二:將學具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。

(3)、學生按照自己所設想的方案動手實驗,并記錄有關數(shù)據(jù),填入實驗報告2中。

(5)、學生匯報:實驗的結果與猜想的結果基本相同。

(6)、教師用課件演示將圓柱體轉化成長方體的過程,向學生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。

(7)、小結:

要想求出一個圓柱的體積,需要知道什么條件?

(8)、學生自學第8頁例4上面的一段話:用字母表示公式。

學生反饋自學情況:

v=sh。

1、課件出示例4,學生獨立完成。

指名說說這樣列式的依據(jù)是什么。

2、鞏固反饋。

3、完成第9頁的“試一試”和練一練”中的兩道題。

(“練一練”只列式,不計算)。

集體訂正,說一說圓柱體的體積還可以怎樣算?

5、拓展練習。

(1)、一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))。

談談這節(jié)課你有哪些收獲。

教學內(nèi)容:人教版《九年義務教育六年制小學數(shù)學》(第十二冊)圓柱體積。

教學目標:

1、結合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

2、讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究的方法。

3、通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結論的確定性,獲得成功的喜悅。

教學重點:掌握和運用圓柱體積計算公式。

教學難點:圓柱體積計算公式的推導過程。

圓柱體積教案篇八

在進行圓柱的體積的導入時,課本上是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,那么再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜,《圓柱體積》教學反思。

猜想計算方法固然有好處,但要讓學生馬上做實驗,理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。

二、新課時,要實現(xiàn)人人參與,主動學習。

根據(jù)課標要求:學生進行數(shù)學探究時,教師應給予充分的思考空間,創(chuàng)設實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,示范演示推導過程:把圓柱的底面分成若干份(例如,分成16等份,還可以再多一些),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉化成一個近似的長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生如果沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學階段立體圖形的教學難點,學生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學生思考如何利用已知圖形體積和教學思想去解決這一問題。學生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。

三、練習時,要形式多樣,層層遞進。

例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,教師在設計練習時要多動腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。在鞏固練習中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學生才能真正掌握好計算圓柱體積的方法。練習方式可以是填空、選擇、判斷、看圖計算、應用題等。達到掌握。

圓柱體積教案篇九

運用遷移規(guī)律,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

2、過程方法。

讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究的方法。

3、情感態(tài)度價值觀。

通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結論的確定性,獲得成功的喜悅。

圓柱體積教案篇十

1.經(jīng)歷認識圓柱體積,探索圓柱體積計算公式及簡單應用的過程。

2.探索并掌握圓柱體積公式,能計算圓柱的體積。

3.在探索圓柱體積的過程中,進一步體會轉化的數(shù)學思想,體驗數(shù)學的探索性和挑戰(zhàn)性,感受數(shù)學結論的確定性。

教學重點。

圓柱體積計算公式的推導過程。

教學難點。

圓柱體積計算公式的靈活運用。

教具準備。

教學過程。

一、復習鋪墊。

1.請同學們回憶一下什么是物體的體積。

2.(出示幻燈片長方體)這是什么體?怎樣計算它的體積?

同樣的方法復習正方體。

3.長方體和正方體的體積可以用一個統(tǒng)一的公式來表示是怎樣的?

[復習舊知,為后面推導圓柱體積計算公式做鋪墊]。

二、情境導入。

師:同學們,你們都知道自己的生日嗎?你們都喜歡過生日嗎?

生:喜歡。

師:為什么?

生:有禮物,還有生日蛋糕。

師:今天是亮亮和爺爺?shù)纳?,你們觀察一下書的圖片,發(fā)現(xiàn)了什么?

生:亮亮的一家在一起過生日,亮亮和爺爺都有一個生日蛋糕,而且爺爺?shù)纳盏案獯?,亮亮的生日蛋糕小?/p>

生:亮亮和爺爺?shù)纳盏案舛际菆A柱形的。

師:同學們觀察得都很仔細,那么你們說說,爺爺?shù)纳盏案?,意味著什么??lián)系我們剛學過的.知識來說。

生:生日蛋糕大,就意味著它的體積大,生日蛋糕小,就是它的體積小。

師:你們真棒!那么想不想知道兩個生日蛋糕的具體大小嗎?今天我們就來探討一個圓柱體的體積公式。

三、推導、論證。

1.拿出兩個不易分辨體積大小的茶葉筒。

師:你們能說出哪個茶葉筒體積大嗎?怎樣比較兩個茶葉筒體積的大小呢?

讓學生思考和交流。

2.大家看圓柱的底面是一個圓形,在學習圓面積計算時,我們是把圓轉化成哪種圖形來計算的?(演示課件:圓轉化成長方形)。

4.師生合作。用教具把圓柱等分成16份,拼成一個近似的長方體。再把圓柱等分32份同樣拼成一個近似長方體。觀察兩次等分的相同點和不同點:

生:相同點:都可以拼成一個近似的長方體。

不同點:等分的份數(shù)越多,就起接近一個長方體。

5.同學們觀察一下,拼成的長方體和圓柱體有什么關系?你們發(fā)現(xiàn)了什么?

6.學生匯報討論結果,同時板書。

生:近似長方體的底面就是圓柱的底面積;近似長方體的高就是圓柱的高;近似長方體的體積就是圓柱的體積。

7.根據(jù)學生的發(fā)現(xiàn)引導學生推導出圓柱的體積=底面積×高,用字母表示v=sh。

四、實際應用。

1.要求圓柱體積,必須知道哪些條件?(生:底面積和高)。

2.如果已知底面積和高,你們會求圓柱的體積嗎?

3.學生讀題,特別提示統(tǒng)一單位。學生自主計算后全班交流。

4.反饋練習。p31頁練一練1。

練一練2:理解題意,使學生理解方鋼的體積與鍛造后的圓柱形體積相等,再自主解答。

五、家庭作業(yè)。

測量你身邊的圓柱的體積并向大家匯報你是怎樣測量的?比一比看誰的方法最好?

圓柱體積教案篇十一

本節(jié)課是在學習了圓柱的體積公式后進行的解決問題。這要求學生對圓柱的體積公式掌握的比較扎實,并要求理論與實際生活相結合。讓學生通過經(jīng)歷發(fā)現(xiàn)和提出問題、分析和解決問題的完整過程,掌握問題解決的策略。使學生在解決問題的過程中體會轉化、推理和變中有不變的數(shù)學思想。

在教學中教學我采用操作和演示、講解和嘗試練習相結合的方法,是新課與練習有機地融為一體,做到講與練相結合。整節(jié)課我采用啟發(fā)式教學。從導入新授到獨立解答問題,環(huán)節(jié)清晰,教學目的明確。通過提問引導學生自主研究問題找到重難點,突破重難點。通過2個瓶子的倒置,把不規(guī)則的物體轉化成規(guī)則物體,再來求它們的體積。在進行轉化時,讓學生明白倒置前空氣的體積在倒置后屬于哪一部分。倒置前水的體積在倒置后屬于哪一部分。不管在倒置前還是倒置后,什么不變,什么變了?要求瓶子的體積實際是求什么?在課堂中學生積極參與,積極思考,小組合作學習。在學習中學習探究氛圍高,體現(xiàn)高年級學科特點,并且靈活運用生命化課堂的四自模式、新技術,運用熟練,課堂中使用恰當有效。但在教學時提出的問題應該更簡潔明了。在課堂上如何更好地關注中等偏下的學生,我時常為此感到糾結。

剛剛嘗試建構高效的課堂教學范式,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學更高效、更優(yōu)質。

圓柱體積教案篇十二

本節(jié)課是人教版六年小學數(shù)學課本第十二冊第三單元第二小節(jié)第一課時。內(nèi)容包括圓柱體的體積計算公式的推導和運用公式計算它的體積。

2、本節(jié)課在教材中所處的地位和作用。

《圓柱和圓錐》這一單元是小學階段學習幾何形體知識的最后部分,是幾何知識的綜合運用。學好這部分知識,為今后學習復雜的形體知識打下扎實的基礎,是后繼學習的前提。

3、教材的重點和難點。

由于圓柱體積計算是圓錐體積計算的基礎,因此圓柱體積和應用是本節(jié)課教學重點。其中,圓柱體積計算公社的推導過程比較復雜,需要用轉化的方法來考慮,推導過程要有一定的邏輯推理能力,因此,推導圓柱體積公式的過程是本節(jié)課的難點。

4、教學目標。

(1)知道圓柱體積計算公式的推導過程,會應用該公式計算圓柱的體積。

(2)初步建立空間觀念和邏輯推理能力。

(3)知道知識間是可以互相轉化的。

從形式已有的知識水平和認識規(guī)律出發(fā),為了更好地突出重點,化解難點,掃清學生認知上的思維障礙,在實施教學過程中,主要體現(xiàn)以下幾個特點:

1、直觀演示,操作發(fā)現(xiàn)。

教師充分利用直觀教具演示,引導學生觀察比較,再讓學生動手操作討論,使學生在豐富感性認識的基礎上,在老師的指導下,推導出圓柱體積計算的公式。從而使學生從感性認識上升到理性認識,體會知識的由來,并通過已學知識解決實際問題,充分發(fā)揮了直觀教學在知識形成過程中的積極作用,同時也培養(yǎng)了學生學習數(shù)學的能力和學習習慣。

2、巧設疑問,體現(xiàn)兩“主”

發(fā)展能力的目的。

3、運用遷移,深化提高。

運用知識的遷移規(guī)律,培養(yǎng)學生利用舊知學習新知的能力,從而使學生主動學習,掌握知識,形成技能。

課堂教學中,不是老師單純地傳授知識,而是在老師的指引下,讓學生自己學,任何人都不能替代學生學習。所以要把教法融于學法中,在學法中體現(xiàn)教法。

本節(jié)課的教學,使學生掌握一些基本的學習方法。

1、學會通過觀察、比較、推理能概括出圓柱體積的推導過程。

2、學會利用舊知轉化成新知,解決新問題的能力。

3、學會利用知識的遷移規(guī)律,把知識轉化成相應的技能,從而提高靈活運用的能力。

對本節(jié)課的教學,我們設計了以下幾個環(huán)節(jié)。

(一)復習舊知識,為引入新知識作準備。

1、求下面各圓的面積(口算),單位為厘米。

(1)半徑為1厘米;

(2)直徑為4厘米;

(3)周長為62.8厘米。

2、什么叫做體積?怎樣計算長方體的體積?

(二)導入新課,隱射教學目標。

1、觀察比較:出示幾組圓柱體實物(同底等高、同底不等高、等高不等底),引導學生觀察比較,老師提出問題:通過觀察,你想知道些什么?了解些什么?引導學生產(chǎn)生疑問后,教師這時交待,我們今天要學習的新知識,就能很好地解決這個問題(揭示課題)。讓學生自行設疑,教師向學生交待學習任務,使學生對新知識產(chǎn)生強烈的求知欲望,從而進入最佳的學習狀態(tài)。

2、展示學習目標,學生認讀目標。

教師通過展示目標,學生認讀目標,這時學生就能清楚地知道了學習的主要任務和要求,從而把教師的教學目標,轉化成了學生的學習目標。使學生帶著目標,有目的、有準備地學習下一步的新知識,學生就真正能成為學習的主人,也使教學變得更加明確具體,可操作、可檢測。同時也能激發(fā)起全體學生的參與達標意識,學生的主體地位就充分地顯示出來了。

(三)導入新課,實施教學目標。

1、設疑:要判斷圓柱體積的大小,究竟哪個大?哪個???到底圓柱的體積與什么有關呢?能不能把圓柱轉化成我們學過的立體圖形來計算它的體積?這里老師引導學生回憶圓的面積公式的推導過程,教師出示投影,幫助學生思考。

2、演示操作,揭示新知。

引導學生用字母表示出來,最后讓學生看書質疑。

這部分教學設計意圖:根據(jù)教材特點,學生的認知過程,充分調動學生的學習熱情,激發(fā)求知欲望,調動學生的各種感官,完成從演示——觀察——操作——比較——歸納——推理的認識過程,讓知識在觀察、操作、比較中內(nèi)化,實現(xiàn)由感性到理性,由具體到抽象,這種教學方法符合學生的認知規(guī)律,有助于突破難點,化解難點。

關于難點的突破,我們主要從以下幾個方面著手:

(1)引導學生通過觀察比較,明確圓柱體的體積與它的底面積和高有關。

(2)運用知識遷移的規(guī)律,啟發(fā)引導,層層深入促進學生在積極的思維中獲得新知識。

(3)充分利用直觀教具,師生互動,通過演示操作,幫助學生找出兩種幾何形體轉化前后的關系。

(4)根據(jù)新舊知識的連接點,精心設計討論內(nèi)容,分散難點,促進知識的形成。

3、運用。

出示例1:先由學生自己嘗試練習,請一位學生板演,集體講評時提問學生,在解題時要注意什么?讓學生自己來概括總結,通過學生的語言說出:

(1)單位要統(tǒng)一。

(2)求出的是體積要用體積單位。

在掌握了圓柱體積計算的方法之后,安排例1進行嘗試練習,這樣既可以調動學生的學習積極性和主動性,又可以培養(yǎng)學生學習新知識的能力,同時把所學知識轉化為相應的技能。

(四)鞏固練習,檢驗目標。

2、完成練習六第2題。

通過練習,鞏固新知識,加深對新知識的理解,把所學知識進一步轉化為能力,在練習中發(fā)展智力,培養(yǎng)優(yōu)良的思維品質和學習習慣。

3、變式練習:已知圓柱的體積、底面積,求圓柱的高。

這道題的安排是對所學內(nèi)容的深化,在掌握基礎知識的前提下,培養(yǎng)思維的靈活性,同時深化教學內(nèi)容,防止思維定勢。

4、動手實踐:讓學生測量自帶的圓柱體。

這道題的設計,一方面培養(yǎng)了學生解決實際問題的能力,另一方面也加深了對圓柱體積計算公式的理解,同時數(shù)學知識也和學生的生活實際結合起來,使學生明白,我們所學的數(shù)學是身邊的數(shù)學,是有趣的、有用的數(shù)學,從而激發(fā)學生的學習興趣。

(五)總結全課,深化教學目標。

圓柱體積教案篇十三

1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

2、初步學會用轉化的數(shù)學思想和方法,解決實際問題的能力。

3、滲透轉化思想,培養(yǎng)學生的自主探索意識。

一、復習。

1、長方體的體積公式是什么?正方體呢?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)。

2、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。(刪掉)。

3、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。

二、新課。

(1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)。

(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)。

反復播放這個過程,引導學生觀察思考,討論:在變化的過程中,什么變了什么沒變?

長方體和圓柱體的底面積和體積有怎樣的關系?

學生說演示過程,總結推倒公式。

(3)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,v=sh)。

圓柱體積教案篇十四

圓柱的體積這部分知識是學生在有了圓柱、圓和長方體的相關知識基礎上進行教學的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導過程,會計算圓柱的體積;在方法的選擇上,抓信新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學生科學的思維方法;貼近學生生活實際,創(chuàng)設情境,解決問題,體現(xiàn)數(shù)學知識“從生活中來到生活中去”的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探究。

《課程標準》指出:要創(chuàng)設與學生生活環(huán)境、知識背景密切相關的、又是學生感興趣的學習情境,讓學生在觀察、操作、猜測、交流、反思等活動中體會數(shù)學知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學的力量,同時掌握必要的基礎知識與基本技能。在本節(jié)課中,我給學生創(chuàng)設了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學生聽到教師提的問題訓在身邊的生活中,頗感興趣。學生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機滾筒的體積,能用剛才同學們想出來的辦法嗎?這一問題情境的創(chuàng)設,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。

數(shù)學學習過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標準》所倡導的數(shù)學學習的主要方式。在本節(jié)課提示課題后,我先引導學生獨立思考要解決圓柱的體積問題,可以怎么辦?學生通過思考很快確定打算把圓柱轉化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同愛們有了圓面積計算公式推導的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎上,小組拿出學具進行了動手操作,拼成了一個近似的長方體。同學們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識——公式)。

在探究的過程中,我不是安排了一整套指令讓學生進行程序操作,獲得一點基本技能,而是提供了相關知識背景、實驗素材,使用“對我們有幫助嗎?”“你有什么發(fā)現(xiàn)?”“你是怎么想的?”等這樣一些指向探索的話語鼓勵學生獨立思考、動手操作、合作探究,讓學生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構自己的數(shù)學。通過實驗、操作、自主探究,實現(xiàn)學生主體地位、學習方式的轉變,有效地培養(yǎng)學生的創(chuàng)新意識。教學中通過等分、切、拼將圓柱體拼成一個近似的長方體,再運用多媒體顯示由圓柱體到近似的長方體的變換過程,讓學生觀察、比較近似長方體與圓柱的關系,使圓柱體體積的計算公式推導過程完全展示在學生面前。使學生感悟到轉化的思想在幾何學習中的妙用。從而產(chǎn)生一種自我嘗試、主動探究、樂于發(fā)現(xiàn)的需要、動機和能力。

學生進行數(shù)學探究時,由于條件的限制,沒有更多的學具提供給學生,只一個教具。為了讓學生充分體會,我把操作的機會給了學生。接著再結合多媒體演示讓學生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生基本沒有親身參與操作,非常遺憾。

本節(jié)課我采用新的教學方法,取得了較好的教學效果,不足之處是:由于學生自由討論、實踐和思考的時間較多,練習的時間較少。

將本文的word文檔下載到電腦,方便收藏和打印。

圓柱體積教案篇十五

今天聽了覃老師的公開教學課——圓柱的體積。本節(jié)課的教學內(nèi)容是:圓柱的體積計算公式的推導,例題4,并完成“做一做”的第一題和練習八中的第1——2題。本節(jié)課的教學目標是:使學生知道圓柱體體積的推導過程,理解并掌握求圓柱體體積的計算公式,并能正確地應用公式計算圓柱體積。本節(jié)課的教學重點是:圓柱體體積計算公式。教學難點是:圓柱體割拼組合教學。聽完這節(jié)課后,讓我收獲很多,我覺得覃老師氣質佳、形象美,課上得實實在在。下面我就以以下兩方面對這節(jié)課發(fā)表自己的觀點:

1、教師能圍繞本節(jié)課的教學內(nèi)容有目的、有針對性地進行復習,為后面圓柱體體積的計算埋下伏筆。

2、傳統(tǒng)教學與現(xiàn)代化教學相結合。圓柱體體積的推導過程中,教師首先把實物圓柱體模型進行分解,再組合成一個已學過的長方體進行推導,但覃老師覺得還不夠透徹,因此,又利用多媒體現(xiàn)代化教學手段把推導過程重新回顧一遍,這樣就把傳統(tǒng)教學與現(xiàn)代化教學有機地結合再一起,突破了教學難點。

3、針對本節(jié)課所學知識內(nèi)容,安排練習,由易到難,由淺入深,使學生當堂掌握所學的新知識,并通過練習達到一定技能。

4、本節(jié)課,讓學生動手、動腦,參與教學全過程,較好地處理教與學,練與學的關系,達到了一定的教學效果。

1、課堂教學環(huán)節(jié)如能先復習圓的面積計算公式及立體圖形的體積計算公式,再出示課題進而傳授新知識,整堂課的結構應該會更完整一些。

2、本節(jié)課學生的主體性沒有充分展示出來,例如:在體積公式的推導過程中,教師如能讓學生自己去探討長方體的底面積和高與圓柱的底面積和高的關系,從而推出圓柱體的體積公式,這樣學生在課堂中的主體性就能充分發(fā)揮出來。

3、在“討論”這一環(huán)節(jié)中,應該是“已知圓柱的底面半徑和高,怎樣求圓柱的體積”而不是“已知圓的半徑和高”,圓哪來的高,因此這里表述的不夠準確。

總之,這節(jié)課從學生的練習來看,達到了預定的教學效果,是一堂成功的課,也希望年輕的覃老師今后繼續(xù)發(fā)揚教學激情,發(fā)揮自己的個人專長,在教學上有新的突破。

圓柱體積教案篇十六

教學目標是:使學生知道圓柱體的體積公式推導過程;理解并掌握圓柱體的體積公式及相關的推論。并能正確運用公式解決一些簡單的實際問題。通過對圓柱體體積公式的教學,加深學生對立體圖形的認識,培養(yǎng)學生的觀察能力,抽象和概括能力及綜合運用能力,發(fā)展學生的空間觀念,同時滲透一些關于極限的辨證唯物主義思想。

學習本節(jié)課應具備的舊知識是:

1、長方體的體積公式及推導過程。

2、圓面積公式的推導過程。

在教學中就是要運用圓面積公式的推導方法,將圓柱體轉化為長方體,從而由長方體體積公式推導出圓柱體體積公式。因此根據(jù)本節(jié)課的特點我采用的教學方法是:

1、有目的的運用啟發(fā)引導的方法組織教學。

2、采用演示實驗的方法,讓學生觀察比較,從而發(fā)現(xiàn)規(guī)律,找出體積公式。

3、適當采用“嘗試——失敗——總結——再嘗試——再總結”的方法,引導學生找到推導公式的合理方法。

4、利用多變的練習,加深學生對公式的理解,找到公式的根本內(nèi)涵。但是要注意循序漸進,由易到難,由簡到繁。

在學法指導上,主要是讓學生學會觀察、比較,歸納概括出體積公式。通過直觀實驗,吸引學生主動、認真觀察圖形的拼接過程,積極回答觀察結果,主動參與到教學中去,并且在教師的啟發(fā)下,進行歸納概括。培養(yǎng)學生的自學能力及概括能力。

本節(jié)課所需教具為:圓柱體割拼組合教具及事先寫好習題的小黑板。

教學一開始,首先復習。目的是:一是通過復習舊知識,為新課作好準備;二是引出新課。

一開始先復習體積的概念及長方體的體積公式。這個練習可采用提問的方式,但是這些知識已學過較長時間,所以適當?shù)臅r侯教師要加以啟發(fā)提示。

接下來,教師引導學生回憶長方體體積公式的推導過程,及圓面積公式的推導方法,為新課做準備。

然后,提問:圓柱體的特點是什么?圓柱體的側面積、表面積公式是什么?由于這些內(nèi)容剛剛學過,學生很容易回答,可以提問基礎較差的學生,并加以鼓勵,使他們樹立信心,提高興趣,以便學習新課。

通過以上復習,鞏固了舊知識,為學習新知識做好了鋪墊,同時調動了全體學生的學習興趣。利用這一有利時機,教師及時引導、設疑:

這樣就順利轉入了新課的學習。

這時教師出示圓柱體模型。

首先引導學生用長方體公式的推導方法嘗試。提問:“我們學過的長方體體積是用單位體積的小正方體塊來量出的,現(xiàn)在我們也用同樣的方法來量一下,現(xiàn)在這個圓柱體的體積是多少?”

學生反復嘗試后回答:“無法量出?!?/p>

這時教師再問:“什么地方量不出來?為什么?”

學生回答:“圓柱體的側面是曲面,無法量出?!?/p>

在學生嘗試失敗的基礎上,促使他們改變思路,去尋找新的'方法。這樣充分利用學生的好奇心理,調動學生情緒,轉入圓柱體體積公式的教學。

教師啟發(fā)提問:“圓柱體上下兩面是什么形?圓面積公式是怎么得到的?”通過學生的回答,引出新思路:用割拼的方法將它轉化為其他的圖形。

得到了新的方法以后,教師進行演示實驗1:先將圓柱沿底面平分割成8等份,對拼成一個近似長方體。學生觀察割拼過程。

教師提出問題:“這個圓柱體拼成了一個近似的什么立體圖形?為什么說它是近似的?它的哪一部分不是長方體的組成部分?”

學生回答后,接著再進行演示實驗2:將圓柱體沿底面平分16等份,再拼成近似的長方體。

再問:“這次是不是更象長方體了?”

這時教師啟發(fā)學生想象;“把它平分成很多很多等份,這樣拼成的圖形將會怎樣?”

教師總結:“將會無限趨近于長方體,并且最終會得到一個長方體?!?/p>

然后及時引導學生觀察這個長方體,并把它與圓柱體進行比較,提問:“這個長方體的哪部分與圓柱體相同?”因為模型各面的顏色不同,所以學生會很快回答出來:“底面積與高?!?/p>

“那么這個長方體體積與圓柱體體積有什么關系?”學生回答:“相同?!?/p>

“長方體的體積是怎樣計算的?”學生回答:“底面積乘以高?!?/p>

“那么圓柱體是否也可以這樣算呢?”學生回答:“是的?!?/p>

這時教師根據(jù)學生的回答,及時板書這兩個公式。

通過以上的教學,引導學生歸納概括出了圓柱體的體積公式。這樣先通過復習做知識的鋪墊,然后由學生進行嘗試,充分運用思維的遷移規(guī)律,用圓面積公式的推導方法搭起了橋梁,順利地實現(xiàn)了本節(jié)課的第一個目標。并且在推導過程中滲透了關于極限的辨證唯物主義思想。

學生通過嘗試得到了成功的喜悅,思想高度興奮。教師及時利用這一時機,將公式向深處拓展。設問:“如果不知道圓柱體的底面積和高,怎么求體積?”學生考慮,教師出示嘗試題:

1、已知圓柱體的底面半徑和高,怎樣求體積?

2、已知圓柱體的底面直徑和高,怎樣求體積?

3、已知圓柱體的底面周長和高,怎樣求體積?

4、已知圓柱體的側面積和高,怎樣求體積?

學生分組討論。討論完畢后,每組選一名代表回答,其他同學做適當補充。學生回答完畢后,教師及時進行總結,并且板書有關公式的推論。

通過以上練習,避免了學生只注意了公式的表面特征,而忽略了公式的本質特征。使學生明確,不論條件怎樣變化,最終都要歸到底面積乘以高上來。從而使學生理解了本公式的內(nèi)涵,為靈活運用公式做好了知識的準備。

最后要求學生用字母表示公式。由于此方法學生早已熟悉,所以可全班集體回答。

學生理解和掌握了公式后,教師及時出示習題,指導學生將公式應用于實際:

(出示準備好的小黑板)。

提問:“這兩道題是否要進行單位換算?各應選用什么公式?”學生回答完畢后,一起獨立完成。教師巡視檢查,發(fā)現(xiàn)問題,及時補救。

最后,對本節(jié)課進行小結。提出應用公式時應注意的問題:1、仔細審題,弄清條件的變化。2、單位名稱要統(tǒng)一。

布置課后作業(yè)。

本節(jié)課到此結束。

【本文地址:http://mlvmservice.com/zuowen/15173008.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔