函數(shù)的概念教學(xué)教案(優(yōu)秀22篇)

格式:DOC 上傳日期:2023-11-19 03:50:05
函數(shù)的概念教學(xué)教案(優(yōu)秀22篇)
時(shí)間:2023-11-19 03:50:05     小編:薇兒

教案是教師進(jìn)行備課和教學(xué)反思的重要參考資料。編寫教案時(shí),教師應(yīng)靈活運(yùn)用評(píng)價(jià)手段,及時(shí)反饋和幫助學(xué)生。教案是教師根據(jù)教學(xué)大綱和教材內(nèi)容的要求,結(jié)合學(xué)生的實(shí)際情況,經(jīng)過研究和設(shè)計(jì),編寫出的一種教學(xué)計(jì)劃。它具有指導(dǎo)性、操作性、系統(tǒng)性和可操作性的特點(diǎn),對(duì)于教學(xué)活動(dòng)的開展起到了重要的作用?,F(xiàn)在教學(xué)任務(wù)繁重,我們需要編寫一份教案了吧?那么我們應(yīng)該如何編寫一份完善的教案呢?首先,我們需要充分了解教學(xué)內(nèi)容和教學(xué)目標(biāo),明確我們要達(dá)到的教學(xué)效果。其次,我們要合理安排教學(xué)時(shí)序,確定每個(gè)環(huán)節(jié)的時(shí)間分配。此外,我們還需要設(shè)計(jì)合理的教學(xué)活動(dòng),注重培養(yǎng)學(xué)生的綜合能力和創(chuàng)新意識(shí)。同時(shí),我們要注意教學(xué)方式的選擇,靈活運(yùn)用多種教學(xué)手段,使教學(xué)過程更加生動(dòng)有趣。最后,我們還需要評(píng)估教學(xué)效果,及時(shí)調(diào)整和改進(jìn)教學(xué)內(nèi)容和方法。以下是小編為大家收集的教案范例,供大家參考。希望能給大家提供一些思路和啟示。教案是教學(xué)中不可或缺的一部分,它對(duì)于教學(xué)效果的提高具有重要的意義。讓我們一起來看看這些教案范例,共同進(jìn)步吧。

函數(shù)的概念教學(xué)教案篇一

“對(duì)數(shù)函數(shù)”的教學(xué)共分兩個(gè)部分完成。第一部分為對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì);第二部分為對(duì)數(shù)函數(shù)的應(yīng)用?!皩?duì)數(shù)函數(shù)”第一部分是在學(xué)習(xí)對(duì)數(shù)概念的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì),可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,并且為學(xué)習(xí)對(duì)數(shù)函數(shù)作好準(zhǔn)備。

在講解對(duì)數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)函數(shù)知識(shí)及簡(jiǎn)單運(yùn)算,然后由實(shí)例引入對(duì)數(shù)函數(shù)的概念,然后,讓學(xué)生親自動(dòng)手畫兩個(gè)圖象,我借助電腦手段,通過描點(diǎn)作圖,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出對(duì)數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。

大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力,思維能力等方面參差不齊;同時(shí)學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高。針對(duì)這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動(dòng)獲取知識(shí),養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會(huì)獨(dú)立提出問題、解決問題。總之,調(diào)動(dòng)學(xué)生的非智力因素來促進(jìn)智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動(dòng)腦筋,思考問題和解決問題,從而發(fā)揚(yáng)鉆研精神、勇于探索創(chuàng)新。

函數(shù)的概念教學(xué)教案篇二

在高中數(shù)學(xué)中,函數(shù)概念的教學(xué)是我們教師的一個(gè)難題。聽了老師的講座,給我?guī)砹诵碌乃悸罚矠榻鉀Q這個(gè)難題提供了很好的指導(dǎo)。

雖然對(duì)函數(shù)概念本質(zhì)理解并非一次就能實(shí)現(xiàn),它有一個(gè)循序漸進(jìn)、逐步完善,通過多角度多章節(jié)的學(xué)習(xí),學(xué)生才能有一個(gè)較完整的深刻理解。但我們?cè)趯W(xué)生剛接觸函數(shù)概念時(shí)就應(yīng)讓學(xué)成從多角度去思考,去理解。

第一,從初高中數(shù)學(xué)中對(duì)函數(shù)定義的比較中,讓學(xué)生能從初中的描述性概念把函數(shù)看成變量之間的依賴關(guān)系到高中用集合與對(duì)應(yīng)的語言定義函數(shù),從而達(dá)到函數(shù)概念的提升,從而更好地解決如y=3這樣的常數(shù)函數(shù)概念的解釋。

第二要用好課本,用課本教,而非教課本。充分利用好課本中函數(shù)概念的背景教學(xué),通過三個(gè)實(shí)例:炮彈發(fā)射;大氣層臭氧問題,恩格爾系數(shù)問題培養(yǎng)學(xué)生觀察問題提出問題的探究能力,培養(yǎng)學(xué)生抽象概括逐步學(xué)會(huì)數(shù)學(xué)表達(dá)和交流。

第三充分發(fā)揮函數(shù)圖像的集合直觀作用,加強(qiáng)數(shù)形結(jié)合思想。數(shù)形結(jié)合,幾何直觀的數(shù)學(xué)思想方法對(duì)學(xué)生理解函數(shù)概念以及性質(zhì)十分重要。通過讓學(xué)生作圖觀察圖像充分認(rèn)識(shí)函數(shù)概念的整體性。我覺得這種方法在高中階段是貫徹始終的。只有讓學(xué)生充分學(xué)好圖像認(rèn)識(shí)好圖像,能看懂圖像,能解釋圖像,那么對(duì)解決花束問題將起著十分重要的作用。

函數(shù)的概念教學(xué)教案篇三

函數(shù),作為高中數(shù)學(xué)的一個(gè)重要組成部分,是學(xué)生學(xué)習(xí)的重點(diǎn)和難點(diǎn)。在經(jīng)過集體備課,小組討論,心中還是沒有想好教學(xué)過程。在聽過盧老師的課后,心中有了一點(diǎn)點(diǎn)兒底氣。從而,我設(shè)計(jì)了這樣的教學(xué)計(jì)劃。首先,師生共同閱讀教材上的三個(gè)實(shí)例。

這三個(gè)例子剛好對(duì)應(yīng)了他們初中所學(xué)函數(shù)的三種表示方法(解析式法、圖像法、表格),學(xué)生熟悉更容易接受,再把每個(gè)例子中的自變量和因變量的取值分別組成兩個(gè)數(shù)集a和b,共同探討總結(jié)出三個(gè)例子的共同點(diǎn),從而引出函數(shù)的概念。強(qiáng)調(diào)構(gòu)成函數(shù)的四個(gè)條件,重點(diǎn)是對(duì)這個(gè)符號(hào)的理解,說明它只是一個(gè)數(shù)。其次,根據(jù)函數(shù)的'概念,給出六個(gè)小例子,讓學(xué)生根據(jù)函數(shù)的概念判斷所給例子是否能構(gòu)成函數(shù)。

有四個(gè)分別是違反函數(shù)概念中的四個(gè)條件,讓學(xué)生知道函數(shù)的條件缺一不可。另外兩個(gè)例子說明函數(shù)可以一對(duì)一,可以多對(duì)一,但絕不允許多對(duì)一。講完之后,發(fā)現(xiàn)學(xué)生的問題出現(xiàn)在兩個(gè)集合的先后順序,這就說明必須結(jié)合實(shí)際例子強(qiáng)調(diào)知識(shí)點(diǎn)。最后,給出函數(shù)定義域和值域的概念,并明確定義域和值域都是集合。之后讓學(xué)生說出常見的三種函數(shù):一次函數(shù),一元二次函數(shù),以及反比例函數(shù)的定義域以及值域。(在此之前,已經(jīng)讓學(xué)生在練習(xí)本上劃過幾個(gè)具體的一次函數(shù),一元二次函數(shù)以及反比例函數(shù)的圖像。)。

范文作為一位剛到崗的人民教師,我們都希望有一流的課堂教學(xué)能力,通過教學(xué)反思能很快的發(fā)現(xiàn)自己的講課缺點(diǎn),來參考自己需要的教學(xué)反思吧!以下是小編幫大家......

函數(shù)的概念教學(xué)教案篇四

學(xué)習(xí)培訓(xùn)提供的視頻,結(jié)合本節(jié)課的上課經(jīng)歷,我反思如下:

備課要多研究課本,研究課本的題目設(shè)置,備課前還要翻看海南省五年來高考題,以做到和編書者出題者步調(diào)一致。比如新課改后課本多是舉例引入或得出概念、公式、定理,淡化邏輯證明,而高考更多是考基礎(chǔ)性常規(guī)題,那么老實(shí)備課的時(shí)候就要注意重視應(yīng)用,淡化理論。

我個(gè)人的問題是上課思路容易混亂,喜歡用口頭禪,愛重復(fù)啰嗦生怕學(xué)生不懂,隨口加一些不嚴(yán)格的內(nèi)容。那么解決方法就是(1)備課的時(shí)候,通過舉例和好玩的生活實(shí)例直接引入核心內(nèi)容,從直觀上接受重點(diǎn)“任意x唯一y”,盡可能簡(jiǎn)化解釋,多做具體示例;(2)上課時(shí)鋪開課本和備課本,是不是掃兩眼,禁止臨時(shí)加話。(3)在備課基礎(chǔ)上,上課講完備課的內(nèi)容即可,在各內(nèi)容之間加一句簡(jiǎn)單的承上啟下的連接就行了。

我認(rèn)為學(xué)習(xí)是學(xué)生的權(quán)利,而不是我強(qiáng)迫學(xué),所以之前我從不管學(xué)生講話玩手機(jī)睡覺。但是后面發(fā)現(xiàn)居然有一大片睡覺,而且我明明很有激情,講著講著我就困了。于是我采用了請(qǐng)班長科代表記名,每堂課交名單給我,期末匯總上交德育處的方法,正好12月12日學(xué)校在升旗時(shí),發(fā)布了一個(gè)自動(dòng)退學(xué)處分,學(xué)生都是害怕開除的,所以后面每節(jié)課,只有個(gè)別自我放棄的學(xué)生睡覺了。上課一眼掃下去,都坐得端端正正,我就有更多表演的欲望和隨機(jī)應(yīng)變的串場(chǎng)內(nèi)容。

數(shù)學(xué)對(duì)海南學(xué)生來說,難是肯定的,所以極易疲憊。老師要充滿愛的去搞笑,嬌嗔耍寶裝萌講笑話,或者夸張發(fā)音,故意帶口音,跟學(xué)生一唱一和瞎說,都可以帶來學(xué)生一笑。長期還會(huì)融洽師生關(guān)系,得到學(xué)生的喜愛。

對(duì)一個(gè)老師來說,不管你的課堂多么生動(dòng)活潑,這只是形式,核心還是在知識(shí)點(diǎn)夠不夠精簡(jiǎn)好記,重點(diǎn)難點(diǎn)學(xué)生是很輕松地懂了,還是說模模糊糊腦袋都懵了,這全在于老師在備課和上課上下的功夫,在于老師自己想透了沒,找到合適的講授或類比方法沒。突破完全在一瞬間一個(gè)簡(jiǎn)單的道理,千萬不要把師生都繞進(jìn)去。

每章結(jié)束后,我會(huì)和學(xué)生一起在書皮上把本章核心知識(shí)點(diǎn)簡(jiǎn)潔總結(jié),方便翻看。不重要的`不需要記憶,我會(huì)直接告訴學(xué)生。

最后,把一本課本和高考強(qiáng)調(diào)的核心知識(shí)點(diǎn)總結(jié)成好記的數(shù)字:比如必修1是7。比如必修2是71221k。

函數(shù)的概念教學(xué)教案篇五

堂真正成為學(xué)生展示自我的舞臺(tái)。充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。但在復(fù)習(xí)與練習(xí)的過程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個(gè)問題。

1、某些記憶性的知識(shí)沒記住。

3、學(xué)生的識(shí)圖能力、讀題能力與分析問題、解決問題的能力較弱。

4、解題過程寫得不全面,丟三落四的現(xiàn)象嚴(yán)重。

1、根據(jù)實(shí)際情況,對(duì)于中考升學(xué)有希望的學(xué)生利用課余時(shí)間做好他們的思想工作。并對(duì)他們進(jìn)行面對(duì)面的單獨(dú)輔導(dǎo),增強(qiáng)他們的自信心,以此來提高他們的數(shù)學(xué)成績。

2、結(jié)合自己的學(xué)習(xí)經(jīng)驗(yàn)對(duì)他們進(jìn)行學(xué)法指導(dǎo)和解題技巧的指導(dǎo)。

3、根據(jù)不同的學(xué)生情況,搜集典型題讓他們單獨(dú)做,并給予及時(shí)的輔導(dǎo)與矯正。

4、與其它任課教師聯(lián)手一起想對(duì)策,指導(dǎo)學(xué)生讀題的方法與分析問題,解決問題的方法。

5、無論是做練習(xí)還是考試之前,都告訴學(xué)生要認(rèn)真仔細(xì)的讀題,從圖形中獲取信息。

函數(shù)的概念教學(xué)教案篇六

函數(shù)是研究現(xiàn)實(shí)世界變化規(guī)律的一個(gè)重要模型,對(duì)函數(shù)的學(xué)習(xí)一直以來都是中學(xué)階段的一個(gè)重要的內(nèi)容。函數(shù)的概念是學(xué)習(xí)后續(xù)“函數(shù)知識(shí)”的最重要的基礎(chǔ)內(nèi)容,而函數(shù)的概念又是一個(gè)比較抽象的,對(duì)它的理解一直是一個(gè)教學(xué)難點(diǎn),學(xué)生對(duì)這些問題的探索以及研究思路都是比較陌生的,因此,在教學(xué)過程中,注意通過對(duì)以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動(dòng)有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣;并通過層層深入的問題設(shè)計(jì),引導(dǎo)學(xué)生進(jìn)行觀察、操作、交流、歸納等數(shù)學(xué)活動(dòng),在活動(dòng)中歸納、概括出函數(shù)的概念;并通過師生交流、生生交流、辨析識(shí)別等加深學(xué)生對(duì)函數(shù)概念的理解。

函數(shù)是初中階段數(shù)學(xué)學(xué)習(xí)的一個(gè)重要內(nèi)容,學(xué)生又是第一次接觸函數(shù),充分考慮學(xué)生的接受能力,從生動(dòng)有趣的問題情景出發(fā),通過對(duì)一般規(guī)律的探索過程,從實(shí)際問題中抽象出一次函數(shù)和正比例函數(shù)的概念.又通過具有豐富的現(xiàn)實(shí)背景的例題,進(jìn)一步理解一次函數(shù)和正比例函數(shù)的概念,為下一步學(xué)習(xí)《一次函數(shù)圖像》奠定基礎(chǔ),并形成用函數(shù)觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的能力與意識(shí).

函數(shù)的概念教學(xué)教案篇七

二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問題中二次函數(shù)的解析式和它的定義域.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.在教學(xué)中,我主要遇到了這樣幾個(gè)問題:

1、關(guān)于能夠進(jìn)行整理變?yōu)檎降?式子形式判斷不準(zhǔn),主要是我自身對(duì)這個(gè)概念把握不是很清楚,通過這節(jié)課的教學(xué)過程,和各位老師的幫助知道,真正達(dá)到了教學(xué)相長的效果。

2、在細(xì)節(jié)方面我還有很多的不足,比如,在二次函數(shù)的表示過程中,應(yīng)注意強(qiáng)調(diào)按自變量的降冪排列進(jìn)行整理,這類問題在今后的教學(xué)中,我會(huì)注意這些方面的教學(xué)。

3、在變式訓(xùn)練的過程中要注意思考容量和密度以及效度的關(guān)系,注意教學(xué)安排的合理性。另外在教學(xué)語言的精煉方面我還有待加強(qiáng)。

函數(shù)的概念教學(xué)教案篇八

函數(shù)概念的引入一般有兩種方法,一種方法是先學(xué)習(xí)映射,再學(xué)習(xí)函數(shù);另一種方法是通過具體的實(shí)例,體會(huì)數(shù)集之間的一種特殊的對(duì)應(yīng)關(guān)系,即函數(shù)。為了充分運(yùn)用學(xué)生已有的認(rèn)知基礎(chǔ),為了給抽象概念以足夠的實(shí)例背景,以有助于學(xué)生理解函數(shù)概念的本質(zhì),我采用后一種方式,即從三個(gè)背景實(shí)例入手,在體會(huì)兩個(gè)變量之間依賴關(guān)系的基礎(chǔ)上,引導(dǎo)學(xué)生運(yùn)用集合與對(duì)應(yīng)的語言刻畫函數(shù)概念。繼而,通過例題,思考、探究、練習(xí)中的`問題從三個(gè)層次理解函數(shù)概念:函數(shù)定義、函數(shù)符號(hào)、函數(shù)三要素,并與初中定義進(jìn)行對(duì)比。

在學(xué)習(xí)用集合與對(duì)應(yīng)的語言刻畫函數(shù)之前,還可以讓學(xué)生先復(fù)習(xí)初中學(xué)習(xí)過的函數(shù)概念,并用課件進(jìn)行模擬實(shí)驗(yàn),畫出某一具體函數(shù)的圖像,在函數(shù)的圖像上任取一點(diǎn)p,測(cè)出點(diǎn)p的坐標(biāo),觀察點(diǎn)p的坐標(biāo)橫坐標(biāo)與縱坐標(biāo)的變化規(guī)律。使學(xué)生看到函數(shù)描述了變量之間的依賴關(guān)系,即無論點(diǎn)p在哪個(gè)位置,點(diǎn)p的橫坐標(biāo)總對(duì)應(yīng)唯一的縱坐標(biāo)。由此,使學(xué)生體會(huì)到,函數(shù)中的函數(shù)值的變化總是依賴于自變量的變化,而且由自變量唯一確定。

將本文的word文檔下載到電腦,方便收藏和打印。

函數(shù)的概念教學(xué)教案篇九

對(duì)于教師來說,反思教學(xué)就是教師自覺地把自己的課堂教學(xué)實(shí)踐,作為認(rèn)識(shí)對(duì)象而進(jìn)行全面而深入的冷靜思考和總結(jié),它是一種用來提高自身的業(yè)務(wù),改進(jìn)教學(xué)實(shí)踐的學(xué)習(xí)方式,不斷對(duì)自己的教育實(shí)踐深入反思,積極探索與解決教育實(shí)踐中的一系列問題。進(jìn)一步充實(shí)自己,優(yōu)化教學(xué),并使自己逐漸成長為一名稱職的人類靈魂工程師。以下是我在上了函數(shù)的概念之后的一點(diǎn)反思:

這堂課堂氣氛較為活躍。學(xué)生不僅能在課堂上勇于發(fā)言,而且還敢于質(zhì)疑并且能做到言之有理,還能積極參與小組討論交流,共同分享團(tuán)隊(duì)協(xié)作的成果,基本完成教學(xué)目標(biāo)。

這堂課是研究函數(shù)的概念。這節(jié)課主要采用了探索、發(fā)現(xiàn)、歸納、反饋的教學(xué)流程,達(dá)成了對(duì)函數(shù)的概念的教學(xué)。

函數(shù)性質(zhì)的研究是高中階段數(shù)學(xué)學(xué)習(xí)的一個(gè)重要組成部分,因此函數(shù)概念的學(xué)習(xí)是研究函數(shù)性質(zhì)時(shí)應(yīng)予以考查的一個(gè)重要方面,并且要在后續(xù)學(xué)習(xí)中體現(xiàn)這個(gè)性質(zhì)的應(yīng)用。它在計(jì)算函數(shù)值,討論函數(shù)單調(diào)性,繪制函數(shù)圖象均有用處,對(duì)學(xué)生來說這是一個(gè)新的概念。引進(jìn)新概念的過程也是培養(yǎng)學(xué)生探索問題、發(fā)現(xiàn)規(guī)律、作出歸納的過程。因此在教學(xué)時(shí)沒有生硬地提出問題,而是采用生活中的事例引入,繼而引出數(shù)值在直角坐標(biāo)系中的對(duì)應(yīng)關(guān)系導(dǎo)出新概念,不僅順乎自然而且為以后研究函數(shù)奇偶性的幾何意義(圖形對(duì)稱的兩條定理)埋下伏筆。

本堂課的一個(gè)亮點(diǎn)是反饋過程中給出幾個(gè)例題后所引起學(xué)生的思考、發(fā)言、爭(zhēng)執(zhí)、討論以至正確答案的達(dá)成一致的過程,其中教師起了很及時(shí)和恰當(dāng)?shù)奶崾?。學(xué)生的勇于質(zhì)疑使課堂上呈現(xiàn)一派生氣勃勃的景象,學(xué)習(xí)積極性和主動(dòng)性得到了充分調(diào)動(dòng),使學(xué)生對(duì)看似簡(jiǎn)單的函數(shù)的概念也產(chǎn)生了不容輕視感,同時(shí)也發(fā)展了能力。一般來說學(xué)生在學(xué)習(xí)一些簡(jiǎn)單的知識(shí)點(diǎn)時(shí)會(huì)覺得乏味,在組織教學(xué)時(shí)充分考慮了這些淺顯、平淡的知識(shí)還有一些值得思索和注意的地方。真正體現(xiàn)出“淺顯中有新意,平淡中有雋永”。

我上課的最大風(fēng)格是注重將新概念講清講透,能在師生互動(dòng)的過程中培養(yǎng)學(xué)生的探索能力和高度概括能力,并使學(xué)生舉一反三。難能可貴有同學(xué)能概括出的結(jié)論,因此可以以它作為下節(jié)課研究函數(shù)奇偶性的引入語。

總體來說,這堂課較好地使學(xué)生在學(xué)習(xí)中完成了“引起關(guān)注————激發(fā)熱情————參與體驗(yàn)”的過程,是一堂比較成功的課。

遺憾之處是發(fā)言的學(xué)生由于受時(shí)間的約束,發(fā)言的人數(shù)和長度不夠理想。

(1)函數(shù)的概念,看起來比較簡(jiǎn)單,學(xué)生學(xué)習(xí)時(shí)也往往感覺的乏味。因此,在組織教學(xué)時(shí)必須考慮到如何使學(xué)生感到這些淺顯、平淡的知識(shí)還有一些值得思索與注意的地方。

(2)根據(jù)學(xué)生的接受能力可將內(nèi)容安排兩節(jié)課的教學(xué)。

函數(shù)的概念教學(xué)教案篇十

這節(jié)課我首先讓學(xué)生思考了三個(gè)列函數(shù)關(guān)系式的實(shí)際問題,接著在學(xué)生探究這三個(gè)實(shí)際問題的基礎(chǔ)上,思考、歸納出二次函數(shù)的定義以及探討對(duì)二次函數(shù)的判斷,最后針對(duì)二次函數(shù)的定義和能用二次函數(shù)表示變量之間關(guān)系進(jìn)行了鞏固應(yīng)用。本節(jié)課通過豐富的現(xiàn)實(shí)背景,使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價(jià)值。通過學(xué)生的探究性活動(dòng)(經(jīng)歷數(shù)學(xué)化的過程),和學(xué)生之間的合作與交流,通過分析實(shí)際問題,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系。在新知的鞏固應(yīng)用環(huán)節(jié),我精心設(shè)計(jì)了不同題型的問題,很好鞏固應(yīng)用了本節(jié)的新知,課堂達(dá)到了較好的教學(xué)效果。通過本節(jié)課也讓我真正意識(shí)到:對(duì)于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗(yàn)設(shè)計(jì)。在每節(jié)課的課前,一定要進(jìn)行精心的預(yù)設(shè)。在課堂中,同時(shí)要結(jié)合課堂的實(shí)際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進(jìn)行分組教學(xué)時(shí),提前預(yù)設(shè)好教學(xué)時(shí)間,在每節(jié)課上,既要放的開,同時(shí)又要注意在適當(dāng)?shù)臅r(shí)機(jī)收回,以保證每節(jié)教學(xué)基本任務(wù)完成。

將本文的word文檔下載到電腦,方便收藏和打印。

函數(shù)的概念教學(xué)教案篇十一

函數(shù)是高中數(shù)學(xué)的重要研究問題,貫穿整個(gè)高中數(shù)學(xué)的學(xué)習(xí)。然而同學(xué)們對(duì)初中的函數(shù)概念的理解根深蒂固。要使他們接受從集合角度所定義的函數(shù)概念很難。本身這個(gè)概念很抽象,敘述起來很冗長,同學(xué)們讀了一遍又一遍始終不解其意,我便采用啟發(fā)式教學(xué),就像學(xué)習(xí)語文一樣,讓大家總結(jié)函數(shù)的本質(zhì)為:“函數(shù)是一種對(duì)應(yīng)關(guān)系”再啟發(fā)得到:“函數(shù)是兩個(gè)非空數(shù)集之間的對(duì)應(yīng)關(guān)系”,又得到“函數(shù)是兩個(gè)非空數(shù)集之間滿足一對(duì)一或多對(duì)一的對(duì)應(yīng)關(guān)系”,再加上細(xì)節(jié)性的定語。大多數(shù)同學(xué)頓時(shí)覺得茅塞頓開,明白清楚。我又加之幾個(gè)實(shí)例判斷是否為函數(shù)并分解其理由,同學(xué)們更加清楚明了。

通過這個(gè)概念的學(xué)習(xí),我從中得到啟示:要使學(xué)生數(shù)學(xué)思維生動(dòng)活潑對(duì)抽象概念的學(xué)習(xí)不能照本宣科,必須對(duì)知識(shí)重組,揭示概念的`本質(zhì),使學(xué)生樂于學(xué)習(xí)它,并運(yùn)用它。

這是我這節(jié)課后的一點(diǎn)小反思,也算是以后授課的一點(diǎn)小啟示。

函數(shù)的概念教學(xué)教案篇十二

函數(shù)是高中數(shù)學(xué)中一個(gè)非常重要的內(nèi)容之一,它貫穿整個(gè)高中階段的數(shù)學(xué)學(xué)習(xí),乃到一生的數(shù)學(xué)學(xué)習(xí)過程。其重要性主要體現(xiàn)在:

1、函數(shù)本身源于在現(xiàn)實(shí)生活,例如自然科學(xué)乃至于社會(huì)科學(xué)中,具有廣泛的應(yīng)用。

2、函數(shù)本身是數(shù)學(xué)的重要內(nèi)容,是溝通代數(shù)、幾何、三角等內(nèi)容的橋梁。亦是今后進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)和方法。

3、函數(shù)部分內(nèi)容蘊(yùn)涵大量的重要數(shù)學(xué)方法,如函數(shù)的思索,方程的思想,分類討論的思想,數(shù)形結(jié)合的思想,化歸的思想,換元法,侍定系數(shù)法、配方法等。這些思想方法是進(jìn)一步學(xué)習(xí)數(shù)學(xué)和解決數(shù)學(xué)問題的基礎(chǔ),是我們教學(xué)過程中應(yīng)注意重點(diǎn)講解學(xué)生重點(diǎn)掌握的部分。

然而函數(shù)這部份知識(shí)在教學(xué)中又是一大難點(diǎn)這主要是因?yàn)楦拍畹某橄笮?,學(xué)生理解起來相當(dāng)不容易,接受起來就更難這又是由于函數(shù)這部份知識(shí)的主要思想特點(diǎn)體現(xiàn)于一個(gè)“變”字。即研究的主要是“變量”與“變量”之間的關(guān)系,要求用變量的眼光,運(yùn)動(dòng)變化的關(guān)點(diǎn)去看侍和接觸相關(guān)問題,這與初中學(xué)習(xí)知識(shí)的以靜態(tài)觀點(diǎn)為中習(xí)的思維特點(diǎn)有較大差異,所以函數(shù)成了高一新生進(jìn)入高中首先到的一條攔路虎,有些學(xué)生高中畢業(yè)了,對(duì)函數(shù)這個(gè)概念也沒有理解透澈。

實(shí)際上,在學(xué)習(xí)函數(shù)這部份知識(shí)中,函數(shù)概念是最重要的,也就是最難的地方,突破了它后面的學(xué)習(xí)就容易了?,F(xiàn)行的數(shù)學(xué)教材,其主要內(nèi)容表現(xiàn)的都是數(shù)學(xué)知識(shí)的技術(shù)形式。函數(shù)的概念亦是如此,不管是傳統(tǒng)定義也好,還是近代定義也好,表現(xiàn)出來的都是抽象數(shù)學(xué)形式,在數(shù)學(xué)的教學(xué)中,學(xué)習(xí)形式化的表達(dá)是一項(xiàng)基本要求,但是不能只限于形式表達(dá),要強(qiáng)調(diào)對(duì)數(shù)學(xué)本質(zhì)的認(rèn)識(shí),否則會(huì)將生動(dòng)活潑的數(shù)學(xué)思維活動(dòng)淹沒在形式化的海洋里。對(duì)數(shù)學(xué)知識(shí)的教學(xué)要返璞歸真,努力揭示數(shù)學(xué)概念、法則,結(jié)論發(fā)展過程和本質(zhì)。對(duì)越是抽象的數(shù)學(xué)概念,越是如此。所以函數(shù)概念的教學(xué)更忌照本宣科,要注意對(duì)知識(shí)進(jìn)行重組。努力去提示函數(shù)概念的本質(zhì),使學(xué)生真正理解它,覺得它有用,而樂于學(xué)習(xí)它。

函數(shù)的概念教學(xué)教案篇十三

1、x理解的定義,初步掌握的圖象,性質(zhì)及其簡(jiǎn)單應(yīng)用。

2、x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3、x通過對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

函數(shù)的概念教學(xué)教案篇十四

對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來。

關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。

函數(shù)的概念教學(xué)教案篇十五

(1)自主+探究性學(xué)習(xí):讓學(xué)生自己由和角公式導(dǎo)出倍角公式,領(lǐng)會(huì)從一般化歸為特殊的數(shù)學(xué)思想,體會(huì)公式所蘊(yùn)涵的和諧美,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣。

(2)反饋練習(xí)法:以練習(xí)來檢驗(yàn)知識(shí)的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距.

函數(shù)的概念教學(xué)教案篇十六

(1)——定義、圖象、性質(zhì)目標(biāo):

1.了解對(duì)數(shù)函數(shù)的定義、圖象及其性質(zhì)以及它與指數(shù)函數(shù)間的關(guān)系,會(huì)求對(duì)數(shù)函數(shù)的定義域。

2.培養(yǎng)培養(yǎng)觀察分析、抽象概括能力、歸納總結(jié)能力、邏輯推理能力、化歸轉(zhuǎn)化能力;

3.培養(yǎng)堅(jiān)忍不拔的意志,培養(yǎng)發(fā)現(xiàn)問題和提出問題的意識(shí)、善于獨(dú)立思考的習(xí)慣,體會(huì)事物之間普遍聯(lián)系的辯證觀點(diǎn)。

重點(diǎn):對(duì)數(shù)函數(shù)的定義、圖象、性質(zhì)。

難點(diǎn):對(duì)數(shù)函數(shù)與指數(shù)函數(shù)間的關(guān)系。

過程:

二、新課。

1.對(duì)數(shù)函數(shù)的定義:函數(shù)叫做對(duì)數(shù)函數(shù);它是指數(shù)函數(shù)的反函數(shù)。對(duì)數(shù)函數(shù)的定義域?yàn)?,值域?yàn)椤?/p>

2.對(duì)數(shù)函數(shù)的圖象由于對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù),所以的圖象與的圖象關(guān)于直線對(duì)稱。因此,我們只要畫出和的圖象關(guān)于對(duì)稱的曲線,就可以得到的圖象,然后根據(jù)圖象特征得出對(duì)數(shù)函數(shù)的性質(zhì)。

函數(shù)的概念教學(xué)教案篇十七

(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。

(2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)x在x和x時(shí),函數(shù)值變化情況的區(qū)分。

(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。

函數(shù)的概念教學(xué)教案篇十八

函數(shù),作為高中數(shù)學(xué)的一個(gè)重要組成部分,是學(xué)生學(xué)習(xí)的重點(diǎn)和難點(diǎn)。在經(jīng)過集體備課,小組討論,心中還是沒有想好教學(xué)過程。在聽過盧老師的課后,心中有了一點(diǎn)點(diǎn)兒底氣。從而,我設(shè)計(jì)了這樣的教學(xué)計(jì)劃。首先,師生共同閱讀教材上的三個(gè)實(shí)例。

這三個(gè)例子剛好對(duì)應(yīng)了他們初中所學(xué)函數(shù)的三種表示方法(解析式法、圖像法、表格),學(xué)生熟悉更容易接受,再把每個(gè)例子中的自變量和因變量的取值分別組成兩個(gè)數(shù)集a和b,共同探討總結(jié)出三個(gè)例子的共同點(diǎn),從而引出函數(shù)的概念。強(qiáng)調(diào)構(gòu)成函數(shù)的四個(gè)條件,重點(diǎn)是對(duì)這個(gè)符號(hào)的理解,說明它只是一個(gè)數(shù)。其次,根據(jù)函數(shù)的概念,給出六個(gè)小例子,讓學(xué)生根據(jù)函數(shù)的概念判斷所給例子是否能構(gòu)成函數(shù)。

有四個(gè)分別是違反函數(shù)概念中的四個(gè)條件,讓學(xué)生知道函數(shù)的條件缺一不可。另外兩個(gè)例子說明函數(shù)可以一對(duì)一,可以多對(duì)一,但絕不允許多對(duì)一。講完之后,發(fā)現(xiàn)學(xué)生的問題出現(xiàn)在兩個(gè)集合的先后順序,這就說明必須結(jié)合實(shí)際例子強(qiáng)調(diào)知識(shí)點(diǎn)。最后,給出函數(shù)定義域和值域的概念,并明確定義域和值域都是集合。之后讓學(xué)生說出常見的三種函數(shù):一次函數(shù),一元二次函數(shù),以及反比例函數(shù)的定義域以及值域。(在此之前,已經(jīng)讓學(xué)生在練習(xí)本上劃過幾個(gè)具體的一次函數(shù),一元二次函數(shù)以及反比例函數(shù)的圖像。)。

函數(shù)的概念教學(xué)教案篇十九

讓學(xué)生自己由和角公式而導(dǎo)出倍角公式和半角公式,領(lǐng)會(huì)從一般化歸為特殊的數(shù)學(xué)思想,體會(huì)公式所蘊(yùn)涵的和諧美,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣;通過例題講解,總結(jié)方法.通過做練習(xí),鞏固所學(xué)知識(shí).

3.情感態(tài)度價(jià)值觀。

通過本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)三角函數(shù)各個(gè)公式之間有一個(gè)全新的認(rèn)識(shí);理解掌握三角函數(shù)各個(gè)公式的各種變形,增強(qiáng)學(xué)生靈活運(yùn)用數(shù)學(xué)知識(shí)、邏輯推理能力和綜合分析能力.提高逆用思維的能力.

函數(shù)的概念教學(xué)教案篇二十

2、利用反比例函數(shù)的圖象解決有關(guān)問題。

1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì);

2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問題。

一、創(chuàng)設(shè)情境。

上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質(zhì)。

二、探究歸納。

1、畫出函數(shù)的圖象。

分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x0.

解1.列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:

2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(-6,-1)、(-3,-2)、(-2,-3)等。

3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支。這兩個(gè)分支合起來,就是反比例函數(shù)的圖象。

上述圖象,通常稱為雙曲線(hyperbola)。

提問這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?

學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟)。

學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。

1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?

2、反比例函數(shù)(k0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?

反比例函數(shù)有下列性質(zhì):

(2)當(dāng)k0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

注1.雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);

2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。

以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?

在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。

在問題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長,另一邊越小。

三、實(shí)踐應(yīng)用。

例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個(gè)條件可解出m的值。

解由題意,得解得。

例2已知反比例函數(shù)(k0),當(dāng)x0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限。

分析由于反比例函數(shù)(k0),當(dāng)x0時(shí),y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點(diǎn)在x軸的上方。

解因?yàn)榉幢壤瘮?shù)(k0),當(dāng)x0時(shí),y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限。

例3已知反比例函數(shù)的圖象過點(diǎn)(1,-2)。

(1)求這個(gè)函數(shù)的解析式,并畫出圖象;

(2)由點(diǎn)a在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否在圖象上。

解(1)設(shè):反比例函數(shù)的解析式為:(k0)。

而反比例函數(shù)的圖象過點(diǎn)(1,-2),即當(dāng)x=1時(shí),y=-2.

所以,k=-2.

即反比例函數(shù)的解析式為:。

(2)點(diǎn)a(-5,m)在反比例函數(shù)圖象上,所以,

點(diǎn)a的坐標(biāo)為。

點(diǎn)a關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;

點(diǎn)a關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;

點(diǎn)a關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;

例4已知函數(shù)為反比例函數(shù)。

(1)求m的值;

(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

(3)當(dāng)-3時(shí),求此函數(shù)的最大值和最小值。

解(1)由反比例函數(shù)的定義可知:解得,m=-2.

(2)因?yàn)?20,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

(3)因?yàn)樵诘趥€(gè)象限內(nèi),y隨x的增大而增大,

所以當(dāng)x=時(shí),y最大值=;

當(dāng)x=-3時(shí),y最小值=。

所以當(dāng)-3時(shí),此函數(shù)的最大值為8,最小值為。

例5一個(gè)長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

(1)寫出用高表示長的函數(shù)關(guān)系式;

(2)寫出自變量x的取值范圍;

(3)畫出函數(shù)的圖象。

解(1)因?yàn)?00=5xy,所以。

(2)x0.

(3)圖象如下:

說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。

四、交流反思。

本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。

1、反比例函數(shù)的圖象是雙曲線(hyperbola)。

2、反比例函數(shù)有如下性質(zhì):

(2)當(dāng)k0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

五、檢測(cè)反饋。

1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:

(1);(2)。

2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:

(1)y和x的函數(shù)關(guān)系式;

(2)當(dāng)時(shí),y的值;

(3)當(dāng)x取何值時(shí),?

3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

4、已知反比例函數(shù)經(jīng)過點(diǎn)a(2,-m)和b(n,2n),求:

(1)m和n的值;

(2)若圖象上有兩點(diǎn)p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小。

函數(shù)的概念教學(xué)教案篇二十一

函數(shù)是高中數(shù)學(xué)的重要內(nèi)容。高中數(shù)學(xué)對(duì)于函數(shù)的定義比較抽象,不易理解。高中數(shù)學(xué)相比初中數(shù)學(xué)來說更偏重于理解,所以,理解函數(shù)的定義是學(xué)好函數(shù)這一重要部分的基礎(chǔ)。理解函數(shù)的定義關(guān)鍵在于理解對(duì)應(yīng)關(guān)系。

學(xué)情分析。

初中數(shù)學(xué)對(duì)于函數(shù)的定義比較好理解,而在高中數(shù)學(xué)里函數(shù)的定義是從集合的角度來描述的。函數(shù)的三要素是定義域、對(duì)應(yīng)關(guān)系、值域。函數(shù)本質(zhì)是一種對(duì)應(yīng)關(guān)系。直接講定義時(shí)學(xué)生時(shí)難于理解的,尤其是對(duì)抽象的函數(shù)符號(hào)的理解。

教法分析。

現(xiàn)在的教學(xué)理念是以學(xué)生的學(xué)為中心的,要將學(xué)生的學(xué)寓于教學(xué)活動(dòng)中去,讓學(xué)生去體驗(yàn),去感悟。本節(jié)課以學(xué)生熟知的消消樂游戲開始,由問題引出對(duì)應(yīng)的概念,進(jìn)而引導(dǎo)學(xué)生們?nèi)ヂ?lián)想生活中的對(duì)應(yīng)關(guān)系,比如健康碼、一個(gè)蘿卜一個(gè)坑兒等。這些生活中的現(xiàn)象之中就蘊(yùn)含著函數(shù)的概念,從而自然引入函數(shù)的概念。

教學(xué)重難點(diǎn)。

學(xué)習(xí)結(jié)果評(píng)價(jià)。

能自己描述一個(gè)函數(shù)的例子。能判斷是否為函數(shù)。

教學(xué)過程。

一、游戲?qū)搿?/p>

學(xué)生體驗(yàn)消消樂游戲后,思考:兩個(gè)圖形怎么樣才能消失。

二、想一想生活中的對(duì)應(yīng)關(guān)系。

健康碼、一個(gè)蘿卜一個(gè)坑兒。

三、

再看一個(gè)例子。

旅行前了解當(dāng)?shù)氐奶鞖狻?/p>

問題1:該氣溫變化圖中有哪些變量?

問題2:變量之間是什么關(guān)系?

問題3:能否用集合語言來闡述它們之間的關(guān)系?

問題4:再了解函數(shù)的概念之后,你能否再舉一些函數(shù)的例子?

問題5:我也來舉一些例子,你們看看是不是函數(shù)關(guān)系?

四、課堂小結(jié)。

理解函數(shù)的概念關(guān)鍵在于理解其中的對(duì)應(yīng)關(guān)系。

函數(shù)的概念教學(xué)教案篇二十二

上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線.那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質(zhì).

二、探究歸納。

分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x0.

解1.列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:

2.描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(-6,-1)、(-3,-2)、(-2,-3)等.

3.連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支.這兩個(gè)分支合起來,就是反比例函數(shù)的圖象.

上述圖象,通常稱為雙曲線(hyperbola).

提問這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?

學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟).

學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題.

1.這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?

2.反比例函數(shù)(k0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?

反比例函數(shù)有下列性質(zhì):

(2)當(dāng)k0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加.

注1.雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);。

2.雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱.

以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?

在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少.

在問題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長,另一邊越小.

三、實(shí)踐應(yīng)用。

例1若反比例函數(shù)的圖象在第二、四象限,求m的值.

分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個(gè)條件可解出m的值.

解由題意,得解得.

例2已知反比例函數(shù)(k0),當(dāng)x0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限.

分析由于反比例函數(shù)(k0),當(dāng)x0時(shí),y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點(diǎn)在x軸的上方.

解因?yàn)榉幢壤瘮?shù)(k0),當(dāng)x0時(shí),y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限.

例3已知反比例函數(shù)的圖象過點(diǎn)(1,-2).

(1)求這個(gè)函數(shù)的解析式,并畫出圖象;。

(2)由點(diǎn)a在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否在圖象上.

解(1)設(shè):反比例函數(shù)的解析式為:(k0).

而反比例函數(shù)的圖象過點(diǎn)(1,-2),即當(dāng)x=1時(shí),y=-2.

所以,k=-2.

即反比例函數(shù)的解析式為:.

(2)點(diǎn)a(-5,m)在反比例函數(shù)圖象上,所以,

點(diǎn)a的坐標(biāo)為.

點(diǎn)a關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;。

點(diǎn)a關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;。

點(diǎn)a關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;。

例4已知函數(shù)為反比例函數(shù).

(1)求m的值;。

(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

(3)當(dāng)-3時(shí),求此函數(shù)的最大值和最小值.

解(1)由反比例函數(shù)的定義可知:解得,m=-2.

(2)因?yàn)?20,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大.

(3)因?yàn)樵诘趥€(gè)象限內(nèi),y隨x的增大而增大,

所以當(dāng)x=時(shí),y最大值=;。

當(dāng)x=-3時(shí),y最小值=.

所以當(dāng)-3時(shí),此函數(shù)的最大值為8,最小值為.

例5一個(gè)長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.

(1)寫出用高表示長的函數(shù)關(guān)系式;。

(2)寫出自變量x的取值范圍;。

解(1)因?yàn)?00=5xy,所以.

(2)x0.

(3)圖象如下:

說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支.

四、交流反思。

本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì).

1.反比例函數(shù)的圖象是雙曲線(hyperbola).

2.反比例函數(shù)有如下性質(zhì):

(2)當(dāng)k0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加.

五、檢測(cè)反饋。

1.在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:

(1);(2).

2.已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:

(1)y和x的函數(shù)關(guān)系式;。

(2)當(dāng)時(shí),y的值;。

(3)當(dāng)x取何值時(shí),?

3.若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值.

4.已知反比例函數(shù)經(jīng)過點(diǎn)a(2,-m)和b(n,2n),求:

(1)m和n的值;。

(2)若圖象上有兩點(diǎn)p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小.

【本文地址:http://mlvmservice.com/zuowen/13155304.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔