新聞是一種通過報(bào)道事實(shí)和觀點(diǎn)來傳遞信息和引起公眾關(guān)注的媒體形式。寫總結(jié)時(shí)要盡量客觀公正,對(duì)自己的優(yōu)點(diǎn)和缺點(diǎn)都要有清醒的認(rèn)識(shí)。以下是總結(jié)撰寫的一些技巧和要點(diǎn),供您參考和借鑒。
函數(shù)的概念說課稿篇一
教學(xué)目標(biāo):
1、進(jìn)一步理解的概念,能從簡單的實(shí)際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會(huì)求值,并體會(huì)自變量與值間的對(duì)應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.
教學(xué)重點(diǎn):了解的意義,會(huì)求自變量的取值范圍及求值.
教學(xué)難點(diǎn):概念的抽象性.
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的.
生活中有很多實(shí)例反映了關(guān)系,你能舉出一個(gè),并指出式中的自變量與嗎?
1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.
2、為迎接新年,班委會(huì)計(jì)劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.
解:1、y=30n。
y是,n是自變量。
2、,n是,a是自變量.
(二)講授新課。
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的取值范圍.。
(1)(2)。
(3)(4)。
(5)(6)。
分析:在(1)、(2)中,x取任意實(shí)數(shù),與都有意義.
(3)小題的是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
同理,第(6)小題也是二次根式,是被開方數(shù),。
解:(1)全體實(shí)數(shù)。
(2)全體實(shí)數(shù)。
(3)。
(4)且。
(5)。
(6)。
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成或.在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.
函數(shù)的概念說課稿篇二
我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
1、6、(板書)。
這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:
由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學(xué)生回答:x。
在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
1、定義:形如x的函數(shù)稱為。(板書)。
教師在給出定義之后再對(duì)定義作幾點(diǎn)說明。
2、幾點(diǎn)說明x(板書)。
(1)x關(guān)于對(duì)x的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會(huì)有什么問題?如x,此時(shí)x,x等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對(duì)于x都無意義,若x則x無論x取何值,它總是1,對(duì)它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
(2)關(guān)于的定義域x(板書)。
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時(shí),x也是一個(gè)確定的實(shí)數(shù),對(duì)于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)閤。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。
(3)關(guān)于是否是的判斷(板書)。
剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是。
(4)x,x。
(5)x。
學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
3、歸納性質(zhì)。
作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
函數(shù)。
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)。
4、截距:在x軸上沒有,在x軸上為1。
對(duì)于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)。
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。
此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)。
1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。
2、草圖:
當(dāng)畫完第一個(gè)圖象之后,可問學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取x為例。
此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對(duì)稱,而此時(shí)x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。
最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如x的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學(xué)生仿照此例再列一個(gè)x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
(1)無論x為何值,x都有定義域?yàn)閤,值域?yàn)閤,都過點(diǎn)x。
(2)x時(shí),x在定義域內(nèi)為增函數(shù),x時(shí),x為減函數(shù)。
(3)x時(shí),x,xx時(shí),x。
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡單應(yīng)用x(板書)。
1、利用單調(diào)性比大小。x(板書)。
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數(shù)的大小。
(1)x與x;x(2)x與x;。
(3)x與1x。(板書)。
首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個(gè)特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數(shù),且x。(板書)。
教師最后再強(qiáng)調(diào)過程必須寫清三句話:
(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
(2)x自變量的大小比較。
(3)x函數(shù)值的大小比較。
后兩個(gè)題的過程略。要求學(xué)生仿照第(1)題敘述過程。
例2。比較下列各組數(shù)的大小。
(1)x與x;x(2)x與x;。
(3)x與x。(板書)。
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(duì)(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
最后由學(xué)生說出x1,1。
解決后由教師小結(jié)比較大小的方法。
(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
(2)x搭橋比較法:x用特殊的數(shù)1或0。
四、鞏固練習(xí)。
練習(xí):比較下列各組數(shù)的大?。ò鍟?/p>
(1)x與xx(2)x與x;。
(3)x與x;x(4)x與x。解答過程略。
五、小結(jié)。
2、的圖象和性質(zhì)。
3、簡單應(yīng)用。
六、板書設(shè)計(jì)。
函數(shù)的概念說課稿篇三
一、說課內(nèi)容:
九年級(jí)數(shù)學(xué)下冊(cè)第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
二、教材分析:
1、教材的地位和作用。
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的'基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):抽象出實(shí)際問題中的二次函數(shù)關(guān)系。
三、教法學(xué)法設(shè)計(jì):
1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程。
2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程。
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
四、教學(xué)過程:
(一)復(fù)習(xí)提問。
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課。
函數(shù)是研究兩個(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。
例1、(1)圓的半徑是r(cm)時(shí),面積與半徑之間的關(guān)系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
(三)講解新課。
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強(qiáng)調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
(四)鞏固練習(xí)。
1.已知一個(gè)直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時(shí),求這個(gè)直角三角形的面積;。
(2)設(shè)這個(gè)直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
于x的函數(shù)關(guān)系式。
【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?
【設(shè)計(jì)意圖】簡單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評(píng)價(jià)分析。
本節(jié)的一個(gè)知識(shí)點(diǎn)就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的有效模型,增加對(duì)二次函數(shù)的感性認(rèn)識(shí),側(cè)重點(diǎn)通過兩個(gè)實(shí)際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進(jìn)一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對(duì)于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵(lì)。
函數(shù)的概念說課稿篇四
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標(biāo)。
理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。
通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。
通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點(diǎn)分析確定。
一、教學(xué)基本思路及過程。
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析。
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。
三、教法、學(xué)法。
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
函數(shù)的概念說課稿篇五
教學(xué)目標(biāo):
1、進(jìn)一步理解的概念,能從簡單的實(shí)際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會(huì)求值,并體會(huì)自變量與值間的對(duì)應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.
教學(xué)重點(diǎn):了解的意義,會(huì)求自變量的取值范圍及求值.
教學(xué)難點(diǎn):概念的抽象性.
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的.
生活中有很多實(shí)例反映了關(guān)系,你能舉出一個(gè),并指出式中的自變量與嗎?
1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.
2、為迎接新年,班委會(huì)計(jì)劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.
解:1、y=30n。
y是,n是自變量。
2、,n是,a是自變量.
(二)講授新課。
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的取值范圍.。
(1)(2)。
(3)(4)。
(5)(6)。
分析:在(1)、(2)中,x取任意實(shí)數(shù),與都有意義.
(3)小題的是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
同理,第(6)小題也是二次根式,是被開方數(shù),。
解:(1)全體實(shí)數(shù)。
(2)全體實(shí)數(shù)。
(3)。
(4)且。
(5)。
(6)。
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成或.在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)的概念說課稿篇六
教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標(biāo)。
理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。
通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。
通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點(diǎn)分析確定。
一、教學(xué)基本思路及過程。
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析。
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。
三、教法、學(xué)法。
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
函數(shù)的概念說課稿篇七
理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化.
理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會(huì)利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
一、問題.
1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
2、在平面直角坐標(biāo)系內(nèi)角分為哪幾類?與終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實(shí)數(shù)有什么樣的關(guān)系?
4、弧度制下圓的弧長公式和扇形的面積公式是什么?
5、任意角的三角函數(shù)的定義是什么?在各象限的符號(hào)怎么確定?
6、你能在單位圓中畫出正弦、余弦和正切線嗎?
7、同角三角函數(shù)有哪些基本關(guān)系式?
二、練習(xí).
1.給出下列命題:
(1)小于的角是銳角;
(2)若是第一象限的角,則必為第一象限的角;
(3)第三象限的角必大于第二象限的角;
(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2與角的終邊不可能相同;
2.設(shè)p點(diǎn)是角終邊上一點(diǎn),且滿足則的值是。
4.若則角的終邊在象限。
5.在直角坐標(biāo)系中,若角與角的終邊互為反向延長線,則角與角之間的關(guān)系是。
6.若是第三象限的角,則-,的終邊落在何處?
例1.如圖,分別是角的終邊.
(1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在上所有角的集合;
(3)求始邊在om位置,終邊在on位置的所有角的集合.
例2.
(1)已知角的終邊在直線上,求的值;
(2)已知角的終邊上有一點(diǎn)a,求的值。
例3.若,則在第象限.
1、若銳角的終邊上一點(diǎn)的坐標(biāo)為,則角的弧度數(shù)為.
2、若,又是第二,第三象限角,則的取值范圍是.
3、一個(gè)半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是弧度或角度,該扇形的面積是.
4、已知點(diǎn)p在第三象限,則角終邊在第象限.
5、設(shè)角的終邊過點(diǎn)p,則的值為.
6、已知角的終邊上一點(diǎn)p且,求和的值.
1、經(jīng)過3小時(shí)35分鐘,分針轉(zhuǎn)過的角的弧度是.時(shí)針轉(zhuǎn)過的角的弧度數(shù)是.
2、若點(diǎn)p在第一象限,則在內(nèi)的取值范圍是.
3、若點(diǎn)p從(1,0)出發(fā),沿單位圓逆時(shí)針方向運(yùn)動(dòng)弧長到達(dá)q點(diǎn),則q點(diǎn)坐標(biāo)為.
4、如果為小于360的正角,且角的7倍數(shù)的角的終邊與這個(gè)角的終邊重合,求角的值.
函數(shù)的概念說課稿篇八
堂真正成為學(xué)生展示自我的舞臺(tái)。充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。但在復(fù)習(xí)與練習(xí)的過程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個(gè)問題。
1、某些記憶性的知識(shí)沒記住。
3、學(xué)生的識(shí)圖能力、讀題能力與分析問題、解決問題的能力較弱。
4、解題過程寫得不全面,丟三落四的現(xiàn)象嚴(yán)重。
1、根據(jù)實(shí)際情況,對(duì)于中考升學(xué)有希望的學(xué)生利用課余時(shí)間做好他們的思想工作。并對(duì)他們進(jìn)行面對(duì)面的單獨(dú)輔導(dǎo),增強(qiáng)他們的自信心,以此來提高他們的數(shù)學(xué)成績。
2、結(jié)合自己的學(xué)習(xí)經(jīng)驗(yàn)對(duì)他們進(jìn)行學(xué)法指導(dǎo)和解題技巧的指導(dǎo)。
3、根據(jù)不同的學(xué)生情況,搜集典型題讓他們單獨(dú)做,并給予及時(shí)的輔導(dǎo)與矯正。
4、與其它任課教師聯(lián)手一起想對(duì)策,指導(dǎo)學(xué)生讀題的方法與分析問題,解決問題的方法。
5、無論是做練習(xí)還是考試之前,都告訴學(xué)生要認(rèn)真仔細(xì)的讀題,從圖形中獲取信息。
函數(shù)的概念說課稿篇九
函數(shù)是高中數(shù)學(xué)的重要研究問題,貫穿整個(gè)高中數(shù)學(xué)的學(xué)習(xí)。然而同學(xué)們對(duì)初中的函數(shù)概念的理解根深蒂固。要使他們接受從集合角度所定義的函數(shù)概念很難。本身這個(gè)概念很抽象,敘述起來很冗長,同學(xué)們讀了一遍又一遍始終不解其意,我便采用啟發(fā)式教學(xué),就像學(xué)習(xí)語文一樣,讓大家總結(jié)函數(shù)的本質(zhì)為:“函數(shù)是一種對(duì)應(yīng)關(guān)系”再啟發(fā)得到:“函數(shù)是兩個(gè)非空數(shù)集之間的對(duì)應(yīng)關(guān)系”,又得到“函數(shù)是兩個(gè)非空數(shù)集之間滿足一對(duì)一或多對(duì)一的對(duì)應(yīng)關(guān)系”,再加上細(xì)節(jié)性的定語。大多數(shù)同學(xué)頓時(shí)覺得茅塞頓開,明白清楚。我又加之幾個(gè)實(shí)例判斷是否為函數(shù)并分解其理由,同學(xué)們更加清楚明了。
通過這個(gè)概念的學(xué)習(xí),我從中得到啟示:要使學(xué)生數(shù)學(xué)思維生動(dòng)活潑對(duì)抽象概念的學(xué)習(xí)不能照本宣科,必須對(duì)知識(shí)重組,揭示概念的`本質(zhì),使學(xué)生樂于學(xué)習(xí)它,并運(yùn)用它。
這是我這節(jié)課后的一點(diǎn)小反思,也算是以后授課的一點(diǎn)小啟示。
函數(shù)的概念說課稿篇十
作為一個(gè)計(jì)算機(jī)科學(xué)專業(yè)的學(xué)生,學(xué)習(xí)函數(shù)的概念在日常學(xué)習(xí)中頻繁出現(xiàn)。函數(shù)是計(jì)算機(jī)科學(xué)中的基本概念之一,它可以說代表了程序的核心和基礎(chǔ)。在學(xué)習(xí)和使用函數(shù)的過程中,我有幸深入了解了函數(shù)的概念,與之相關(guān)的特點(diǎn)以及它在編程中的應(yīng)用等方面。通過這次學(xué)習(xí),我對(duì)函數(shù)有了更深刻的理解并體會(huì)到了它的重要性。下面將通過以下五個(gè)方面來分享我對(duì)函數(shù)的概念的心得體會(huì)。
函數(shù)是計(jì)算機(jī)科學(xué)中的一個(gè)重要概念,它是一段代碼的封裝,可以接受輸入?yún)?shù)并返回一個(gè)結(jié)果。在編程中,我們可以將函數(shù)看做是一個(gè)工廠,按照我們需求將輸入轉(zhuǎn)化成期望的輸出。通過函數(shù)的抽象,我們可以將復(fù)雜的問題分解成更小的部分,使得代碼更容易被理解和組織。使用函數(shù)還可以提高代碼的復(fù)用性和可維護(hù)性,我們可以多次調(diào)用同一個(gè)函數(shù)而不需要重復(fù)寫同樣的代碼。因此,掌握函數(shù)的基本概念對(duì)于編程能力的提升和編寫高效代碼來說是至關(guān)重要的。
第二段:函數(shù)的特點(diǎn)。
函數(shù)有三個(gè)主要的特點(diǎn),分別是輸入?yún)?shù)、返回值和可組合性。輸入?yún)?shù)是指函數(shù)接受的輸入,它們可以是任意類型的數(shù)據(jù),同時(shí)也可以沒有輸入?yún)?shù)。函數(shù)根據(jù)輸入?yún)?shù)的不同,可以返回不同的結(jié)果。返回值是函數(shù)處理完輸入?yún)?shù)之后得到的結(jié)果,我們可以使用這個(gè)結(jié)果進(jìn)行下一步的操作。而可組合性則是指函數(shù)之間可以相互組合,通過一個(gè)函數(shù)的輸出作為另一個(gè)函數(shù)的輸入來實(shí)現(xiàn)更復(fù)雜的功能。函數(shù)的特點(diǎn)使得我們可以通過合理的組織和使用函數(shù)來編寫出更加高效和靈活的代碼。
第三段:函數(shù)在編程中的應(yīng)用。
函數(shù)在編程中有著廣泛的應(yīng)用。首先,函數(shù)可以用于封裝重復(fù)的代碼。在編程中,我們經(jīng)常會(huì)遇到同樣的代碼需要多次使用的情況,如果每次都重復(fù)寫這些代碼,不僅效率低下,而且還增加了代碼的冗余性。通過使用函數(shù),我們可以將這些重復(fù)的代碼封裝起來,提高代碼的復(fù)用性,并且使得代碼更易于理解和維護(hù)。其次,函數(shù)可以用于實(shí)現(xiàn)特定的功能。例如,計(jì)算一個(gè)數(shù)的平方、求兩個(gè)數(shù)之和等,這些功能都可以通過編寫相應(yīng)的函數(shù)來實(shí)現(xiàn),并且可以多次調(diào)用。最后,函數(shù)還可以用于編寫更為復(fù)雜的程序。通過將一個(gè)程序分解成多個(gè)函數(shù),每個(gè)函數(shù)負(fù)責(zé)一個(gè)特定的功能,我們可以更好地組織和管理程序。函數(shù)的應(yīng)用豐富多樣,在編程中起到了至關(guān)重要的作用。
第四段:函數(shù)對(duì)編程能力提升的作用。
掌握函數(shù)的概念和使用方法,對(duì)于編程能力的提升有著顯著的作用。首先,函數(shù)可以提高編程效率。通過合理地封裝和使用函數(shù),可以減少代碼的冗余性,提高代碼的復(fù)用率,從而減少編寫代碼的時(shí)間和精力。其次,函數(shù)使得代碼更易于理解和維護(hù)。通過將程序分解成多個(gè)函數(shù),每個(gè)函數(shù)負(fù)責(zé)一個(gè)特定的功能,我們可以更好地理解和維護(hù)程序,降低開發(fā)和維護(hù)的難度。最后,函數(shù)還可以提高程序的組織性和可擴(kuò)展性。通過函數(shù)的抽象特性,我們可以將復(fù)雜的問題分解成多個(gè)小的部分,每個(gè)部分負(fù)責(zé)特定的功能。這樣既提高了代碼的組織性,又便于后期的擴(kuò)展。
在學(xué)習(xí)函數(shù)的過程中,我體會(huì)到了函數(shù)在編程中的重要性和靈活性。學(xué)習(xí)函數(shù)不僅是學(xué)習(xí)計(jì)算機(jī)科學(xué)的基礎(chǔ),更是掌握編程能力的關(guān)鍵。通過函數(shù)的學(xué)習(xí),我不僅進(jìn)一步理解了編程語言的結(jié)構(gòu)和邏輯,還對(duì)如何利用函數(shù)來提高編程效率和代碼的可維護(hù)性有了更深刻的認(rèn)識(shí)。在未來的學(xué)習(xí)和實(shí)踐中,我會(huì)進(jìn)一步加深對(duì)函數(shù)的理解,并在編程中充分發(fā)揮函數(shù)的作用,提高自己的編程能力。
通過對(duì)函數(shù)的概念、特點(diǎn)以及在編程中的應(yīng)用等方面的學(xué)習(xí),我對(duì)函數(shù)有了更深刻的理解并體會(huì)到了它的重要性。函數(shù)是編程的基礎(chǔ)和核心,掌握函數(shù)的概念和使用方法對(duì)于編程能力的提升至關(guān)重要。通過函數(shù),我們可以更好地組織和管理代碼,提高編程效率和代碼的可維護(hù)性,并且使得代碼更易于理解和擴(kuò)展。函數(shù)的學(xué)習(xí)心得將引導(dǎo)我在未來的學(xué)習(xí)和實(shí)踐中更好地利用函數(shù)來提高編程能力,創(chuàng)造更加高效和優(yōu)雅的代碼。
函數(shù)的概念說課稿篇十一
函數(shù)是高中數(shù)學(xué)中一個(gè)非常重要的內(nèi)容之一,它貫穿整個(gè)高中階段的數(shù)學(xué)學(xué)習(xí),乃到一生的數(shù)學(xué)學(xué)習(xí)過程。其重要性主要體現(xiàn)在:
1、函數(shù)本身源于在現(xiàn)實(shí)生活,例如自然科學(xué)乃至于社會(huì)科學(xué)中,具有廣泛的應(yīng)用。
2、函數(shù)本身是數(shù)學(xué)的重要內(nèi)容,是溝通代數(shù)、幾何、三角等內(nèi)容的橋梁。亦是今后進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)和方法。
3、函數(shù)部分內(nèi)容蘊(yùn)涵大量的重要數(shù)學(xué)方法,如函數(shù)的思索,方程的思想,分類討論的思想,數(shù)形結(jié)合的思想,化歸的思想,換元法,侍定系數(shù)法、配方法等。這些思想方法是進(jìn)一步學(xué)習(xí)數(shù)學(xué)和解決數(shù)學(xué)問題的基礎(chǔ),是我們教學(xué)過程中應(yīng)注意重點(diǎn)講解學(xué)生重點(diǎn)掌握的部分。
然而函數(shù)這部份知識(shí)在教學(xué)中又是一大難點(diǎn)這主要是因?yàn)楦拍畹某橄笮?,學(xué)生理解起來相當(dāng)不容易,接受起來就更難這又是由于函數(shù)這部份知識(shí)的主要思想特點(diǎn)體現(xiàn)于一個(gè)“變”字。即研究的主要是“變量”與“變量”之間的關(guān)系,要求用變量的眼光,運(yùn)動(dòng)變化的關(guān)點(diǎn)去看侍和接觸相關(guān)問題,這與初中學(xué)習(xí)知識(shí)的以靜態(tài)觀點(diǎn)為中習(xí)的思維特點(diǎn)有較大差異,所以函數(shù)成了高一新生進(jìn)入高中首先到的一條攔路虎,有些學(xué)生高中畢業(yè)了,對(duì)函數(shù)這個(gè)概念也沒有理解透澈。
實(shí)際上,在學(xué)習(xí)函數(shù)這部份知識(shí)中,函數(shù)概念是最重要的,也就是最難的地方,突破了它后面的學(xué)習(xí)就容易了?,F(xiàn)行的數(shù)學(xué)教材,其主要內(nèi)容表現(xiàn)的都是數(shù)學(xué)知識(shí)的技術(shù)形式。函數(shù)的概念亦是如此,不管是傳統(tǒng)定義也好,還是近代定義也好,表現(xiàn)出來的都是抽象數(shù)學(xué)形式,在數(shù)學(xué)的教學(xué)中,學(xué)習(xí)形式化的表達(dá)是一項(xiàng)基本要求,但是不能只限于形式表達(dá),要強(qiáng)調(diào)對(duì)數(shù)學(xué)本質(zhì)的認(rèn)識(shí),否則會(huì)將生動(dòng)活潑的數(shù)學(xué)思維活動(dòng)淹沒在形式化的海洋里。對(duì)數(shù)學(xué)知識(shí)的教學(xué)要返璞歸真,努力揭示數(shù)學(xué)概念、法則,結(jié)論發(fā)展過程和本質(zhì)。對(duì)越是抽象的數(shù)學(xué)概念,越是如此。所以函數(shù)概念的教學(xué)更忌照本宣科,要注意對(duì)知識(shí)進(jìn)行重組。努力去提示函數(shù)概念的本質(zhì),使學(xué)生真正理解它,覺得它有用,而樂于學(xué)習(xí)它。
函數(shù)的概念說課稿篇十二
1、x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2、x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
3、x通過對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
函數(shù)的概念說課稿篇十三
函數(shù)是研究現(xiàn)實(shí)世界變化規(guī)律的一個(gè)重要模型,對(duì)函數(shù)的學(xué)習(xí)一直以來都是中學(xué)階段的一個(gè)重要的內(nèi)容。函數(shù)的概念是學(xué)習(xí)后續(xù)“函數(shù)知識(shí)”的最重要的基礎(chǔ)內(nèi)容,而函數(shù)的概念又是一個(gè)比較抽象的,對(duì)它的理解一直是一個(gè)教學(xué)難點(diǎn),學(xué)生對(duì)這些問題的探索以及研究思路都是比較陌生的,因此,在教學(xué)過程中,注意通過對(duì)以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動(dòng)有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣;并通過層層深入的問題設(shè)計(jì),引導(dǎo)學(xué)生進(jìn)行觀察、操作、交流、歸納等數(shù)學(xué)活動(dòng),在活動(dòng)中歸納、概括出函數(shù)的概念;并通過師生交流、生生交流、辨析識(shí)別等加深學(xué)生對(duì)函數(shù)概念的理解。
函數(shù)是初中階段數(shù)學(xué)學(xué)習(xí)的一個(gè)重要內(nèi)容,學(xué)生又是第一次接觸函數(shù),充分考慮學(xué)生的接受能力,從生動(dòng)有趣的問題情景出發(fā),通過對(duì)一般規(guī)律的探索過程,從實(shí)際問題中抽象出一次函數(shù)和正比例函數(shù)的概念.又通過具有豐富的現(xiàn)實(shí)背景的例題,進(jìn)一步理解一次函數(shù)和正比例函數(shù)的概念,為下一步學(xué)習(xí)《一次函數(shù)圖像》奠定基礎(chǔ),并形成用函數(shù)觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的能力與意識(shí).
函數(shù)的概念說課稿篇十四
學(xué)習(xí)培訓(xùn)提供的視頻,結(jié)合本節(jié)課的上課經(jīng)歷,我反思如下:
備課要多研究課本,研究課本的題目設(shè)置,備課前還要翻看海南省五年來高考題,以做到和編書者出題者步調(diào)一致。比如新課改后課本多是舉例引入或得出概念、公式、定理,淡化邏輯證明,而高考更多是考基礎(chǔ)性常規(guī)題,那么老實(shí)備課的時(shí)候就要注意重視應(yīng)用,淡化理論。
我個(gè)人的問題是上課思路容易混亂,喜歡用口頭禪,愛重復(fù)啰嗦生怕學(xué)生不懂,隨口加一些不嚴(yán)格的內(nèi)容。那么解決方法就是(1)備課的時(shí)候,通過舉例和好玩的生活實(shí)例直接引入核心內(nèi)容,從直觀上接受重點(diǎn)“任意x唯一y”,盡可能簡化解釋,多做具體示例;(2)上課時(shí)鋪開課本和備課本,是不是掃兩眼,禁止臨時(shí)加話。(3)在備課基礎(chǔ)上,上課講完備課的內(nèi)容即可,在各內(nèi)容之間加一句簡單的承上啟下的連接就行了。
我認(rèn)為學(xué)習(xí)是學(xué)生的權(quán)利,而不是我強(qiáng)迫學(xué),所以之前我從不管學(xué)生講話玩手機(jī)睡覺。但是后面發(fā)現(xiàn)居然有一大片睡覺,而且我明明很有激情,講著講著我就困了。于是我采用了請(qǐng)班長科代表記名,每堂課交名單給我,期末匯總上交德育處的方法,正好12月12日學(xué)校在升旗時(shí),發(fā)布了一個(gè)自動(dòng)退學(xué)處分,學(xué)生都是害怕開除的,所以后面每節(jié)課,只有個(gè)別自我放棄的學(xué)生睡覺了。上課一眼掃下去,都坐得端端正正,我就有更多表演的欲望和隨機(jī)應(yīng)變的串場(chǎng)內(nèi)容。
數(shù)學(xué)對(duì)海南學(xué)生來說,難是肯定的,所以極易疲憊。老師要充滿愛的去搞笑,嬌嗔耍寶裝萌講笑話,或者夸張發(fā)音,故意帶口音,跟學(xué)生一唱一和瞎說,都可以帶來學(xué)生一笑。長期還會(huì)融洽師生關(guān)系,得到學(xué)生的喜愛。
對(duì)一個(gè)老師來說,不管你的課堂多么生動(dòng)活潑,這只是形式,核心還是在知識(shí)點(diǎn)夠不夠精簡好記,重點(diǎn)難點(diǎn)學(xué)生是很輕松地懂了,還是說模模糊糊腦袋都懵了,這全在于老師在備課和上課上下的功夫,在于老師自己想透了沒,找到合適的講授或類比方法沒。突破完全在一瞬間一個(gè)簡單的道理,千萬不要把師生都繞進(jìn)去。
每章結(jié)束后,我會(huì)和學(xué)生一起在書皮上把本章核心知識(shí)點(diǎn)簡潔總結(jié),方便翻看。不重要的`不需要記憶,我會(huì)直接告訴學(xué)生。
最后,把一本課本和高考強(qiáng)調(diào)的核心知識(shí)點(diǎn)總結(jié)成好記的數(shù)字:比如必修1是7。比如必修2是71221k。
函數(shù)的概念說課稿篇十五
函數(shù)作為數(shù)學(xué)中的重要概念,在我們學(xué)習(xí)數(shù)學(xué)的過程中扮演著重要的角色。它不僅在數(shù)學(xué)理論中起到了橋梁的作用,還在實(shí)際問題的解決中發(fā)揮了重要的作用。而在我對(duì)函數(shù)的學(xué)習(xí)過程中,我深深地感受到了函數(shù)的重要性,并從中有所收獲。下面我將分享我對(duì)函數(shù)的概念的心得體會(huì)。
在學(xué)習(xí)過程中,我逐漸理解了函數(shù)的概念。函數(shù)本質(zhì)上是一種特殊的關(guān)系:對(duì)于給定的輸入,總會(huì)有唯一的輸出。我們可以將函數(shù)看作是一個(gè)黑盒子,它接收輸入,進(jìn)行特定的操作,并給出輸出。通過這種機(jī)制,我們就能夠?qū)?fù)雜的問題化簡成簡單的部分,并對(duì)每個(gè)部分進(jìn)行研究。這種思維方式使得解決問題變得更加簡單明了。
第三段:函數(shù)在數(shù)學(xué)理論中的應(yīng)用。
函數(shù)的概念在數(shù)學(xué)理論中起到了重要的作用。函數(shù)是整個(gè)數(shù)學(xué)體系中的一個(gè)基礎(chǔ)概念,它是一切數(shù)學(xué)理論的基石。從數(shù)學(xué)的角度來看,我們可以利用函數(shù)來研究各種數(shù)學(xué)問題,如數(shù)列、極限、微積分等。函數(shù)讓我們能夠更好地理解和掌握數(shù)學(xué)知識(shí),并通過函數(shù)的特性和性質(zhì)來解決具體的數(shù)學(xué)問題。經(jīng)過學(xué)習(xí),我發(fā)現(xiàn)函數(shù)的概念是學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,只有完全掌握了函數(shù)的概念,才能在數(shù)學(xué)理論和實(shí)際問題中取得更好的成績。
第四段:函數(shù)在實(shí)際問題中的應(yīng)用。
函數(shù)的概念不僅僅局限于數(shù)學(xué)理論,它在實(shí)際問題的解決中也發(fā)揮了重要的作用。無論是自然科學(xué)還是社會(huì)科學(xué),都需要使用函數(shù)來描述和解釋現(xiàn)象和問題。例如,物理學(xué)中的運(yùn)動(dòng)問題、經(jīng)濟(jì)學(xué)中的供求關(guān)系、生物學(xué)中的生物生長等都可以通過函數(shù)來進(jìn)行建模和分析。函數(shù)的應(yīng)用使得我們能夠更好地理解和解決實(shí)際問題,從而提高我們的學(xué)習(xí)和研究水平。
第五段:結(jié)尾。
總結(jié)起來,函數(shù)的概念對(duì)于我們的學(xué)習(xí)和思維方式都有著重要的影響。通過對(duì)函數(shù)的學(xué)習(xí),我不僅對(duì)數(shù)學(xué)理論有了更深入的理解,還學(xué)會(huì)了將復(fù)雜的問題進(jìn)行分解和處理。函數(shù)的應(yīng)用使得我們能夠更好地解釋和解決實(shí)際問題,提升我們的學(xué)習(xí)和研究水平。因此,我們應(yīng)該重視對(duì)函數(shù)概念的學(xué)習(xí),并不斷深化對(duì)函數(shù)的理解和應(yīng)用。只有這樣,我們才能在數(shù)學(xué)領(lǐng)域和實(shí)際問題的解決中取得更好的成績。
函數(shù)的概念說課稿篇十六
(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。
(2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)x在x和x時(shí),函數(shù)值變化情況的區(qū)分。
(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。
函數(shù)的概念說課稿篇十七
在高中數(shù)學(xué)中,函數(shù)概念的教學(xué)是我們教師的一個(gè)難題。聽了老師的講座,給我?guī)砹诵碌乃悸?,也為解決這個(gè)難題提供了很好的指導(dǎo)。
雖然對(duì)函數(shù)概念本質(zhì)理解并非一次就能實(shí)現(xiàn),它有一個(gè)循序漸進(jìn)、逐步完善,通過多角度多章節(jié)的學(xué)習(xí),學(xué)生才能有一個(gè)較完整的深刻理解。但我們?cè)趯W(xué)生剛接觸函數(shù)概念時(shí)就應(yīng)讓學(xué)成從多角度去思考,去理解。
第一,從初高中數(shù)學(xué)中對(duì)函數(shù)定義的比較中,讓學(xué)生能從初中的描述性概念把函數(shù)看成變量之間的依賴關(guān)系到高中用集合與對(duì)應(yīng)的語言定義函數(shù),從而達(dá)到函數(shù)概念的提升,從而更好地解決如y=3這樣的常數(shù)函數(shù)概念的解釋。
第二要用好課本,用課本教,而非教課本。充分利用好課本中函數(shù)概念的背景教學(xué),通過三個(gè)實(shí)例:炮彈發(fā)射;大氣層臭氧問題,恩格爾系數(shù)問題培養(yǎng)學(xué)生觀察問題提出問題的探究能力,培養(yǎng)學(xué)生抽象概括逐步學(xué)會(huì)數(shù)學(xué)表達(dá)和交流。
第三充分發(fā)揮函數(shù)圖像的集合直觀作用,加強(qiáng)數(shù)形結(jié)合思想。數(shù)形結(jié)合,幾何直觀的數(shù)學(xué)思想方法對(duì)學(xué)生理解函數(shù)概念以及性質(zhì)十分重要。通過讓學(xué)生作圖觀察圖像充分認(rèn)識(shí)函數(shù)概念的整體性。我覺得這種方法在高中階段是貫徹始終的。只有讓學(xué)生充分學(xué)好圖像認(rèn)識(shí)好圖像,能看懂圖像,能解釋圖像,那么對(duì)解決花束問題將起著十分重要的作用。
【本文地址:http://mlvmservice.com/zuowen/16885492.html】