2023年省賽數學建模論文一般要寫多少字(模板10篇)

格式:DOC 上傳日期:2023-12-01 09:38:09
2023年省賽數學建模論文一般要寫多少字(模板10篇)
時間:2023-12-01 09:38:09     小編:曼珠

每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯想、想象、思維和記憶的重要手段。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。

省賽數學建模論文一般要寫多少字篇一

為了培養(yǎng)小學生良好的數學學習興趣,激發(fā)他們的數學潛能,教師需要采取必要的措施注重數學建模思想的有效培養(yǎng),促進學生的全面發(fā)展。在制定相關培養(yǎng)策略的過程中,教師應充分考慮小學生的性格特點,提高數學建模思想培養(yǎng)的有效性?;诖?,文章將從不同的方面對小學生數學建模思想的培養(yǎng)策略進行初步的探討。

作為小學數學教學中的重要組成部分,數學建模思想的滲透及相關教學活動的順利開展,有利于提高復雜數學問題的處理效率,保持數學課堂教學的高效性。要實現這樣的發(fā)展目標,增強小學生數學建模思想的實際培養(yǎng)效果,需要加強對學生動手實踐能力的培養(yǎng),激發(fā)學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現數學建模思想的有效培養(yǎng),促使小學生能夠在數學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠對其中的知識點有更加正確而全面的認識,教師可以通過在黑板上設置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關系,為后續(xù)教學計劃的實施打下堅實的基礎。通過這種教學方法的合理運用,可以激發(fā)出學生們在數學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數學建模能力。

通過對小學階段各種數學實踐教學活動實際概況的深入分析,可知構建良好的數學模型有利于加深學生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數學建模教學活動的積極性。因此,為了使小學生數學建模思想培養(yǎng)能夠達到預期的效果,教師需要結合實際的教學內容,建立必要的數學參考模型,提升學生對數學建模思想的整體認知水平。比如,在講授“異分母分數加減法”這部分知識的過程中,可以設置“0.8千克+300克”“1.6千克-400克”等問題,向學生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結出“單位不同不能直接計算”的結論后,繼續(xù)向學生提問小數計算中為什么每一位都要對齊,實現“計數單位統(tǒng)一后才能計算”這一數學模型的構建。在這樣的教學過程中,學生可以加深對知識點的理解,實現數學建模思想的有效培養(yǎng)。

加強小學生數學建模思想的有效培養(yǎng),需要在具體的教學活動開展中注重對數學思想的靈活運用,增強相關模型構建的可靠性,促使學生在長期的數學學習中能夠不斷提高自身的數學能力,運用各種數學知識處理實際問題。比如,在“角的度量”這部分內容講解的過程中,為了提高學生對角的分類及畫角相關知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉后得到的圖形進行深入思考,提高自身數學建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內容有更多的了解。因此,教師應注重小學生數學建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學生的創(chuàng)新能力,優(yōu)化學生的思維方式,全面提升小學數學建模教學水平。

總之,加強小學生數學建模思想培養(yǎng)策略的制定與實施,有利于滿足素質教育的更高要求,實現對小學生數學能力的有效鍛煉,確保相關的教學計劃能夠在規(guī)定的時間內順利地完成。與此同時,結合當前小學數學教育教學的實際發(fā)展概況,可知靈活運用各種科學的數學建模思想培養(yǎng)策略,有利于滿足學生數學建模學習中的多樣化需求,為相關教學目標的順利實現提供可靠的保障。

[1]童小艷.小學數學教學中培養(yǎng)學生建模思想的策略[j].學子(教育新理念),20xx(6).

[2]白寧.先學而后教——小學生數學建模思想培養(yǎng)的捷徑[j].數學學習與研究,20xx(16).

省賽數學建模論文一般要寫多少字篇二

計算數學建模是用數學的思考方式,采用數學的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數學手段。數學建模所解決的問題不止現實的,還包括對未來的一種預見。數學建模可以說和我們的生活息息相關,尤其是如今科技發(fā)達的今天。數學建模應用領域超乎我們的想象,甚至達到無所不及的程度,隨著數學建模在大學教學中的廣泛使用,使數學建模不止成為一種學科,更重要的是指導新生代更好的利用現代科學技術,成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。

1.1數學建模引進大學數學教學的必要。教學過程,是教師根據社會發(fā)展要求和當代學生身心發(fā)展的特點,借助教學條件,指導學生通過認識教學內容從而認識客觀世界,并在此基礎之上發(fā)展自身的過程,即教學活動的展開過程。以往高工專的數學教學存在著知識單一,內容陳舊,脫離實際等缺陷,已經不能滿足時代的發(fā)展,如今的數學教學過程不是單純的傳授數學學科知識,而是通過數學教學過程引導學生認識科學,理解科學,從而指導實踐,促進學生的德智體美勞全面的進步和發(fā)展。因此數學建模成為一門學科,被各大高等院校廣泛引用和推廣,其實數學建模不止應用在大學數學教學中,其他一切教學過程多可引進數學建模。1.2數學建模在大學數學教學中的運用。大學數學教師通過這個數學建模過程來引導學生解決問題和指導實踐的能力。再次建模結果對現實生活的指導,這是大學數學教學中數學建模所需要達到的效果和要求。不再停留在理論學習,而是通過理論指導實踐,從而為科學的進步和人才綜合水平的提高提供可能。

2.1數學建模對數學學科和其他學科學生的巨大影響力學習數學建模,能夠使一個單獨的數學家變成經濟學家,物理學家還有金融學家,甚至是藝術家,只要正握數學建模就能指導學生通過掌握數學建模的思維和方法向其他領域學習和進步。數學建模成為連接數學和其他領域的紐帶,是當今數學科學在其他領導應用的橋梁,是數學技術轉化為其他技術的途徑,數學建模在學生中越來越受到關注和歡迎,越來越多的學生開始學習數學建模,尤其是數學界和工程界的學生,這成為當今學生成為現代科技工作者必須掌握的只是能力之一。

2.2數學建模對學生綜合能力的提高數學建模是大學數學教師運用數學科學去分析和解決實際問題,在數學建模學習的過程中,大學生的數學能力得到提高,其分析問題、解決問題的能力得到提高,這對大學生畢業(yè)走向社會具有著重大意義。通過數學建模的學習和應用,激發(fā)大學生學習數學和應用數學的能力,運用數學的思維和方法,利用現代計算機科學,來解決數學及其他領域的問題。

數學建模引入大學數學教學,這是時代的進步,是時代對當代大學教師提出的新要求,尤其是大學數學教師,其不再停留在以往的單純的數學知識講授方向,而是將數學科學作為基礎,引導當代大學生發(fā)散思維,發(fā)揮主觀能動性,從而學習數學科學,并運用數學科學解決現實問題。在這個過程中大學教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學數學教師不止完成數學教學,更重要的是培養(yǎng)了高科技的人才,這對大學數學教師的社會地位也有了相應的改變,在尊重人才,尊重科學的氛圍中,大學數學教師及其他學科的教師得到了鼓舞,得到了進步,得到了認可。數學建模越來越重要,關于數學建模的各種國內國際大賽頻頻舉辦,這對大學數學教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數學建模比賽,大學數學教師投入更多的時間和經歷在學生教育和數學建模中,他們成為真正的臺前和幕后的指揮者。

隨著現代大學學科的豐富,尤其是計算機科學的廣泛應用,大學數學教學的跨時代發(fā)展,數學建模成為各個高校數學教學的重點內容,數學建模教學吸納數學家,計算機學家等多個學科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準備??梢哉f數學建模教學是當今大學數學教學的主旋律,是數學科學和其他科學進步發(fā)展的方向和原動力。

[1]李進華.教育教學改革與教育創(chuàng)新探索.安徽:安徽大學出版社,20xx.8.

[2]于駿.現代數學思想方法.山東:石油大學出版社,1997.

省賽數學建模論文一般要寫多少字篇三

摘要:數學作為很多學科的計算工具,可以說是現代科學的基礎,要想利用數學來解決實際問題,首先要建立相應的數學模型,本文在數學建模思想概念和特點的基礎上,從計算機軟件、實際生活中的應用等方面,對其應用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗模型三個階段,對數學建模的方法,進行了深入的研究。

關鍵詞:數學建模;思想;應用;方法;分析

引言

隨著自然科學的發(fā)展,利用數學等思想來解決實際問題,越來越受到人們的重視,數學作為一門歷史悠久的自然科學,是在實際應用的基礎上發(fā)展起來,但是隨著理論研究的深入,現在數學理論已經非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現有的數學理論來解決實際問題,成為了很多專家和學者研究的問題。通過實際的調查發(fā)現,要想利用數學來解決實際問題,首先要建立相應的數學模型,將實際的問題轉化成數學符號的表達方式,這樣才能夠通過數學計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數學模型組成的,計算機軟件之所以能夠解決實際問題,就是根據實際應用的需要,建立了一個相應的數學模型,這樣才能夠讓計算機來解決。

1數學建模思想分析

1.1數學建模思想的概念

數學是一門歷史悠久的自然科學,在古時候,由于實際應用的需要,人們就已經開始使用數學來解決實際問題,但是受到當時技術條件的限制,數學理論的水平比較低,只是利用數學來進行計數等,隨著經濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學得到了極大的發(fā)展,對于利用自然科學來解決實際問題,也成為了人們研究的重點,在市場經濟的推動下,人們將這些理論知識轉化成為產品。計算機就是在這種背景下產生的,在數學理論的基礎上,將電路的通和不通兩種狀態(tài),與數學的二進制相結合,這樣就能夠讓計算機來處理實際問題,從本質上來說,這就是數學建模思想的范疇,但是在計算機出現的早期,數學建模的理論還沒有形成,隨著計算機軟件技術的發(fā)展,人們逐漸的意識到數學建模的重要性,發(fā)現利用數學建模思想,可以解決很多實際的問題,而數學建模的概念,就是將遇到的實際問題,利用特定的數學符號進行描述,這樣實際問題就轉化為數學問題,可以利用數學的計算方法來解決。

1.2數學建模思想的特點

如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學的發(fā)展,出現了很多具體的學科,利用這些不同的學科,可以解決不同的實際問題,而數學就是其中最重要的一門學科,而且是其他學科的基礎,如物理學科中,數學就是一個計算的工具,由此可以看出數學的重要性,進入到信息時代后,計算機得到了普及應用,無論是日常生活中還是工作中,計算機都有非常重要的應用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數學建模顯然更加科學,現在數學建模已經成為了一門獨立的學科,很多高校中都開設了這門課程,為了培養(yǎng)學生們利用數學解決實際問題的能力,我國每年都會舉辦全國性的數學建模大賽,采用開放式的參賽方式,對學生們的數學建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數學模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。

2數學建模思想的應用

2.1計算機軟件中數學建模思想的應用

通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數學模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數學建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數學來解決實際問題,而每個計算機軟件,都可以認為是一個數學模型,如在早期的計算機程序設計中,受到當時計算機技術水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數學模型,然后將這個模型轉化成相應的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應的參數后,就可以直接得到結果,不再需要人為的計算。

2.2數學建模思想直接解決實際問題

經過了多年的發(fā)展,現在數學建模自身已經非常完善,為了培養(yǎng)我國的數學建模人才,從1992年開始,每年我國都會舉辦一屆全國數學建模大賽,所有的高校學生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設置的也比較靈活,會有多個題目提供給隊員選擇,學生可以根據自己的實際情況,來選擇一個最適合自己的問題。而數學建模大賽舉辦的主要目的,就是讓學生們掌握如何利用數學理論,來解決實際問題,在學習數學知識的過程中,很多學生會認為,數學與實踐的距離很遠,學習的都是純理論的知識,學習的興趣很低,與一些實踐密切相關的學科相比,選擇數學專業(yè)的學生很少,而數學建模的出現,在很大程度上改善了這種情況,讓人們真正的了解數學,并利用數學來解決復雜的問題。受到特殊的歷史因素影響,我國自然科學發(fā)展的起步較晚,在建國后經歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數學建模等現代科學,研究的時間比較短,導致目前我國很少會利用數學建模來解決實際問題,相比之下,發(fā)達國家在很多領域中,經常會用到數學建模的知識,如在企業(yè)日常運營中,需要進行市場調研等工作,而對于這些調研工作的處理,在進行之前都會建立一個數學模型,然后按照這個建立的模型來處理。

2.3數學建模思想應用的發(fā)展

從本質上來說,數學是在實際應用的基礎上,逐漸形成的一門學科,但是受到當時技術水平的限制,雖然人們已經懂得去計算,卻并知道自己使用的是數學知識,隨著自然科學的發(fā)展,對數學的應用越來越多,而數學自身理論的發(fā)展速度很快,遠遠超過了實際應用的范圍,同時隨著其他學科的發(fā)展,數學變成了一種計算的工具,因此數學應用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現,對數學的應用達到了一個極限,人們在數學和物理的基礎上,制作出了能夠自動計算的機器,在計算機出現的早期,受到性能和體積上的限制,只能進行一些簡單的數學計算,還不能解決實際的問題,但是計算機語言和軟件技術的.發(fā)展,使其在很多領域得到了應用,在計算的基礎上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數學模型的過程,由此可以看出,數學建模思想應用的第二階段中,主要是以現代計算機等電子設備的方式,來解決實際的問題。

3數學建模思想應用的方法

3.1分析問題

數學模型的應用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉化成數學符號,如果能夠直接用數學語言來進行描述,那么就可以容易的建立相應的數學模型,但是通過實際的調查發(fā)現,隨著經濟和科技的發(fā)展,遇到的問題越來越復雜,其中很多都無法直接用數學語言來描述,這就增加了數學建模的難度。由此可以看出,分析問題作為數學建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數學模型,同時對數學模型的建立也具有非常重要的影響,通過實際的調查發(fā)現,能夠建立高效率的數學模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數學建模自身的發(fā)展,現在建立模型的過程中,對于一個實際的問題,經常需要建立多個模型,這樣通過多個數學模型協同來解決一個問題。

3.2數學模型的建立

在分析實際問題后,就要用數學符號來描述要解決的問題,這是建立數學模型的準備環(huán)節(jié),要想利用數學來解決實際問題,無論采用哪種方式,都要轉化成數學語言,然后才能夠通過計算的方式解決,而數學模型的過程,就是在描述完成后,建立相應的數學表達式,通常情況下,在分析問題時,都能夠發(fā)現某種內在的規(guī)律,這個規(guī)律是數學建模的基礎。如果無法找到這個規(guī)律,顯然就不能利用現有的一些數學定律,從而建立相應的表達式,最后解決相應的問題,由此可以看出,分析問題的內在規(guī)律,是影響數學建模的重要因素,而這個規(guī)律的發(fā)現,除了在現有的數學知識外,也可以結合其他學科的知識,尤其是現在遇到的問題越來越復雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現在復雜的問題,經常需要建立多個模型。因此現在數學建模的難度越來越大,從近些年全國數學建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現了一些歷史上的難題,而不同學生根據自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數學建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。

3.3數學模型的校驗

在數學模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數學模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經過校驗都能夠發(fā)現模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數學模型的每個部分進行驗證,通過輸入特定的數據,看得到的結果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗模型的準確外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數據后,能夠看到數學模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學、合理,由此可以看出,校驗工作對于數學模型的建立,具有非常重要的意義。

4結語

通過全文的分析可以知道,對于數學理論的應用,從很久之前就已經開始了,但是數學建模思想的出現,卻是隨著計算機技術的發(fā)展,逐漸形成的一門學科,電子計算機的出現,在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應的參數,就可以直接得到結果,這正是數學模型完成的任務,只是計算機的出現,省略了中間的計算過程,因此計算機軟件的方式,是數學建模思想最好的應用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應的程序。

省賽數學建模論文一般要寫多少字篇四

摘要:隨著現代社會的發(fā)展,數學的廣泛用途已經無需質疑,他深入到我們生活的方方面面?,F階段,數學建模已經成為應用數學知識解決日常問題的一個重要手段。本文通過簡述數學建模的方法與過程,以及應用數學建模解決實際經濟問題的應用,展現的了數學學習的重要意義,以及數學在經濟問題解決中的重要作用。

關鍵詞:數學;數學建模;經濟;應用

經濟現象具有多變性,隨著經濟社會的發(fā)展,國際間貿易往來的日趨緊密,日常經濟形勢受到的影響因素越來越復雜多變。而日常經濟生活中所遇到的經濟現象同樣存在著諸多的變化的影響因素。如何應對這些難以把控的變量,做好風險的預估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數學知識、應用數學建模為工具進行較為理性的計算,為經濟決策、企業(yè)規(guī)劃提供重要的幫助。

一、數學建模

數學建模,其實就是建立數學模型的簡稱,實際上數學建??梢苑Q之為解決問題的一種思考方法,借助數學工具應用已知的定理定義進行合理的運算,推導出一種理性的結果的過程。數學建模是可以聯系數學和外部世界的一個中介和橋梁,在工業(yè)設計、經濟領域、工程建設等各個方面,運用數學的語言和方法進行問題的求解和推導,實際上,都是一種數學建模的過程。數學建模的主要過程可以總結為如下的框圖形式:實際上,數學模型的最終建立是一個反復驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數學模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統(tǒng)計各種信息數據;2.模型假設:根據建模目的,結合實際對象的特性,對復雜問題進行簡化,提取主要因素,提煉精確的數學語言;3.模型建立:根據提煉的主要因素,選擇適當的數學工具,建立各個量(變量、常量)間的數學關系,化實際問題為數學語言;4.模型求解:對上述數學關系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結果與實際問題結合,綜合分析,找到模型的缺陷和不足,進行數學上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結果與實際情況相驗證,檢驗模型的合理性和適用性。

二、經濟問題數學模型的建立

經濟類問題因為其特有的特點,可以按照變量的性質分為兩類:概率型和確定型。概率型應用于處理具有隨機性情況的模型,可以解決類似風險評估、最優(yōu)產量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設,精確的對一種特定情況的結果做出判斷,如成本核算、損失評估等。對經濟問題的建模計算實際上是一個從經濟世界進入數學世界再回到經濟世界的過程。建立經濟數學模型,需要首先對實際經濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質的特征性的東西。將原始的復雜的經濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應用數學知識建立完整的數學經濟模型。

三、建模舉例

四、結語

綜上所述,我們可以看到,數學建模在經濟中的應用可以非常廣泛,對很多的決策和工作都可以提供參考和指導,如提高利潤、規(guī)避風險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們去努力的學習和思考。

省賽數學建模論文一般要寫多少字篇五

運籌學與數學建模2門課程聯系密切,在運籌學教學中,適當融入數學建模思想,能大幅度提高學生應用數學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環(huán)節(jié)的設計等方面進行了探索與實踐.教學實踐表明,將數學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.

數學建模;運籌學;教學實踐

省賽數學建模論文一般要寫多少字篇六

眾所周知,高等數學是所有自然學科的基礎,一個大學生要想在以后的工作、學習中大展宏圖,那么就一定少不了堅實的高等數學基礎。如何解決大學生在學習高等數學時碰到的問題?如何調動大學生學習高等數學的積極性?讓學生們了解高等數學的用途,真正愿意靜下心來好好學習高等數學,努力為以后的發(fā)展打好數學基礎。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實用有效的方法已經提出并且在逐步推廣,比如,問題驅動式的教學方法和基于pbl的教學方法等。筆者從所在學校的學生實際學習情況出發(fā),根據幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數學建模的思想調動大學生學習高等數學的積極性。該方法在筆者所教授的班級中已經實際應用過幾屆,學生普遍反映效果較好,任課老師也認為該方法確實能極大地調動學生的學習積極性。

提到高等數學,學生們的第一反應往往是:各種公式塞滿黑板,各種運算充斥腦海;定義、定理、推論一個連著一個;極限、連續(xù)、可導可積一個涵蓋另一個[1]。和高中數學相比,記憶的負擔輕了(實際上是知識點太多,記不住了),而對思維的要求卻提高了。對大學生來說,每一次的高數課,都是一次大腦的思維訓練,時刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內容就不知所云了。這樣的要求短時間可以達到,長久下去學生們會覺得很辛苦,很有壓力,會出現抱怨。筆者碰到過這樣的學生,剛開始時,興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應對。怪學生嗎?誠然學生有責任,但任課老師也該負很大的責任。作為高等數學的老師我們經常要面對學生提的這些問題:(1)我學的專業(yè)和高等數學相差甚遠,有可能這一輩子都不會用到高等數學的知識,那我學高等數學的目的何在?(2)老師您天天鼓吹高等數學的強大功能和廣泛用途,但是通過一學期的學習,我發(fā)現除了對付考試有用,真不知高等數學可以用在何處?這些問題不及時解決,時間長了一定會影響到大學生對高等數學的學習積極性,甚至有可能會產生厭學的情緒和氛圍。有些極端的學生,期末考試之后,一聽到自己高等數學考過了,立馬將高等數學的課本給撕了,可想而知高等數學對其造成的壓力有多大[2]。如何解決大學生在學習高等數學時碰到的問題?如何調動大學生學習高等數學的積極性?讓學生們了解高等數學的用途,真正愿意靜下心來好好學習高等數學,努力地為以后的發(fā)展打好數學基礎。筆者從所在學校的學生實際學習情況出發(fā),根據幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數學建模的思想調動大學生學習高等數學的積極性。

一、以實際問題反推解決問題時我們需要的高等數學知識

有這樣一個實際問題:報童每天清晨從報社購進報紙零售,晚上將沒賣掉的報紙退回給報社。假設報紙每份的購進價為b元,零售價為a元,退回價為c元,自然地有abc。這就是說,報童每售出一份報紙賺a-b元,每退回一份報紙賠b-c元,報童每天如果購進的報紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進的報紙?zhí)啵敲磿u不完,將要賠錢。請為報童規(guī)劃一下,他該如何確定每天購進的報紙份數,以獲得最大的收入[3]。

現在我們來反推該問題涉及到的高等數學的知識:首先,通過分析題目可知,問題解決的關鍵在于——如何確定每天的報紙需求量,注意每天的報紙需求量是隨機變化的?解決這個關鍵問題的知識我們早就掌握了,分別是數理統(tǒng)計中的頻率連續(xù)化、概率論中的概率密度與期望和高等數學中的定積分[4]。

二、利用高等數學的解決實際問題

f(r)[4]。如果求出了f(r),那么

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)

現在我們來求f(r),假定報童已經通過自己的經驗和其他渠道掌握了一年(365天)中每天報紙的售出份數,那么在他的銷售范圍內,每天報紙日需求量r的概率f(r)為:

f(r)=,r=(0,1,2,3,…)

其中k表示為賣出r份的天數。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)

通過上面的分析,可知實際問題歸結為,在p(r)和a,b,c已知時,求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)

令=0,得到=,又因為p(r)dr+p(r)dr=1,所以p(r)dr=.(4)

在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進的報紙份數,使報童每天獲得最大的收入。

三、利用現實問題,讓學生學會思考,給他們提供創(chuàng)造成就感的機會

通過上面碰到的實際問題,可以很容易地說服同學們靜下心來好好學習高等數學。因為通過實際問題的求解,學生們了解到了,要想解決一個實際問題(哪怕是很小的問題),也需要大量的高等數學知識的儲備;學生們也大概領略到了高等數學的用途與功能。這樣的教學方法簡單、直接,勝過老師課堂上反復的嘮叨與強調。有了這樣的一些實際問題,老師們就可以大膽地將數學建模思想引入高等數學的教學當中,讓學生們在解決實際問題中學會思考,掌握知識,提高能力。

通過訓練后,碰到實際問題,同學們會自然的想到我們的教學方法:(1)這些實際問題涉及到的高等數學知識?那些自己掌握了,那些還沒有弄明白,學要加強學習。(2)知識點找到后,如何建立起數學與實際問題求解之間的關系?也即如何建立數學模型。(3)除了老師給的題目,自己本專業(yè)中的實際問題,能否用高等數學的知識去解決?通過思考、分析、解決這些問題,學生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學習,自然而然其學習高等數學的積極性也會大大提高了。

省賽數學建模論文一般要寫多少字篇七

摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從小學數學教學過程中數學建模入手,對如何將數學建模運用到學生解題過程中進行了分析。

關鍵詞:小學數學;建模;運用

數學建模是指利用數學模型的形式去解決實際中遇到的問題,換句話說,就是利用數學思維、數學方法解決各種數學問題。數學建模是在新課程改革后出現的新概念,經過一段時間的觀察我們可以發(fā)現,數學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數學能力。這種方式能夠將復雜的數學問題利用簡單的方式找到解決方案,是提高小學數學課堂效率及課堂質量的有效手段。小學數學是小學學習中的重要課程之一,也是培養(yǎng)學生數學思維的重要階段??梢哉f,小學數學的學習是學生學習數學的關鍵,對今后的學習起到極大的影響。因此,對于小學數學教師來說,不斷的完善教學手段,提高數學課堂質量是教學工作中的重中之重。而數學建模就是為了解決數學在生活中的實際問題,能夠讓學生感受到數學本身的魅力,培養(yǎng)他們的數學思維,提高數學學習能力,從而讓小學數學教學質量也得到大幅度的提升。小學數學與數學建模之間有著密不可分的作用,兩者相互聯系、相互促進,如何有效的將數學建模運用在小學數學教學過程中,是每個小學數學教師都值得思考的問題。

一、培養(yǎng)學生數學建模意識

數學建模是為了解決數學中遇到的問題,數學本身特別是小學數學也是一門較貼近學生生活的學科。因此在數學學習中,教師要首先培養(yǎng)學生的數學學習意識,讓他們感受到數學與生活的緊密聯系,然后再引導學生用數學建模去解決遇到的問題。在這一過程中,數學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數學建模的方式,以達到培養(yǎng)他們的數學思維以及想象能力的目的。(二)在學生進行數學建模的過程中要利用多鼓勵的方式調動他們對數學學習的積極性,讓他們在數學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數學建模方法的熱情。

二、提高學生想象力,用數學建模簡化問題

對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數學學習中,如果能將想象力與數學學習結合在一起,一定會得到意想不到的效果。教師可以根據小學生這一特點,提高他們的想象力,然后再引導他們利用數學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的'數學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。

三、選擇合適的題目作為建模案例

在數學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數學建模的能力。

四、引導學生主動進行數學建模

在教師經過反復的教學后,學生都已經擁有了基本的數學建模知識,了解了數學建模過程,并且能夠在解題過程中簡單的使用數學建模。此時,教師在教學中就可以引導學生利用數學建模解決數學題目了。引導學生用數學建模方法解決數學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數學建模方法的探討,并在探討的過程中吸取他人的經驗,提高自己數學建模水平,同時這樣的方式能夠讓數學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數學建模的方法能夠有效的改變過去的傳統(tǒng)教學思路,增加學生對數學的學習興趣,提高數學解題能力。這種教學方法對于小學數學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數學課堂的教學效率和教學質量。

省賽數學建模論文一般要寫多少字篇八

摘要:數學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當地引導下才能更好地突出學生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數學建模課堂。

關鍵詞:數學建模;教師

一、新課的引入需要發(fā)揮教師的作用

教師在數學建模課堂上的引導作用首先體現在教師對新課的引入上。教師一段精彩的導入會點燃學生學習的熱情、激發(fā)學生的學習興趣、喚起學生的好奇心,能把學生的注意力迅速集中到要學的知識上來。這對提高教學質量、提高學生的學習效果起著不可估量的作用。同時,新課前的導入環(huán)節(jié)是對學生進行情感教育的最佳時刻。學生只有在教師的引導下才能夠體會到數學建模的價值、增強學好數學建模的信心。俗話說:“好的開始是成功的一半。”數學建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。

二、在教學任務的設計上需要發(fā)揮教師的作用

數學建模課堂一般應采用任務型教學模式,是讓學生通過自主探究、合作學習、交流展示的方式完成一系列學習任務來達到特定的教學目標和學習目標。學生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設計質量的高低。教師應通過設計一系列高質量的問題把復雜的數學建模問題分解成若干簡單問題來引導學生更好地發(fā)揮其主動性。學生也只有在這些問題的正確引導下才能突破難點并向著學習目標努力,有效防止學生思考、探究、交流的內容偏離學習目標等現象的出現。這些任務的制訂需要充分發(fā)揮教師的作用。

三、在新舊知識的聯系點上需要發(fā)揮教師的作用

建構主義強調新知識是在學生已有知識的基礎上通過學生自身有意義的建構獲得的。筆者認為,學生自主建構知識應在教師的科學引導下進行。尤其是對于數學建模這樣高難度的知識更是這樣。失去了教師的科學引導,學生易產生疲倦感,久而久之會喪失學習數學建模的興趣和信心。因此,在新舊知識聯系點上應發(fā)揮教師的作用。教師應在準確掌握教學目標、難點的基礎上,充分考慮學生的認知能力、習慣、思維方式,通過有針對性的具體問題喚起學生對舊知識的回憶,再通過啟發(fā)性問題引導學生去發(fā)現新知識,從而實現溫故知新的目的。在教師引領下學生自主建構知識可以使學生少走彎路,從而使學生更加高效地自主探究、掌握新知識。

四、在教學重點、難點上需要教師的引導

教學的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內容。在強調學生自主探究、小組合作學習的課堂教學模式中,數學建模教材的重點、難點學生往往把握不準、難以突破。這就需要教師科學引導學生主動去發(fā)現重點、突破難點。教師引導學生發(fā)現重點、突破難點并不是讓教師直接告訴學生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導讓學生自己找到重點、并通過學生自己的思考、討論解決疑難問題。學生在教師的引導下通過自己的努力、討論解決了疑難后,學生會非常興奮,從而會越來越喜歡數學建模課。相反,在沒有教師引導的數學建模課堂中,學生經常被困難嚇倒,從而對數學建模課產生畏懼感。由此可見,教師對學生的科學引導是學生學好數學建模必不可少的環(huán)節(jié)。在以學生為本、注重學生全面發(fā)展、提倡課堂中突出學生主體地位的背景下,教師的引導仍是數學建模課堂中不可缺失的要素。數學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當地引導下才能更好地突出學生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數學建模課堂。

省賽數學建模論文一般要寫多少字篇九

走美杯”是“走進美妙的數學花園”的簡稱。

“走進美妙的數學花園”中國青少年數學論壇是中國少年科學院創(chuàng)新素質教育的品牌活動。20xx年,由國際數學家大會組委會、中國數學會、中國教育學會、中國少年科學院成功舉辦了首屆“走進美妙的數學花園”中國少年數學論壇,至今已連續(xù)舉辦七屆,全國三十多個城市近三十萬人參與了此項活動,在全國青少年中產生了巨大的影響?!白哌M美妙的數學花園”中國青少年數學論壇活動是一項面對小學三年級至初中二年級學生的綜合性數學活動。通過“趣味數學解題技能展示”、“數學建模小論文答辯”、“數學益智游戲”、“團體對抗賽”等一系列內容豐富的活動提高廣大中小學生的數學建模意識和數學應用能力,培養(yǎng)他們一種正確的思想方法。著名數學家陳省身先生兩次為同學們親筆題詞“數學好玩”和“走進美妙的數學花園”,大大鼓舞了廣大青少年攀登數學高峰的熱情和信心,使同學們自覺地成為學習的主人,實現從“學數學”到“用數學”過程的轉變,從而進一步推動我國數學文化的傳播與普及。

“走美”活動已連續(xù)舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導員工作綱要(試行)》,向全國少年兒童推廣。

“走美”作為數學競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發(fā)展,近年來在重點中學選拔中引起了廣泛的關注。客觀地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。

1、活動對象

全國各地小學三年級至初中二年級學生

2、總成績計算

總成績=筆試成績x70%+數學小論文x30%

筆試獲獎率:

一等獎5%,二等獎10%,三等獎15%。

3、筆試時間

每年3月上、中旬。

報名截止時間:每年12月底。

走美杯比賽流程

1、全國組委會下發(fā)通知,各地組委會開始組織工作

2、學生到當地組委會報名,填寫《報名表》

3、各地組委會將報名學生名單全部匯總至全國組委會

4、全國“走進美妙的數學花園”趣味數學解題技能展示初賽(全國統(tǒng)一筆試)

5、學生撰寫數學建模小論文

6、全國組委會公布初賽獲獎名單并頒發(fā)獲獎證書

7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學數學交流活動。

8、各地按照組委會要求提交數學建模小論文

9、前各地組委會上報參加全國總論壇學生名單

10、全國總論壇和表彰活動

省賽數學建模論文一般要寫多少字篇十

摘要:本文以實際教學案例,具體的分析了數學建模思想在運籌學教學中的應用及所產生的應用價值,期望能夠為數學教學改革工作提供一定的幫助。

關鍵詞:數學建模思想;運籌學;應用;應用價值

運籌學是結合各種科學技術知識有系統(tǒng)性的教學方法,有效的解決實際問題,并且注重人力、物力、財力等有限資源的合理統(tǒng)籌安排,實現最有決策。近年來運籌學廣泛的應用于教學工作中,但是,在數學教學中,針對具體問題,構建數學模型仍是教學難點和重點?;诖?,本文對數學建模在運籌中的運用展開具體的分析,期望能夠產生一定的積極效用。

一、數學建模在運籌中的運用——教學內容

傳統(tǒng)的數學教學偏重理論知識的灌輸,且數學公式龐大、理論繁瑣、計算復雜,容易挫傷學生的學習興趣和積極性,因此,利用數學建模思想、運籌學,在教學內容上穿插一些能夠比較客觀的反映學生日常生活所關心的實際問題,如:企業(yè)產品加工問題、購買汽車問題、運輸問題、選課策略問題等,調動學生的學習興趣,使得學生從解決問題的角度出發(fā),認真的思考如何構建數學模型,找出相應的解決辦法。我們舉個例子:例1:針對選課策略問題,某所學校規(guī)定,該校運籌學專業(yè)的學生在畢業(yè)之前必須學習和掌握3門運籌學課程、2門數學課程以及2門計算機課程,該校關于這方面的課程編號、學分、選修課要求以及所屬類別進行了規(guī)定,如表1。根據表1,請同學思考,運籌學專業(yè)的學生畢業(yè)前最少可以學習哪些課程,而且如果希望課程少卻獲得的學分多,該如何選課。這是一個比較貼近學生生活,與學生密切相關的分配問題,我們可以建立0—1規(guī)劃的數學模型,解決上述的問題,而且考慮到學生希望課程少,卻獲得的學分高,我們可以引出目標規(guī)劃問題。另外,教師在講解多階段決策鍋中最優(yōu)化問題時,我們可以有效的引入與其相關(或者相類似)的“商人安全渡河問題”,如:3名商人各自附帶一個隨從,并且每一只小船職能容納2人,一旦隨從人數多余商人,便采取殺人取貨這樣的數學游戲,調動學生的學習興趣,讓學生體驗到利用數學建模思想、運籌學解決實際問題的樂趣,促進學生更加高效的學習運籌學知識和技能。

二、數學建模在運籌中的運用——教學方法

為了全面的提高教學水平,需要改變傳統(tǒng)影視交易理念下的灌輸教學方法,可以采取探究式教學,即:利用數學建模思想、運籌學技能,由淺入深、由直觀到抽象的傳授知識,促使學生真正意義上掌握數學知識和問題解決技能。我們舉個例子:例2:運籌學課程緒論的引用,在教學中可以引入一個生動形象的故事情節(jié),如:齊王和田忌賽馬,按同等次,兩人各種上、中、下三個等次的3匹馬,在比賽中,齊王的馬比田忌的馬勝一籌(三局兩勝),為了勝利,田忌采用了以下策略,田忌的上等馬與齊王的中等馬比賽、中等馬與齊王的下等馬比賽,下等馬與齊王的上等馬比賽,最終田忌以兩局勝利戰(zhàn)敗齊王,這充分的體現了田忌對運籌學的運用。齊王和田忌賽馬的故事,彰顯了數學建模思想、運籌學中的優(yōu)化思想,并且避免了直接灌輸運籌學知識給學生所帶來的困惑,能夠有效的激發(fā)學生的學習興趣,有利于全面的提升教學水平。另外,對運籌學的傳授,不應該局限于知識的傳播,更加需要注重知識的拓展與延伸,全面的培養(yǎng)學生的發(fā)散性思維,提高學生的創(chuàng)新意識和創(chuàng)新能力。如在運輸問題的運籌學講解中,教師可以現提出問題,讓學生根據已經學習和掌握的知識,自主的解決問題,與此同時,教師需要指導學生建立線性規(guī)劃模型,且采用單純形法進行求解,在此基礎上,鼓勵支持學生分析運輸問題存在的線性規(guī)劃特點,促使學生簡化計算過程,提高求解效率。總的來說,在實際教學中,教師應該以數學建模思想為指導,遵循啟發(fā)式原則,調動學生的學習興趣、拓展學生的學習思維,幫助學生融會貫通的掌握知識和技能,提高學生問題解決能力,從而提高教學質量。

三、結語

數學建模在運籌中的運用注重實踐性,在實際教學中,應當注重理論知識與實際問題的聯系,并且需要加強運籌學中的數學建模教學案例的引用,優(yōu)化教學內容和教學方法,進行深入的運籌學課程教學改革,鍛煉培養(yǎng)學生的運籌學思維能力以及實際問題的解決能力,從而推動教學水平的提升,促進學生身心健康發(fā)展。

【本文地址:http://mlvmservice.com/zuowen/16877364.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔