高一數(shù)學(xué)函數(shù)的教案范文(18篇)

格式:DOC 上傳日期:2023-11-26 20:39:13
高一數(shù)學(xué)函數(shù)的教案范文(18篇)
時(shí)間:2023-11-26 20:39:13     小編:GZ才子

教案的內(nèi)容應(yīng)該有足夠的教學(xué)資源和活動(dòng),以激發(fā)學(xué)生的學(xué)習(xí)興趣和提高學(xué)習(xí)效果。教案的編寫(xiě)要注重培養(yǎng)學(xué)生的自主學(xué)習(xí)和創(chuàng)造性思維能力。以下是一些經(jīng)驗(yàn)豐富的教師分享的教案示范,供大家學(xué)習(xí)和借鑒。

高一數(shù)學(xué)函數(shù)的教案篇一

1.知識(shí)技能:

2.過(guò)程與方法。

3.情感、態(tài)度與價(jià)值觀。

利用函數(shù)的性質(zhì)找出零點(diǎn)找到方程的根.二分法求方程的近似解。

學(xué)生自主學(xué)習(xí)、合作探究.。

復(fù)習(xí):

1.函數(shù)的零點(diǎn)的判定.

2.二分法求方程的近似解。

例1.偶函數(shù)在區(qū)間[0,a](a0)上是單調(diào)函數(shù),且f(0)=f(a)0,則方程在區(qū)間[-a,a]內(nèi)根的個(gè)數(shù)是()。

a.1b.2c.3d.0。

練習(xí):1:已知函數(shù),若實(shí)數(shù)是方程的解,且,則的值為()。

a.恒為正值b.等于c.恒為負(fù)值d.不大于。

2.已知函數(shù),則函數(shù)的零點(diǎn)是__________。

例2.用“二分法”求方程在區(qū)間內(nèi)的實(shí)根,取區(qū)間中點(diǎn)為,那么下一個(gè)有根的區(qū)間是。

練習(xí)2:

3.利用函數(shù)圖象判斷下列方程有沒(méi)有實(shí)數(shù)根,有幾個(gè)實(shí)數(shù)根:

4借助計(jì)算器,用二分法求出在區(qū)間內(nèi)的近似解(精確到)。

5.設(shè),用二分法求方程內(nèi)近似解的過(guò)程中得則方程的根落在區(qū)間()。

a.b.。

c.d.不能確定。

6直線與函數(shù)的圖象的交點(diǎn)個(gè)數(shù)為()。

a.個(gè)b.個(gè)c.個(gè)d.個(gè)。

7若方程有兩個(gè)實(shí)數(shù)解,則的取值范圍是()。

a.b.。

c.d.。

課后作業(yè):復(fù)習(xí)參考題四a組1?4題。

高一數(shù)學(xué)函數(shù)的教案篇二

知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。

過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。

情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操,通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。

難點(diǎn):函數(shù)奇偶性的判斷。

學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。

1、復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形的定義:

2、分別畫(huà)出函數(shù)f(x)=x3與g(x)=x2的圖象,并說(shuō)出圖象的對(duì)稱(chēng)性。

(1)對(duì)于函數(shù),其定義域關(guān)于原點(diǎn)對(duì)稱(chēng):

如果______________________________________,那么函數(shù)為偶函數(shù)。

(2)奇函數(shù)的圖象關(guān)于__________對(duì)稱(chēng),偶函數(shù)的圖象關(guān)于_________對(duì)稱(chēng)。

(3)奇函數(shù)在對(duì)稱(chēng)區(qū)間的增減性;偶函數(shù)在對(duì)稱(chēng)區(qū)間的增減性。

(1)f(x)=x4;(2)f(x)=x5;。

(3)f(x)=x+(4)f(x)=。

a2、二次函數(shù)()是偶函數(shù),則b=___________。

b3、已知,其中為常數(shù),若,則。

_______。

b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。

(a)軸對(duì)稱(chēng)(b)軸對(duì)稱(chēng)(c)原點(diǎn)對(duì)稱(chēng)(d)以上均不對(duì)。

b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。

c6、若函數(shù)是定義在r上的奇函數(shù),且當(dāng)時(shí),,那么當(dāng)。

時(shí),=_______。

d7、設(shè)是上的奇函數(shù),,當(dāng)時(shí),,則等于()。

(a)0.5(b)(c)1.5(d)。

d8、定義在上的奇函數(shù),則常數(shù)____,_____。

本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng)。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。

高一數(shù)學(xué)函數(shù)的教案篇三

講授新課前,做一份完美的教案,能夠更大程度的調(diào)動(dòng)學(xué)生在上課時(shí)的積極性,以下是白話文為大家整理的人教版高一數(shù)學(xué)《指數(shù)函數(shù)》教案,希望可以幫助到有需要的朋友。

1。使學(xué)生掌握的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫(huà)出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫(huà)出形如的圖象。

2。通過(guò)對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。通過(guò)對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。

(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見(jiàn)函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。

(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分。

(3)是學(xué)生完全陌生的一類(lèi)函數(shù),對(duì)于這樣的.函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類(lèi)函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是。

(2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類(lèi)討論,還關(guān)系到后面對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái)。

關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫(huà)圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。

1。理解的定義,初步掌握的圖象,性質(zhì)及其簡(jiǎn)單應(yīng)用。

2。通過(guò)的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。通過(guò)對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn)是理解的定義,把握?qǐng)D象和性質(zhì)。

難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。

投影儀。

啟發(fā)討論研究式。

一。引入新課。

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來(lái)研究一類(lèi)新的常見(jiàn)函數(shù)———————。

1。6。(板書(shū))。

這類(lèi)函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問(wèn)題:

由學(xué)生回答:與之間的關(guān)系式,可以表示為。

問(wèn)題2:有一根1米長(zhǎng)的繩子,第一次剪去繩長(zhǎng)一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長(zhǎng)度為米,試寫(xiě)出與之間的函數(shù)關(guān)系。

由學(xué)生回答:。

在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱(chēng)為。

一。的概念(板書(shū))。

1。定義:形如的函數(shù)稱(chēng)為。(板書(shū))。

教師在給出定義之后再對(duì)定義作幾點(diǎn)說(shuō)明。

2。幾點(diǎn)說(shuō)明(板書(shū))。

(1)關(guān)于對(duì)的規(guī)定:

教師首先提出問(wèn)題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問(wèn)題分解為若會(huì)有什么問(wèn)題?如,此時(shí),等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。

若對(duì)于都無(wú)意義,若則無(wú)論取何值,它總是1,對(duì)它沒(méi)有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定且。

(2)關(guān)于的定義域(板書(shū))。

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無(wú)理數(shù)時(shí),也是一個(gè)確定的實(shí)數(shù),對(duì)于無(wú)理指數(shù)冪,學(xué)過(guò)的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)?。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。

(3)關(guān)于是否是的判斷(板書(shū))。

剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來(lái)認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是。

(1),?(2),?(3)。

(4),?(5)。

學(xué)生回答并說(shuō)明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)可以寫(xiě)成,也是指數(shù)圖象。

最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問(wèn)題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫(huà)出它的圖象,再細(xì)致歸納性質(zhì)。

3。歸納性質(zhì)。

作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。

函數(shù)。

1。定義域:

2。值域:

3。奇偶性:既不是奇函數(shù)也不是偶函數(shù)。

4。截距:在軸上沒(méi)有,在軸上為1。

對(duì)于性質(zhì)1和2可以兩條合在一起說(shuō),并追問(wèn)起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫(huà)圖的依據(jù)。(圖象位于軸上方,且與軸不相交。)。

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱(chēng)性,故的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。

此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線。

二。圖象與性質(zhì)(板書(shū))。

1。圖象的畫(huà)法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。

2。草圖:

當(dāng)畫(huà)完第一個(gè)圖象之后,可問(wèn)學(xué)生是否需要再畫(huà)第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫(huà)第二個(gè),不妨取為例。

此時(shí)畫(huà)它的圖象的方法應(yīng)讓學(xué)生來(lái)選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡(jiǎn)單。即=與圖象之間關(guān)于軸對(duì)稱(chēng),而此時(shí)的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱(chēng),教師借助計(jì)算機(jī)畫(huà)圖,在同一坐標(biāo)系下得到的圖象。

最后問(wèn)學(xué)生是否需要再畫(huà)。(可能有兩種可能性,若學(xué)生認(rèn)為無(wú)需再畫(huà),則追問(wèn)其原因并要求其說(shuō)出性質(zhì),若認(rèn)為還需畫(huà),則教師可利用計(jì)算機(jī)再畫(huà)出如的圖象一起比較,再找共性)。

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:

以上內(nèi)容學(xué)生說(shuō)不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。

填好后,讓學(xué)生仿照此例再列一個(gè)的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來(lái)分類(lèi),整理函數(shù)的性質(zhì)。

3。性質(zhì)。

(1)無(wú)論為何值,都有定義域?yàn)?,值域?yàn)?,都過(guò)點(diǎn)。

(2)時(shí),在定義域內(nèi)為增函數(shù),時(shí),為減函數(shù)。

(3)時(shí),,???時(shí),。

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。

三。簡(jiǎn)單應(yīng)用??(板書(shū))。

1。利用單調(diào)性比大小。?(板書(shū))。

一類(lèi)函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡(jiǎn)單的問(wèn)題。首先我們來(lái)看下面的問(wèn)題。

例1。比較下列各組數(shù)的大小。

(1)與;?(2)與;。

(3)與1。(板書(shū))。

首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問(wèn)根據(jù)這個(gè)特點(diǎn),用什么方法來(lái)比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過(guò)程。

解:在上是增函數(shù),且。

(板書(shū))。

教師最后再?gòu)?qiáng)調(diào)過(guò)程必須寫(xiě)清三句話:

(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。

(2)自變量的大小比較。

(3)函數(shù)值的大小比較。

后兩個(gè)題的過(guò)程略。要求學(xué)生仿照第(1)題敘述過(guò)程。

例2。比較下列各組數(shù)的大小。

(1)與;?(2)與?;。

(3)與。(板書(shū))。

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來(lái)說(shuō)可以寫(xiě)成,這樣就可以轉(zhuǎn)化成同底的問(wèn)題,再用例1的方法解決,對(duì)(2)來(lái)說(shuō)可以寫(xiě)成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來(lái)起橋梁作用)。

最后由學(xué)生說(shuō)出1,1,。

解決后由教師小結(jié)比較大小的方法。

(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。

(2)搭橋比較法:用特殊的數(shù)1或0。

三。鞏固練習(xí)。

練習(xí):比較下列各組數(shù)的大?。ò鍟?shū))。

(1)與???(2)與;。

(3)與;(4)與。解答過(guò)程略。

四。小結(jié)。

1。的概念。

2。的圖象和性質(zhì)。

3。簡(jiǎn)單應(yīng)用。

五。板書(shū)設(shè)計(jì)。

高一數(shù)學(xué)函數(shù)的教案篇四

本節(jié)課是選自人教版《高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)》a版必修1第三章第一節(jié)。函數(shù)是中學(xué)數(shù)學(xué)的核心概念,核心的根本原因之一在于函數(shù)與其他知識(shí)具有廣泛的聯(lián)系性,而函數(shù)的零點(diǎn)就是其中的一個(gè)鏈結(jié)點(diǎn),它從不同的角度,將數(shù)與形,函數(shù)與方程有機(jī)的聯(lián)系在一起。

本節(jié)是函數(shù)應(yīng)用的第一課,學(xué)生在系統(tǒng)地掌握了函數(shù)的概念及性質(zhì),基本初等函數(shù)知識(shí)后,學(xué)習(xí)方程的根與函數(shù)零點(diǎn)之間的關(guān)系,并結(jié)合函數(shù)的圖象和性質(zhì)來(lái)判斷方程的根的存在性及根的個(gè)數(shù),從而掌握函數(shù)在某個(gè)去件上存在零點(diǎn)的判定方法。為下節(jié)“二分法求方程的近似解”和后續(xù)學(xué)習(xí)的算法提供了基礎(chǔ).因此本節(jié)內(nèi)容具有承前啟后的作用,地位重要。

對(duì)函數(shù)與方程的關(guān)系有一個(gè)逐步認(rèn)識(shí)的過(guò)程,教材遵循了由淺入深、循序漸進(jìn)的原則.從學(xué)生認(rèn)為較簡(jiǎn)單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點(diǎn)的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。

根據(jù)本課教學(xué)內(nèi)容的特點(diǎn)以及新課標(biāo)對(duì)本節(jié)課的教學(xué)要求,考慮學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,我制定以下教學(xué)目標(biāo):

(一)認(rèn)知目標(biāo):

2.理解零點(diǎn)存在條件,并能確定具體函數(shù)存在零點(diǎn)的區(qū)間.。

(二)能力目標(biāo):

培養(yǎng)學(xué)生自主發(fā)現(xiàn)、探究實(shí)踐的能力.。

(三)情感目標(biāo):

在函數(shù)與方程的聯(lián)系中體驗(yàn)數(shù)學(xué)轉(zhuǎn)化思想的意義和價(jià)值。

本著新課程標(biāo)準(zhǔn)的教學(xué)理念,針對(duì)教學(xué)內(nèi)容的特點(diǎn),我確立了如下的教學(xué)重點(diǎn)、難點(diǎn):

教學(xué)重點(diǎn):體會(huì)函數(shù)的零點(diǎn)與方程的根之間的聯(lián)系,掌握零點(diǎn)存在的判定條件及應(yīng)用.。

教學(xué)難點(diǎn):探究發(fā)現(xiàn)函數(shù)零點(diǎn)的存在性。

1.通過(guò)前面的學(xué)習(xí),學(xué)生已經(jīng)了解一些基本初等函數(shù)的模型,掌握了函數(shù)圖象的一般畫(huà)法,及一定的看圖識(shí)圖能力,這為本節(jié)課利用函數(shù)圖象,判斷方程根的存在性提供了一定的知識(shí)基礎(chǔ)。對(duì)于函數(shù)零點(diǎn)的概念本質(zhì)的理解,學(xué)生缺乏的是函數(shù)的觀點(diǎn),或是函數(shù)應(yīng)用的意識(shí),造成對(duì)函數(shù)與方程之間的聯(lián)系缺乏了解。

(一)創(chuàng)設(shè)情景,提出問(wèn)題。

由簡(jiǎn)單到復(fù)雜,使學(xué)生認(rèn)識(shí)到有些復(fù)雜的方程用以前的解題方法求解很不方便,需要尋求新的解決方法,讓學(xué)生帶著問(wèn)題學(xué)習(xí),激發(fā)學(xué)生的求知欲.以學(xué)生熟悉二次函數(shù)圖象和二次方程為平臺(tái),觀察方程和函數(shù)形式上的聯(lián)系,從而得到方程實(shí)數(shù)根與函數(shù)圖象之間的關(guān)系。培養(yǎng)學(xué)生的歸納能力。理解零點(diǎn)是連接函數(shù)與方程的結(jié)點(diǎn)。

(二)啟發(fā)引導(dǎo),形成概念。

利用辨析練習(xí),來(lái)加深學(xué)生對(duì)概念的理解.目的要學(xué)生明確零點(diǎn)是一個(gè)實(shí)數(shù),不是一個(gè)點(diǎn)。

引導(dǎo)學(xué)生得出三個(gè)重要的等價(jià)關(guān)系,體現(xiàn)了“化歸”和“數(shù)形結(jié)合”的數(shù)學(xué)思想,這也是解題的關(guān)鍵。

(三)初步運(yùn)用,示例練習(xí)。

鞏固函數(shù)零點(diǎn)的求法,滲透二次函數(shù)以外的函數(shù)零點(diǎn)情況.進(jìn)一步體會(huì)方程與函數(shù)的關(guān)系。

(四)討論探究,揭示定理。

通過(guò)小組討論完成探究,教師恰當(dāng)輔導(dǎo),引導(dǎo)學(xué)生大膽猜想出函數(shù)零點(diǎn)存在性的判定方法。這樣設(shè)計(jì)既符合學(xué)生的認(rèn)知特點(diǎn),也讓學(xué)生經(jīng)歷從特殊到一般過(guò)程。函數(shù)零點(diǎn)的存在性判定定理,其目的就是通過(guò)找函數(shù)的零點(diǎn)來(lái)研究方程的根,進(jìn)一步突出函數(shù)思想的應(yīng)用,也為二分法求方程的近似解作好知識(shí)上和思想上的準(zhǔn)備。

(四)討論辨析,形成概念。

引導(dǎo)學(xué)生理解函數(shù)零點(diǎn)存在定理,分析其中各條件的作用,并通過(guò)特殊圖象來(lái)幫助學(xué)生理解,將抽象的問(wèn)題轉(zhuǎn)化為直觀形象的圖形,更利于學(xué)生理解定理的本質(zhì).定理不需證明,關(guān)鍵在于讓學(xué)生通過(guò)感知體驗(yàn)并加以確認(rèn),有些需要結(jié)合具體的實(shí)例,加強(qiáng)對(duì)定理進(jìn)行全面的認(rèn)識(shí),比如定理應(yīng)用的局限性,即定理的前提是函數(shù)的圖象必須是連續(xù)的,定理只能判定函數(shù)的“變號(hào)”零點(diǎn);定理結(jié)論中零點(diǎn)存在但不一定唯一,需要結(jié)合函數(shù)的圖象和性質(zhì)作進(jìn)一步的判斷。定理的逆命題不成立。

(五)觀察感知,例題學(xué)習(xí)。

引導(dǎo)學(xué)生思考如何應(yīng)用定理來(lái)解決相關(guān)的具體問(wèn)題,接著讓學(xué)生利用計(jì)算器完成對(duì)應(yīng)值表,然后利用函數(shù)單調(diào)性判斷零點(diǎn)的個(gè)數(shù),并借助函數(shù)圖象對(duì)整個(gè)解題思路有一個(gè)直觀的認(rèn)識(shí)。

(六)知識(shí)應(yīng)用,嘗試練習(xí)。

對(duì)新知識(shí)的理解需要一個(gè)不斷深化完善的過(guò)程,通過(guò)練習(xí),進(jìn)行數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,同時(shí)反映教學(xué)效果,便于教師進(jìn)行查漏補(bǔ)缺。

(七)課后作業(yè),自主學(xué)習(xí)。

鞏固學(xué)生所學(xué)的新知識(shí),將學(xué)生的思維向外延伸,激發(fā)學(xué)生的發(fā)散思維。

高一數(shù)學(xué)函數(shù)的教案篇五

【知識(shí)目標(biāo)】:使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,學(xué)會(huì)利用函數(shù)圖像理解和研究函數(shù)的性質(zhì),初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.

【能力目標(biāo)】通過(guò)對(duì)函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語(yǔ)言表達(dá)能力;通過(guò)對(duì)函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.

【教學(xué)難點(diǎn)】歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性.由于判斷或證明函數(shù)的單調(diào)性,常常要綜合運(yùn)用一些知識(shí)(如不等式、因式分解、配方及數(shù)形結(jié)合的思想方法等)所以判斷或證明函數(shù)的單調(diào)性是本節(jié)課的難點(diǎn).

【教材分析】函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它把自變量的變化方向和函數(shù)值的變化方向定性的聯(lián)系在一起,所以本節(jié)課在教材中的作用如下(1)函數(shù)的單調(diào)性起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決函數(shù)的某些問(wèn)題中得到了充分運(yùn)用,函數(shù)的單調(diào)性與前一節(jié)內(nèi)容函數(shù)的概念和圖像知識(shí)的延續(xù)有密切的聯(lián)系;函數(shù)的單調(diào)性一節(jié)中的知識(shí)是它和后面的函數(shù)奇偶性,合稱(chēng)為函數(shù)的簡(jiǎn)單性質(zhì),是今后研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ)。

(2)函數(shù)的單調(diào)性是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,這節(jié)課通過(guò)對(duì)具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個(gè)區(qū)間上是增函數(shù)或減函數(shù)的準(zhǔn)確定義,明確指出函數(shù)的增減性是相對(duì)于某個(gè)區(qū)間來(lái)說(shuō)的。教材中判斷函數(shù)的增減性,既有從圖像上進(jìn)行觀察的直觀方法,又有根據(jù)其定義進(jìn)行邏輯推理的嚴(yán)格證明方法,最后將兩種方法統(tǒng)一起來(lái),形成根據(jù)觀察圖像得出猜想結(jié)論,進(jìn)而用推理證明猜想的體系。同時(shí)還要綜合利用前面的知識(shí)解決函數(shù)單調(diào)性的一些問(wèn)題,有利于學(xué)生數(shù)學(xué)能力的提高。

(3)函數(shù)的單調(diào)性有著廣泛的實(shí)際應(yīng)用。在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問(wèn)題中均需用到函數(shù)的單調(diào)性;同時(shí)在這一節(jié)中利用函數(shù)圖象來(lái)研究函數(shù)性質(zhì)的'數(shù)形結(jié)合思想將貫穿于我們整個(gè)數(shù)學(xué)教學(xué)。因此“函數(shù)的單調(diào)性”在中學(xué)數(shù)學(xué)內(nèi)容里占有十分重要的地位。它體現(xiàn)了函數(shù)的變化趨勢(shì)和變化特點(diǎn),在利用函數(shù)觀點(diǎn)解決問(wèn)題中起著十分重要的作用,為培養(yǎng)創(chuàng)新意識(shí)和實(shí)踐能力提供了重要方式和途徑。

【學(xué)情分析】從學(xué)生的知識(shí)上看,學(xué)生已經(jīng)學(xué)過(guò)一次函數(shù),二次函數(shù),反比例函數(shù)等簡(jiǎn)單函數(shù),函數(shù)的概念及函數(shù)的表示,能畫(huà)出一些簡(jiǎn)單函數(shù)的圖像,從圖像的直觀變化,學(xué)生能粗略的得到函數(shù)增減性的定義,所以引入函數(shù)的單調(diào)性的定義應(yīng)該是順理成章的。從學(xué)生現(xiàn)有的學(xué)習(xí)能力看,通過(guò)初中對(duì)函數(shù)的認(rèn)識(shí)與實(shí)驗(yàn),學(xué)生已具備了一定的觀察事物的能力,積累了一些研究問(wèn)題的經(jīng)驗(yàn),在一定程度上具備了抽象、概括的能力和語(yǔ)言轉(zhuǎn)換能力。從學(xué)生的心理學(xué)習(xí)心理上看,學(xué)生頭腦中雖有一些函數(shù)性質(zhì)的實(shí)物實(shí)例,但并沒(méi)有上升為“概念”的水平,如何“定性”“定量”地描述函數(shù)性質(zhì)是學(xué)生關(guān)注的問(wèn)題,也是學(xué)習(xí)的重點(diǎn)問(wèn)題。函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個(gè)性質(zhì),學(xué)生也容易產(chǎn)生共鳴,通過(guò)對(duì)比產(chǎn)生頓悟,渴望獲得這種學(xué)習(xí)的積極心向是學(xué)生學(xué)好本節(jié)課的情感基礎(chǔ)。但是如何運(yùn)用數(shù)學(xué)符號(hào)將自然語(yǔ)言的描述提升為形式化的定義,學(xué)生接受起來(lái)比較困難?在教學(xué)中要多引導(dǎo),讓學(xué)生真正的理解函數(shù)單調(diào)性的定義。

【教學(xué)方法】教師是教學(xué)的主體、學(xué)生是學(xué)習(xí)的主體,通過(guò)雙主體的教學(xué)模式方法:?jiǎn)l(fā)式教學(xué)法——以設(shè)問(wèn)和疑問(wèn)層層引導(dǎo),激發(fā)學(xué)生,啟發(fā)學(xué)生積極思考,逐步從常識(shí)走向科學(xué),將感性認(rèn)識(shí)提升到理性認(rèn)識(shí),培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。探究教學(xué)法——引導(dǎo)學(xué)生去疑;鼓勵(lì)學(xué)生去探;激勵(lì)學(xué)生去思,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。合作學(xué)習(xí)——通過(guò)組織小組討論達(dá)到探究、歸納的目的?!窘虒W(xué)手段】計(jì)算機(jī)、投影儀.

【教學(xué)過(guò)程】一、創(chuàng)設(shè)情境,引入課題(利用電腦展示)1.如圖為某市一天內(nèi)的氣溫變化圖:(1)觀察這個(gè)氣溫變化圖,說(shuō)出氣溫在這一天內(nèi)的變化情況.(2)怎樣用數(shù)學(xué)語(yǔ)言刻畫(huà)在這一天內(nèi)“隨著時(shí)間的增大,氣溫逐漸升高或下降”這一特征?引導(dǎo)學(xué)生識(shí)圖,捕捉信息,啟發(fā)學(xué)生思考.問(wèn)題:觀察圖形,能得到什么信息?預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及何時(shí)達(dá)到;(2)在某時(shí)刻的溫度;(3)某些時(shí)段溫度升高,某些時(shí)段溫度降低.在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,是很有幫助的.問(wèn)題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?預(yù)案:股票價(jià)格、水位變化、心電圖等等春蘭股份線性圖.水位變化圖歸納:用函數(shù)觀點(diǎn)看,其實(shí)就是隨著自變量的變化,函數(shù)值是變大還是變小.

〖設(shè)計(jì)意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對(duì)于自變量變化時(shí),函數(shù)值是變大還是變小,初中同學(xué)們就有了一定的認(rèn)識(shí),但是沒(méi)有嚴(yán)格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴(yán)格定義.1.借助圖象,直觀感知問(wèn)題1:分別作出函數(shù)的圖象,并且觀察自變量變化時(shí),函數(shù)值有什么變化規(guī)律?(學(xué)生自己動(dòng)手畫(huà),然后電腦顯示下圖)預(yù)案:生:函數(shù)在整個(gè)定義域內(nèi)y隨x的增大而增大;函數(shù)在整個(gè)定義域內(nèi)y隨x的增大而減小.師:函數(shù)的圖像變化規(guī)律生:在y軸的的左側(cè)y隨x的增大而減小.在y軸的的右側(cè)y隨x的增大而增大。師:我們學(xué)過(guò)區(qū)間的表示方法,如何用區(qū)間的概念來(lái)表述圖像的變化規(guī)律生:在上y隨x的增大而增大,在上y隨x的增大而減小.師:這樣表述就比較嚴(yán)密了,很好。由上面的討論可知,函數(shù)的單調(diào)性與自變量的范圍有關(guān),一個(gè)函數(shù)并不一定在整個(gè)正義域內(nèi)是單調(diào)函數(shù),但在定義城的某個(gè)子集上可以是單調(diào)函數(shù)。(3)函數(shù)的圖像變化規(guī)律如何。

生:(1)定義域中的減函數(shù)。(2)在上y隨x的增大而減小,在上y隨x的增大而減小.師:對(duì)于兩種答案,哪一種是正確的,為什么?學(xué)生分組討論。從定義域,圖像的角度考慮,也可以舉反例引導(dǎo)學(xué)生進(jìn)行分類(lèi)描述(增函數(shù)、減函數(shù)).并引導(dǎo)學(xué)生用區(qū)間明確描述函數(shù)的單調(diào)性從而讓學(xué)生明確函數(shù)的單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,是函數(shù)的局部性質(zhì).

問(wèn)題2:能不能根據(jù)自己的理解說(shuō)說(shuō)什么是增函數(shù)、減函數(shù)?預(yù)案:如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y也越來(lái)越大,我們說(shuō)函數(shù)在該區(qū)間上為增函數(shù);如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y越來(lái)越小,我們說(shuō)函數(shù)在該區(qū)間上為減函數(shù).教師指出:這種認(rèn)識(shí)是從圖象的角度得到的,是對(duì)函數(shù)單調(diào)性的直觀,描述性的認(rèn)識(shí).

〖設(shè)計(jì)意圖〗從圖象直觀感知函數(shù)單調(diào)性,完成對(duì)函數(shù)單調(diào)性的第一次認(rèn)識(shí).2.探究規(guī)律,理性認(rèn)識(shí)問(wèn)題1:下圖是函數(shù)的圖象,能說(shuō)出這個(gè)函數(shù)分別在哪個(gè)區(qū)間為增函數(shù)和減函數(shù)嗎?(電腦顯示,學(xué)生分組討論)學(xué)生的困難是難以確定分界點(diǎn)的確切位置.通過(guò)討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時(shí)不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究.

〖設(shè)計(jì)意圖〗使學(xué)生體會(huì)到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性.問(wèn)題2:如何從解析式的角度說(shuō)明在為增函數(shù)?預(yù)案:生:在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)?222,所以在為增函數(shù).生:僅僅兩個(gè)數(shù)的大小關(guān)系不能說(shuō)明函數(shù)y=x2在區(qū)間[0,+∞)上為單調(diào)遞增函數(shù),應(yīng)該舉出無(wú)數(shù)個(gè)。由于很多學(xué)生不能分清“無(wú)數(shù)”和“所有”的區(qū)別,所以許多學(xué)生對(duì)學(xué)生2的說(shuō)法表示贊同。

生:函數(shù))無(wú)數(shù)個(gè)如(2)中的實(shí)數(shù),顯然f(x)也隨x的增大而增大,是不是也可以說(shuō)函數(shù)在區(qū)間上是增函數(shù)?可這與圖象矛盾啊?師:“無(wú)數(shù)個(gè)”能不能代表“所有”呢?比如:2、3、4、5……有無(wú)數(shù)個(gè)自然數(shù)都比大,那我們能不能說(shuō)所有的自然數(shù)都比大呢?所以具體值取得再多,也不能代表所有的,思考如何體現(xiàn)區(qū)間上的所有值。引導(dǎo)學(xué)生利用字母表示數(shù)。生:任取且,因?yàn)?即,所以在為增函數(shù).舊教材的定義在這里就可以歸納出來(lái),但是人教b版新教材使用了自變量的增量和函數(shù)值的增量來(lái)表述,并為以后學(xué)習(xí)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性做準(zhǔn)備,所以需進(jìn)一步引導(dǎo)學(xué)生利用增量來(lái)定義函數(shù)的單調(diào)性。

(5)仿(4)且,由圖象可知,即給自變量一個(gè)增量,,函數(shù)值的增量所以在為增函數(shù)。對(duì)于學(xué)生錯(cuò)誤的回答,引導(dǎo)學(xué)生分別用圖形語(yǔ)言和文字語(yǔ)言進(jìn)行辨析,使學(xué)生認(rèn)識(shí)到問(wèn)題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個(gè)自變量進(jìn)一步尋求自變量的增量與函數(shù)值的增量之間的變化規(guī)律,判斷函數(shù)單調(diào)性。注意這里的“都有”是對(duì)應(yīng)于“任意”的。

〖設(shè)計(jì)意圖〗把對(duì)單調(diào)性的認(rèn)識(shí)由感性上升到理性認(rèn)識(shí)的高度,完成對(duì)概念的第二次認(rèn)識(shí).事實(shí)上也給出了證明單調(diào)性的方法,為證明單調(diào)性做好鋪墊.3.抽象思維,形成概念問(wèn)題:你能用準(zhǔn)確的數(shù)學(xué)符號(hào)語(yǔ)言表述出增函數(shù)的定義嗎?師生共同探究,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類(lèi)比得出減函數(shù)的定義.

(1)板書(shū)定義設(shè)函數(shù)的定義域?yàn)閍,區(qū)間ma,如果取區(qū)間m中的任意兩個(gè)值,當(dāng)改變量時(shí),都有,那么就稱(chēng)函數(shù)在區(qū)間m上是增函數(shù),如圖(1)當(dāng)改變量時(shí),都有,那么就稱(chēng)函數(shù)在區(qū)間m上是減函數(shù),如圖(2)。

高一數(shù)學(xué)函數(shù)的教案篇六

一部分為對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì);第二部分為對(duì)數(shù)函數(shù)的應(yīng)用。對(duì)數(shù)函數(shù)是在學(xué)習(xí)對(duì)數(shù)概念的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)函數(shù)的概念和性質(zhì),通過(guò)學(xué)習(xí)對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì),可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,并且為學(xué)習(xí)對(duì)數(shù)函數(shù)以及對(duì)數(shù)函數(shù)的應(yīng)用作好準(zhǔn)備。

在教學(xué)過(guò)程中,我類(lèi)比指數(shù)函數(shù)圖象和性質(zhì)的研究,研究了對(duì)數(shù)函數(shù)圖象和性質(zhì)。同學(xué)們課堂上能積極主動(dòng)參與獲得性質(zhì)的過(guò)程。我用了三節(jié)課就對(duì)數(shù)函數(shù)的圖象和性質(zhì),圖象和性質(zhì)的應(yīng)用進(jìn)行講解。但是從作業(yè)和課堂效果看來(lái)。同學(xué)們沒(méi)有指數(shù)函數(shù)的性質(zhì)和圖象掌握的好。特反思如下:

1、學(xué)生對(duì)對(duì)數(shù)函數(shù)概念的理解及對(duì)數(shù)的運(yùn)算不過(guò)關(guān)。學(xué)生在做這些運(yùn)算時(shí)有時(shí)不能靈活運(yùn)用公式例如換底公式,有時(shí)學(xué)生會(huì)想當(dāng)然地自己“發(fā)明”公式。導(dǎo)致部分題目出現(xiàn)運(yùn)算錯(cuò)誤或不會(huì)。

2、在利用對(duì)數(shù)函數(shù)的單調(diào)性比較兩個(gè)對(duì)數(shù)式的大小書(shū)寫(xiě)格式不規(guī)范,因此在解題的過(guò)程中就把真數(shù)和底數(shù)混亂了,這說(shuō)明同學(xué)們用函數(shù)的觀點(diǎn)解決問(wèn)題的思想方法還沒(méi)形成。

3、在解有關(guān)求定義域的問(wèn)題時(shí),學(xué)生不能很好的掌握底數(shù)a的取值范圍以及真數(shù)必修大于0.

4、同學(xué)們對(duì)對(duì)數(shù)與指數(shù)的互化不是很熟練。導(dǎo)致有關(guān)指數(shù)與對(duì)數(shù)互化題目出現(xiàn)錯(cuò)誤。尤其是解決有關(guān)對(duì)數(shù)和指數(shù)混合式子的有關(guān)計(jì)算時(shí)困難很大,問(wèn)題最多。還有在解決有關(guān)對(duì)數(shù)型函數(shù)定義域問(wèn)題時(shí),更不會(huì)用對(duì)數(shù)函數(shù)的單調(diào)性去解決。

高一數(shù)學(xué)函數(shù)的教案篇七

(1)掌握與()型的絕對(duì)值不等式的解法.

(2)掌握與()型的絕對(duì)值不等式的解法.

(3)通過(guò)用數(shù)軸來(lái)表示含絕對(duì)值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。

教學(xué)重點(diǎn):型的不等式的解法;。

教學(xué)難點(diǎn):利用絕對(duì)值的意義分析、解決問(wèn)題.

教學(xué)過(guò)程設(shè)計(jì)。

教師活動(dòng)。

學(xué)生活動(dòng)。

設(shè)計(jì)意圖。

一、導(dǎo)入新課。

【提問(wèn)】正數(shù)的絕對(duì)值什么?負(fù)數(shù)的絕對(duì)值是什么?零的絕對(duì)值是什么?舉例說(shuō)明?

【概括】。

?

口答。

二、新課。

【提問(wèn)】如何解絕對(duì)值方程?.。

【質(zhì)疑】?的解集有幾部分?為什么?也是它的解集?

【練習(xí)】解下列不等式:

(1)?;

(2)。

【設(shè)問(wèn)】如果在?中的?,也就是?怎樣解?

【點(diǎn)撥】可以把?看成一個(gè)整體,也就是把?看成?,按照?的解法來(lái)解.。

所以,原不等式的解集是。

【設(shè)問(wèn)】如果?中的?是?,也就是?怎樣解?

【點(diǎn)撥】可以把?看成一個(gè)整體,也就是把?看成?,按照?的解法來(lái)解.。

或?。

由?得。

由?得。

所以,原不等式的解集是。

口答.畫(huà)出數(shù)軸后在數(shù)軸上表示絕對(duì)值等于2的數(shù).。

畫(huà)出數(shù)軸,思考答案。

不等式?的解集表示為。

畫(huà)出數(shù)軸。

思考答案。

???不等式?的解集為。

或表示為?,或。

筆答。

(1)。

(2)?,或。

筆答。

筆答。

根據(jù)絕對(duì)值的意義自然引出絕對(duì)值方程?(?)的解法.。

由淺入深,循序漸進(jìn),在?()型絕對(duì)值方程的基礎(chǔ)上引出(?)型絕對(duì)值方程的解法.。

針對(duì)解?(?)絕對(duì)值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.。

落實(shí)會(huì)正確解出?與?(?)絕對(duì)值不等式。

高一數(shù)學(xué)函數(shù)的教案篇八

1、知識(shí)與技能:

(1)結(jié)合實(shí)例,了解正整數(shù)指數(shù)函數(shù)的概念.

(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進(jìn)一步研究其性質(zhì).

2、過(guò)程與方法:

(1)讓學(xué)生借助實(shí)例,了解正整數(shù)指數(shù)函數(shù),體會(huì)從具體到一般,從個(gè)別到整體的研究過(guò)程和研究方法.

(2)從圖像上觀察體會(huì)正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學(xué)習(xí)作好鋪墊.

3、情感.態(tài)度與價(jià)值觀:使學(xué)生通過(guò)學(xué)習(xí)正整數(shù)指數(shù)函數(shù)體會(huì)學(xué)習(xí)指數(shù)函數(shù)的重要意義,增強(qiáng)學(xué)習(xí)研究函數(shù)的積極性和自信心.

正整數(shù)指數(shù)函數(shù)的定義.教學(xué)難點(diǎn):正整數(shù)指數(shù)函數(shù)的解析式的確定.

:學(xué)生觀察、思考、探究.教學(xué)方法:探究交流,講練結(jié)合。

(一)新課導(dǎo)入。

[互動(dòng)過(guò)程1]:

(1)請(qǐng)你用列表表示1個(gè)細(xì)胞分裂次數(shù)分別。

為1,2,3,4,5,6,7,8時(shí),得到的細(xì)胞個(gè)數(shù);。

(2)請(qǐng)你用圖像表示1個(gè)細(xì)胞分裂的次數(shù)n()與得到的細(xì)。

胞個(gè)數(shù)y之間的關(guān)系;。

(3)請(qǐng)你寫(xiě)出得到的細(xì)胞個(gè)數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用。

科學(xué)計(jì)算器計(jì)算細(xì)胞分裂15次、20次得到的細(xì)胞個(gè)數(shù).

解:。

(1)利用正整數(shù)指數(shù)冪的運(yùn)算法則,可以算出1個(gè)細(xì)胞分裂1,2,3,。

4,5,6,7,8次后,得到的細(xì)胞個(gè)數(shù)。

分裂次數(shù)12345678。

細(xì)胞個(gè)數(shù)248163264128256。

(3)細(xì)胞個(gè)數(shù)與分裂次數(shù)之間的關(guān)系式為,用科學(xué)計(jì)算器算得,。

所以細(xì)胞分裂15次、20次得到的細(xì)胞個(gè)數(shù)分別為32768和1048576.

小結(jié):從本題中可以看出我們得到的細(xì)胞分裂個(gè)數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù).細(xì)胞個(gè)數(shù)與分裂次數(shù)之間的關(guān)系式為.細(xì)胞個(gè)數(shù)隨著分裂次數(shù)的增多而逐漸增多.

[互動(dòng)過(guò)程2]:?jiǎn)栴}2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關(guān)系式q=q00.9975t,其中q0是臭氧的初始量,t是時(shí)間(年),這里設(shè)q0=1.

(1)計(jì)算經(jīng)過(guò)20,40,60,80,100年,臭氧含量q;。

(2)用圖像表示每隔20年臭氧含量q的變化;。

(3)試分析隨著時(shí)間的增加,臭氧含量q是增加還是減少.

(2)用圖像表示每隔20年臭氧含量q的變化如圖所。

示,它的圖像是由一些孤立的點(diǎn)組成.

(3)通過(guò)計(jì)算和觀察圖形可以知道,隨著時(shí)間的增加,。

臭氧含量q在逐漸減少.

探究:從本題中得到的函數(shù)來(lái)看,自變量和函數(shù)值分別。

又是什么?此函數(shù)是什么類(lèi)型的函數(shù)?,臭氧含量q隨著。

時(shí)間的增加發(fā)生怎樣變化?你從哪里看出?

小結(jié):從本題中可以看出我們得到的臭氧含量q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù).臭氧含量q近似滿足關(guān)系式q=0.9975t,隨著時(shí)間的增加,臭氧含量q在逐漸減少.

正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù)叫作正整數(shù)指數(shù)函數(shù),其中是自變量,定義域是正整數(shù)集.

說(shuō)明:1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點(diǎn),這是因?yàn)楹瘮?shù)的定義域是正整數(shù)集.2.在研究增長(zhǎng)問(wèn)題、復(fù)利問(wèn)題、質(zhì)量濃度問(wèn)題中常見(jiàn)這類(lèi)函數(shù).

(二)、例題:某地現(xiàn)有森林面積為1000,每年增長(zhǎng)5%,經(jīng)過(guò)年,森林面積為.寫(xiě)出,間的函數(shù)關(guān)系式,并求出經(jīng)過(guò)5年,森林的面積.

分析:要得到,間的函數(shù)關(guān)系式,可以先一年一年的增長(zhǎng)變化,找出規(guī)律,再寫(xiě)出,間的函數(shù)關(guān)系式.

解:根據(jù)題意,經(jīng)過(guò)一年,森林面積為1000(1+5%);經(jīng)過(guò)兩年,森林面積為1000(1+5%)2;經(jīng)過(guò)三年,森林面積為1000(1+5%)3;所以與之間的函數(shù)關(guān)系式為,經(jīng)過(guò)5年,森林的面積為1000(1+5%)5=1276.28(hm2).

練習(xí):課本練習(xí)1,2。

解:一個(gè)月后他應(yīng)取回的錢(qián)數(shù)為y=20xx(1+2.38%),二個(gè)月后他應(yīng)取回的錢(qián)數(shù)為y=20xx(1+2.38%)2;,三個(gè)月后他應(yīng)取回的錢(qián)數(shù)為y=20xx(1+2.38%)3,,n個(gè)月后他應(yīng)取回的錢(qián)數(shù)為y=20xx(1+2.38%)n;所以n與y之間的關(guān)系為y=20xx(1+2.38%)n(nn+),一年后他全部取回,他能取回的錢(qián)數(shù)為y=20xx(1+2.38%)12.

(三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點(diǎn),這是因?yàn)楹瘮?shù)的定義域是正整數(shù)集.2.在研究增長(zhǎng)問(wèn)題、復(fù)利問(wèn)題、質(zhì)量濃度問(wèn)題中常見(jiàn)這類(lèi)函數(shù).

(四)、作業(yè):課本習(xí)題3-11,2,3。

高一數(shù)學(xué)函數(shù)的教案篇九

一、內(nèi)容與解析(一)內(nèi)容:基本初等函數(shù)習(xí)題課(一)。

(二)解析:對(duì)數(shù)函數(shù)的性質(zhì)的掌握,要先根據(jù)其圖像來(lái)分析與記憶,這樣更形像更直觀,這是學(xué)習(xí)圖像與性質(zhì)的基本方法,在此基礎(chǔ)上,我們要對(duì)對(duì)數(shù)函數(shù)的兩種情況的性質(zhì)做一個(gè)比較,使之更好的'掌握.

二、目標(biāo)及其解析:

(一)教學(xué)目標(biāo)。

(1)掌握指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的概念,會(huì)作指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的圖象,并能根據(jù)圖象說(shuō)出指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì),了解五個(gè)冪函數(shù)的圖象及性質(zhì)及其奇偶性.

(二)解析。

(1)基本初等函數(shù)的學(xué)習(xí)重要是學(xué)習(xí)其性質(zhì),要掌握好性質(zhì),從圖像上來(lái)理解與掌握是一個(gè)很有效的辦法.

(2)每類(lèi)基本初類(lèi)函數(shù)的性質(zhì)差別比較大,學(xué)習(xí)時(shí)要有一個(gè)有效的區(qū)分.

三、問(wèn)題診斷分析。

在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是不易區(qū)分各函數(shù)的圖像與性質(zhì),不容易抓住其各自的特點(diǎn)。

四、教學(xué)支持條件分析。

在本節(jié)課一次遞推的教學(xué)中,準(zhǔn)備使用p5。

高一數(shù)學(xué)函數(shù)的教案篇十

1、使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域。

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫(huà)出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì)。

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫(huà)出形如。

的圖象。

2、通過(guò)對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3、通過(guò)對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。

教材分析。

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見(jiàn)函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究。

時(shí),函數(shù)值變化情況的區(qū)分。

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類(lèi)函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從指數(shù)函數(shù)的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類(lèi)函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是。

的樣子,不能有一點(diǎn)差異,諸如。

(2)對(duì)底數(shù)。

的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類(lèi)討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái)。

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫(huà)圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。

高一數(shù)學(xué)函數(shù)的教案篇十一

理解函數(shù)的奇偶性及其幾何意義。

【過(guò)程與方法】。

利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來(lái)解決問(wèn)題。

【情感態(tài)度與價(jià)值觀】。

體會(huì)指數(shù)函數(shù)是一類(lèi)重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

【重點(diǎn)】。

【難點(diǎn)】。

(一)導(dǎo)入新課。

取一張紙,在其上畫(huà)出平面直角坐標(biāo)系,并在第一象限任畫(huà)一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問(wèn)題:

答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱(chēng);

(二)新課教學(xué)。

(1)偶函數(shù)(evenfunction)。

(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。

(2)奇函數(shù)(oddfunction)。

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng))。

2、具有奇偶性的函數(shù)的圖象的特征。

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

3、典型例題。

例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說(shuō)明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。

解:(略)。

總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng);

2確定f(-x)與f(x)的關(guān)系;

3作出相應(yīng)結(jié)論:

若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。

(三)鞏固提高。

1、教材p46習(xí)題1.3b組每1題。

解:(略)。

(教材p41思考題)。

規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

說(shuō)明:這也可以作為判斷函數(shù)奇偶性的依據(jù)。

(四)小結(jié)作業(yè)。

課本p46習(xí)題1.3(a組)第9、10題,b組第2題。

三、規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);

奇函數(shù)的`圖象關(guān)于原點(diǎn)對(duì)稱(chēng)。

高一數(shù)學(xué)函數(shù)的教案篇十二

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫(huà)出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì).

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫(huà)出形如。

的圖象.

2.通過(guò)對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.

3.通過(guò)對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題.

教學(xué)建議。

教材分析。

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見(jiàn)函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類(lèi)函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從指數(shù)函數(shù)的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類(lèi)函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是。

的樣子,不能有一點(diǎn)差異,諸如。

(2)對(duì)底數(shù)。

的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類(lèi)討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái).

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫(huà)圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.

高一數(shù)學(xué)函數(shù)的教案篇十三

一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

高一數(shù)學(xué)函數(shù)的教案篇十四

(3)能正確使用“區(qū)間”及相關(guān)符號(hào),能正確求解各類(lèi)的定義域.。

2.通過(guò)概念的學(xué)習(xí),使學(xué)生在符號(hào)表示,運(yùn)算等方面的能力有所提高.。

(1)對(duì)記號(hào)有正確的理解,準(zhǔn)確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;

(2)在求定義域中注意運(yùn)算的合理性與簡(jiǎn)潔性.。

3.通過(guò)定義由變量觀點(diǎn)向映射觀點(diǎn)的過(guò)渡,是學(xué)生能從發(fā)展的角度看待數(shù)學(xué)的學(xué)習(xí).。

1.教材分析。

(1)知識(shí)結(jié)構(gòu)。

(2)重點(diǎn)難點(diǎn)分析。

是的定義和符號(hào)的認(rèn)識(shí)與使用.。

2.教法建議。

高一數(shù)學(xué)函數(shù)的教案篇十五

數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類(lèi)比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱(chēng)思想發(fā)現(xiàn)任意角與終邊的對(duì)稱(chēng)關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.

(1).基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;。

(4).個(gè)性品質(zhì)目標(biāo):通過(guò)誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.

理解并掌握誘導(dǎo)公式.

正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式.

“授人以魚(yú)不如授之以魚(yú)”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析.

數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).

在本節(jié)課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類(lèi)比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂(lè)和成功的喜悅.

“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問(wèn)題.

在本節(jié)課的教學(xué)過(guò)程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問(wèn)題共同探討解決問(wèn)題簡(jiǎn)單應(yīng)用重現(xiàn)探索過(guò)程練習(xí)鞏固.讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識(shí)及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí).

1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;。

2.復(fù)習(xí)任意角的三角函數(shù)定義;。

3.問(wèn)題:由,你能否知道sin2100的值嗎?引如新課.

自信的鼓勵(lì)是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡(jiǎn)單易做的題加強(qiáng)了每個(gè)學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問(wèn)題的出現(xiàn),讓學(xué)生既有好像會(huì)做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會(huì)證明我能行,從而思考解決的辦法.

1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。

2100與sin300之間有什么關(guān)系.

由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.

高一數(shù)學(xué)函數(shù)的教案篇十六

1.使學(xué)生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.

2.通過(guò)反函數(shù)概念的學(xué)習(xí),培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的能力及抽象概括的能力.

3.通過(guò)反函數(shù)的學(xué)習(xí),幫助學(xué)生樹(shù)立辨證唯物主義的世界觀.

重點(diǎn)是反函數(shù)概念的形成與認(rèn)識(shí).

難點(diǎn)是掌握求反函數(shù)的方法.

投影儀。

自主學(xué)習(xí)與啟發(fā)結(jié)合法。

一.揭示課題。

今天我們將學(xué)習(xí)函數(shù)中一個(gè)重要的概念----反函數(shù).

(一)反函數(shù)的概念(板書(shū))。

二.講解新課。

教師首先提出這樣一個(gè)問(wèn)題:在函數(shù)中,如果把當(dāng)作因變量,把當(dāng)作自變量,能否構(gòu)成一個(gè)函數(shù)呢?(讓學(xué)生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在的允許取值范圍內(nèi)的任一值,按照法則都有唯一的與之相對(duì)應(yīng).(還可以讓學(xué)生畫(huà)出函數(shù)的圖象,從形的角度解釋“任一對(duì)唯一”)。

學(xué)生很快會(huì)意識(shí)到是的反函數(shù),教師可再引申為與是互為反函數(shù)的.然后利用問(wèn)題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請(qǐng)舉出例子.在教師啟發(fā)下學(xué)生可以舉出象這樣的函數(shù),若將當(dāng)自變量,當(dāng)作因變量,在允許取值范圍內(nèi)一個(gè)可能對(duì)兩個(gè)(可畫(huà)圖輔助說(shuō)明,當(dāng)時(shí),對(duì)應(yīng)),不能構(gòu)成函數(shù),說(shuō)明此函數(shù)沒(méi)有反函數(shù).

通過(guò)剛才的例子,了解了什么是反函數(shù),把對(duì)的反函數(shù)的研究過(guò)程一般化,概括起來(lái)就可以得到反函數(shù)的定義,但這個(gè)數(shù)學(xué)的抽象概括,要求比較高,因此我們一起閱讀書(shū)上相關(guān)的內(nèi)容.

1.反函數(shù)的定義:(板書(shū))(用投影儀打出反函數(shù)的定義)。

為了幫助學(xué)生理解,還可以把定義中的換成某個(gè)具體簡(jiǎn)單的函數(shù)如解釋每一步驟,如得,再判斷它是個(gè)函數(shù),最后改寫(xiě)為.給出定義后,再對(duì)概念作點(diǎn)深入研究.

2.對(duì)概念得理解(板書(shū))。

教師先提出問(wèn)題:反函數(shù)的“反”字應(yīng)當(dāng)是相對(duì)原來(lái)給出的函數(shù)而言,指的是兩者的關(guān)系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以與為例來(lái)說(shuō))。

學(xué)生很容易先想到對(duì)應(yīng)法則是“反”過(guò)來(lái)的,把與的位置換位了,教師再追問(wèn)它們的互換還會(huì)帶來(lái)什么變化?啟發(fā)學(xué)生找出另兩個(gè)要素之間的關(guān)系.最后得出結(jié)論:的定義域和值域分別由的值域和定義域決定的.再把結(jié)論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來(lái)函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經(jīng)確定了.簡(jiǎn)記為“三定”.

(1)“三定”(板書(shū))。

最后教師進(jìn)一步明確“反”實(shí)際體現(xiàn)為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.

(2)“三反”(板書(shū))。

此時(shí)教師可把問(wèn)題再次引向深入,提出:如果一個(gè)函數(shù)存在反函數(shù),應(yīng)怎樣求這個(gè)反函數(shù)呢?下面我給出兩個(gè)函數(shù),請(qǐng)同學(xué)們根據(jù)自己對(duì)概念的理解來(lái)求一下它們的反函數(shù).

例1.求的反函數(shù).(板書(shū))。

(由學(xué)生說(shuō)求解過(guò)程,有錯(cuò)或不規(guī)范之處,暫時(shí)不追究,待例2解完之后再一起講評(píng))。

解:由得,所求反函數(shù)為.(板書(shū))。

例2.求,的反函數(shù).(板書(shū))。

解:由得,又得,。

故所求反函數(shù)為.(板書(shū))。

求完后教師請(qǐng)同學(xué)們作評(píng)價(jià),學(xué)生之間可以討論,充分暴露表述中得問(wèn)題,讓學(xué)生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見(jiàn),指出例2中問(wèn)題,結(jié)果應(yīng)為,.

教師可先明知故問(wèn),與,有什么不同?讓學(xué)生明確指出兩個(gè)函數(shù)定義域分別是和,所以它們是不同的函數(shù).再追問(wèn)從何而來(lái)呢?讓學(xué)生能從三定和三反中找出理由,是從原來(lái)函數(shù)的值域而來(lái).

在此基礎(chǔ)上,教師最后明確要求,由于反函數(shù)的定義域必是原來(lái)函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來(lái)函數(shù)的值域.之后由學(xué)生調(diào)整剛才的求解過(guò)程.

解:由得,又得,。

又的值域是,。

故所求反函數(shù)為,.

(可能有的學(xué)生會(huì)提出例1中為什么不求原來(lái)函數(shù)的值域的問(wèn)題,此時(shí)不妨讓學(xué)生去具體算一算,會(huì)發(fā)現(xiàn)原來(lái)函數(shù)的值域域求出的函數(shù)解析式中所求定義域時(shí)一致的,所以使得最后結(jié)果沒(méi)有出錯(cuò).但教師必須指出結(jié)論得一致性只是偶然,而不是必然,因此為規(guī)范求解過(guò)程要求大家一定先求原來(lái)函數(shù)的值域,并且在最后所求結(jié)果上注明反函數(shù)的定義域,同時(shí)讓學(xué)生調(diào)整例的表述,將過(guò)程補(bǔ)充完整)。

最后讓學(xué)生一起概括求反函數(shù)的步驟.

3.求反函數(shù)的步驟(板書(shū))。

(1)反解:。

(2)互換。

(3)改寫(xiě):。

對(duì)以上環(huán)節(jié)教師可稍作解釋,然后提出再通過(guò)下面的練習(xí)來(lái)檢驗(yàn)是否真正理解了.

三.鞏固練習(xí)。

練習(xí):求下列函數(shù)的反函數(shù).

(1)(2).(由兩名學(xué)生上黑板寫(xiě))。

解答過(guò)程略.

教師可針對(duì)學(xué)生解答中出現(xiàn)的問(wèn)題,進(jìn)行講評(píng).(如正負(fù)的選取,值域的計(jì)算,符號(hào)的使用)。

四.小結(jié)。

1.對(duì)反函數(shù)概念的認(rèn)識(shí):。

2.求反函數(shù)的基本步驟:。

五.作業(yè)。

課本第68頁(yè)習(xí)題2.4第1題中4,6,8,第2題.

六.板書(shū)設(shè)計(jì)。

2.4反函數(shù)例1.練習(xí).

一.反函數(shù)的概念(1)(2)。

1.定義。

2.對(duì)概念的理解例2.

(1)三定(2)三反。

3.求反函數(shù)的步驟。

(1)反解(2)互換(3)改寫(xiě)。

高一數(shù)學(xué)函數(shù)的教案篇十七

教學(xué)目標(biāo):

知識(shí)與技能。

1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。

過(guò)程與方法。

1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感與價(jià)值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。

2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

教學(xué)重點(diǎn):

1、掌握函數(shù)概念。

2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

3、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

教學(xué)難點(diǎn):

1、理解函數(shù)的概念。

2、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

教學(xué)過(guò)程設(shè)計(jì):

一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課。

『師』:同學(xué)們,你們看下圖上面那個(gè)像車(chē)輪狀的物體是什么?

高一數(shù)學(xué)函數(shù)的教案篇十八

(二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會(huì)判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性、會(huì)確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問(wèn)題,理解它關(guān)鍵就是要學(xué)會(huì)轉(zhuǎn)換式子。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識(shí),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點(diǎn)是應(yīng)用定義證明函數(shù)在某個(gè)區(qū)間上的單調(diào)性,解決重點(diǎn)的關(guān)鍵是嚴(yán)格按過(guò)程進(jìn)行證明。

二、教學(xué)目標(biāo)及解析。

(一)教學(xué)目標(biāo):

掌握用定義證明函數(shù)單調(diào)性的步驟,會(huì)求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識(shí)解決問(wèn)題的能力。

(二)解析:

會(huì)證明就是指會(huì)利用三步曲證明函數(shù)的單調(diào)性;會(huì)求函數(shù)的單調(diào)區(qū)間就是指會(huì)利用函數(shù)的圖象寫(xiě)出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識(shí)解決問(wèn)題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問(wèn)題。

三、問(wèn)題診斷分析。

在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是如何才能準(zhǔn)確確定的符號(hào),產(chǎn)生這一問(wèn)題的原因是學(xué)生對(duì)代數(shù)式的恒等變換不熟練。要解決這一問(wèn)題,就是要根據(jù)學(xué)生的實(shí)際情況進(jìn)行知識(shí)補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí)。

在本節(jié)課的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂茫ǎ?,有利于()?/p>

【本文地址:http://mlvmservice.com/zuowen/15400799.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔