教案要體現(xiàn)多元化教學(xué)理念,兼顧不同學(xué)生的特點和需求。教案編寫要注重培養(yǎng)學(xué)生的學(xué)習(xí)習(xí)慣和學(xué)習(xí)方法,促進(jìn)學(xué)生的自主學(xué)習(xí)和合作學(xué)習(xí)。每個教案范文都經(jīng)過精心挑選和整理,具有一定的參考價值。
函數(shù)概念教案篇一
理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化。
理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切。
終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義。
一、問題。
1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
2、在平面直角坐標(biāo)系內(nèi)角分為哪幾類?與終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關(guān)系?
4、弧度制下圓的弧長公式和扇形的面積公式是什么?
5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?
6、你能在單位圓中畫出正弦、余弦和正切線嗎?
7、同角三角函數(shù)有哪些基本關(guān)系式?
二、練習(xí)。
1、給出下列命題:
(1)小于的角是銳角;
(2)若是第一象限的角,則必為第一象限的角;
(3)第三象限的角必大于第二象限的角;
(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2與角的終邊不可能相同;
2、設(shè)p點是角終邊上一點,且滿足則的值是。
3、一個扇形弧aob的面積是1,它的周長為4,則該扇形的中心角=弦ab長=。
4、若則角的終邊在象限。
5、在直角坐標(biāo)系中,若角與角的終邊互為反向延長線,則角與角之間的關(guān)系是。
6、若是第三象限的角,則-,的終邊落在何處?
(1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在上所有角的集合;
(3)求始邊在om位置,終邊在on位置的所有角的集合。
例2.(1)已知角的終邊在直線上,求的值;
(2)已知角的終邊上有一點a,求的值。
例3.若,則在第象限。
1、若銳角的終邊上一點的坐標(biāo)為,則角的弧度數(shù)為。
2、若,又是第二,第三象限角,則的取值范圍是。
3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是弧度或角度,該扇形的面積是。
4、已知點p在第三象限,則角終邊在第象限。
5、設(shè)角的終邊過點p,則的值為。
6、已知角的終邊上一點p且,求和的值。
函數(shù)概念教案篇二
(1)——定義、圖象、性質(zhì)目標(biāo):
1.了解對數(shù)函數(shù)的定義、圖象及其性質(zhì)以及它與指數(shù)函數(shù)間的關(guān)系,會求對數(shù)函數(shù)的定義域。
2.培養(yǎng)培養(yǎng)觀察分析、抽象概括能力、歸納總結(jié)能力、邏輯推理能力、化歸轉(zhuǎn)化能力;
3.培養(yǎng)堅忍不拔的意志,培養(yǎng)發(fā)現(xiàn)問題和提出問題的意識、善于獨立思考的習(xí)慣,體會事物之間普遍聯(lián)系的辯證觀點。
重點:對數(shù)函數(shù)的定義、圖象、性質(zhì)。
難點:對數(shù)函數(shù)與指數(shù)函數(shù)間的關(guān)系。
過程:
二、新課。
1.對數(shù)函數(shù)的定義:函數(shù)叫做對數(shù)函數(shù);它是指數(shù)函數(shù)的反函數(shù)。對數(shù)函數(shù)的定義域為,值域為。
2.對數(shù)函數(shù)的圖象由于對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù),所以的圖象與的圖象關(guān)于直線對稱。因此,我們只要畫出和的圖象關(guān)于對稱的曲線,就可以得到的圖象,然后根據(jù)圖象特征得出對數(shù)函數(shù)的性質(zhì)。
函數(shù)概念教案篇三
1.公式的特點要囑記:尤其是“倍角”的意義是相對的,如:是的倍角.
2.熟悉“倍角”與“二次”的關(guān)系(升角——降次,降角——升次).
3.特別注意公式的三角表達(dá)形式,且要善于變形:
這兩個形式今后常用.
4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的“本質(zhì)”是用角的余弦表示角的正弦、余弦、正切.
5.注意公式的結(jié)構(gòu),尤其是符號.
函數(shù)概念教案篇四
1、使學(xué)生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì)。
(3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。
2、x通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
3、通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究。
(2)x本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點差異,諸如x,x等都不是。
(2)對底數(shù)x的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點得圖象。
1、x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2、x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
3、x通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
重點是理解的定義,把握圖象和性質(zhì)。
難點是認(rèn)識底數(shù)對函數(shù)值影響的認(rèn)識。
投影儀。
啟發(fā)討論研究式。
一、x引入新課。
我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的.常見函數(shù)。
1、6、(板書)。
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學(xué)生回答:x。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
x的概念(板書)。
1、定義:形如x的函數(shù)稱為。(板書)。
教師在給出定義之后再對定義作幾點說明。
2、幾點說明x(板書)。
(1)x關(guān)于對x的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
(2)關(guān)于的定義域x(板書)。
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,x也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實數(shù)范圍,所以的定義域為x。擴(kuò)充的另一個原因是因為使她它更具代表更有應(yīng)用價值。
(3)關(guān)于是否是的判斷(板書)。
剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
(4)x,x。
(5)x。
學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
3、歸納性質(zhì)。
作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
函數(shù)。
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)。
4、截距:在x軸上沒有,在x軸上為1。
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)。
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點了。取點時還要提醒學(xué)生由于不具備對稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點的個數(shù)不能太少。
此處教師可利用計算機(jī)列表描點,給出十組數(shù)據(jù),而學(xué)生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)。
1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點法。
2、草圖:
當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取x為例。
此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。
最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計算機(jī)再畫出如x的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學(xué)生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
(1)無論x為何值,x都有定義域為x,值域為x,都過點x。
(2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
(3)x時,x,xx時,x。
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡單應(yīng)用x(板書)。
1、利用單調(diào)性比大小。x(板書)。
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數(shù)的大小。
(1)x與x;x(2)x與x;。
(3)x與1x。(板書)。
首先讓學(xué)生觀察兩個數(shù)的特點,有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數(shù),且x。(板書)。
教師最后再強(qiáng)調(diào)過程必須寫清三句話:
(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
(2)x自變量的大小比較。
(3)x函數(shù)值的大小比較。
后兩個題的過程略。要求學(xué)生仿照第(1)題敘述過程。
例2。比較下列各組數(shù)的大小。
(1)x與x;x(2)x與x;。
(3)x與x。(板書)。
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
最后由學(xué)生說出x1,1。
解決后由教師小結(jié)比較大小的方法。
(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
(2)x搭橋比較法:x用特殊的數(shù)1或0。
四、鞏固練習(xí)。
練習(xí):比較下列各組數(shù)的大?。ò鍟?/p>
(1)x與xx(2)x與x;。
(3)x與x;x(4)x與x。解答過程略。
五、小結(jié)。
1、的概念。
2、的圖象和性質(zhì)。
3、簡單應(yīng)用。
六、板書設(shè)計。
函數(shù)概念教案篇五
讓學(xué)生自己由和角公式而導(dǎo)出倍角公式和半角公式,領(lǐng)會從一般化歸為特殊的數(shù)學(xué)思想,體會公式所蘊涵的和諧美,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣;通過例題講解,總結(jié)方法.通過做練習(xí),鞏固所學(xué)知識.
3.情感態(tài)度價值觀。
通過本節(jié)的學(xué)習(xí),使同學(xué)們對三角函數(shù)各個公式之間有一個全新的認(rèn)識;理解掌握三角函數(shù)各個公式的各種變形,增強(qiáng)學(xué)生靈活運用數(shù)學(xué)知識、邏輯推理能力和綜合分析能力.提高逆用思維的能力.
函數(shù)概念教案篇六
(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究。
(2)x本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
函數(shù)概念教案篇七
2、利用反比例函數(shù)的圖象解決有關(guān)問題。
1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學(xué)問題。
一、創(chuàng)設(shè)情境。
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質(zhì)。
二、探究歸納。
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x0.
解1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應(yīng)值:
2、描點:用表里各組對應(yīng)值作為點的坐標(biāo),在直角坐標(biāo)系中描出在京各點點(-6,-1)、(-3,-2)、(-2,-3)等。
3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟)。
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。
1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k0)的圖象在哪兩個象限內(nèi)?由什么確定?
反比例函數(shù)有下列性質(zhì):
(2)當(dāng)k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
注1.雙曲線的兩個分支與x軸和y軸沒有交點;
2、雙曲線的兩個分支關(guān)于原點成中心對稱。
以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
三、實踐應(yīng)用。
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k0),當(dāng)x0時,y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k0),當(dāng)x0時,y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(shù)(k0),當(dāng)x0時,y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(1,-2)。
(1)求這個函數(shù)的解析式,并畫出圖象;
(2)由點a在反比例函數(shù)的圖象上,易求出m的值,再驗證點a關(guān)于兩坐標(biāo)軸和原點的對稱點是否在圖象上。
解(1)設(shè):反比例函數(shù)的解析式為:(k0)。
而反比例函數(shù)的圖象過點(1,-2),即當(dāng)x=1時,y=-2.
所以,k=-2.
即反比例函數(shù)的解析式為:。
(2)點a(-5,m)在反比例函數(shù)圖象上,所以,
點a的坐標(biāo)為。
點a關(guān)于x軸的對稱點不在這個圖象上;
點a關(guān)于y軸的對稱點不在這個圖象上;
點a關(guān)于原點的對稱點在這個圖象上;
例4已知函數(shù)為反比例函數(shù)。
(1)求m的值;
(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
(3)當(dāng)-3時,求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=-2.
(2)因為-20,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。
(3)因為在第個象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時,y最大值=;
當(dāng)x=-3時,y最小值=。
所以當(dāng)-3時,此函數(shù)的最大值為8,最小值為。
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
(1)寫出用高表示長的函數(shù)關(guān)系式;
(2)寫出自變量x的取值范圍;
(3)畫出函數(shù)的圖象。
解(1)因為100=5xy,所以。
(2)x0.
(3)圖象如下:
說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。
四、交流反思。
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
(2)當(dāng)k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
五、檢測反饋。
1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
(1);(2)。
2、已知y是x的反比例函數(shù),且當(dāng)x=3時,y=8,求:
(1)y和x的函數(shù)關(guān)系式;
(2)當(dāng)時,y的值;
(3)當(dāng)x取何值時,?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點a(2,-m)和b(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小。
函數(shù)概念教案篇八
對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點得圖象。
函數(shù)概念教案篇九
1、x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2、x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
3、x通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
函數(shù)概念教案篇十
我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
1、6、(板書)。
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學(xué)生回答:x。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
1、定義:形如x的函數(shù)稱為。(板書)。
教師在給出定義之后再對定義作幾點說明。
2、幾點說明x(板書)。
(1)x關(guān)于對x的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
(2)關(guān)于的定義域x(板書)。
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,x也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實數(shù)范圍,所以的定義域為x。擴(kuò)充的另一個原因是因為使她它更具代表更有應(yīng)用價值。
(3)關(guān)于是否是的判斷(板書)。
剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
(4)x,x。
(5)x。
學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
3、歸納性質(zhì)。
作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
函數(shù)。
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)。
4、截距:在x軸上沒有,在x軸上為1。
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)。
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點了。取點時還要提醒學(xué)生由于不具備對稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點的個數(shù)不能太少。
此處教師可利用計算機(jī)列表描點,給出十組數(shù)據(jù),而學(xué)生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)。
1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點法。
2、草圖:
當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取x為例。
此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。
最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計算機(jī)再畫出如x的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學(xué)生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
(1)無論x為何值,x都有定義域為x,值域為x,都過點x。
(2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
(3)x時,x,xx時,x。
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡單應(yīng)用x(板書)。
1、利用單調(diào)性比大小。x(板書)。
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數(shù)的大小。
(1)x與x;x(2)x與x;。
(3)x與1x。(板書)。
首先讓學(xué)生觀察兩個數(shù)的特點,有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數(shù),且x。(板書)。
教師最后再強(qiáng)調(diào)過程必須寫清三句話:
(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
(2)x自變量的大小比較。
(3)x函數(shù)值的大小比較。
后兩個題的過程略。要求學(xué)生仿照第(1)題敘述過程。
例2。比較下列各組數(shù)的大小。
(1)x與x;x(2)x與x;。
(3)x與x。(板書)。
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
最后由學(xué)生說出x1,1。
解決后由教師小結(jié)比較大小的方法。
(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
(2)x搭橋比較法:x用特殊的數(shù)1或0。
四、鞏固練習(xí)。
練習(xí):比較下列各組數(shù)的大小(板書)。
(1)x與xx(2)x與x;。
(3)x與x;x(4)x與x。解答過程略。
五、小結(jié)。
2、的圖象和性質(zhì)。
3、簡單應(yīng)用。
六、板書設(shè)計。
函數(shù)概念教案篇十一
在高中數(shù)學(xué)中,函數(shù)概念的教學(xué)是我們教師的一個難題。聽了老師的講座,給我?guī)砹诵碌乃悸罚矠榻鉀Q這個難題提供了很好的指導(dǎo)。
雖然對函數(shù)概念本質(zhì)理解并非一次就能實現(xiàn),它有一個循序漸進(jìn)、逐步完善,通過多角度多章節(jié)的學(xué)習(xí),學(xué)生才能有一個較完整的深刻理解。但我們在學(xué)生剛接觸函數(shù)概念時就應(yīng)讓學(xué)成從多角度去思考,去理解。
第一,從初高中數(shù)學(xué)中對函數(shù)定義的比較中,讓學(xué)生能從初中的描述性概念把函數(shù)看成變量之間的依賴關(guān)系到高中用集合與對應(yīng)的語言定義函數(shù),從而達(dá)到函數(shù)概念的提升,從而更好地解決如y=3這樣的常數(shù)函數(shù)概念的解釋。
第二要用好課本,用課本教,而非教課本。充分利用好課本中函數(shù)概念的背景教學(xué),通過三個實例:炮彈發(fā)射;大氣層臭氧問題,恩格爾系數(shù)問題培養(yǎng)學(xué)生觀察問題提出問題的探究能力,培養(yǎng)學(xué)生抽象概括逐步學(xué)會數(shù)學(xué)表達(dá)和交流。
第三充分發(fā)揮函數(shù)圖像的集合直觀作用,加強(qiáng)數(shù)形結(jié)合思想。數(shù)形結(jié)合,幾何直觀的數(shù)學(xué)思想方法對學(xué)生理解函數(shù)概念以及性質(zhì)十分重要。通過讓學(xué)生作圖觀察圖像充分認(rèn)識函數(shù)概念的整體性。我覺得這種方法在高中階段是貫徹始終的。只有讓學(xué)生充分學(xué)好圖像認(rèn)識好圖像,能看懂圖像,能解釋圖像,那么對解決花束問題將起著十分重要的作用。
函數(shù)概念教案篇十二
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點分析。
根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。
三、學(xué)情分析。
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析。
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法。
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
六、教學(xué)過程。
(一)創(chuàng)設(shè)情景,引入新課。
情景1:提供一張表格,把上次運動會得分前10的情況填入表格,我報名次,學(xué)生提供分?jǐn)?shù)。
名次(得分)。
情景3:某市一天24小時內(nèi)的氣溫變化圖:(圖略)。
提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)。
提問(2):當(dāng)其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)。
提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題。
[設(shè)計意圖]在創(chuàng)設(shè)本課開頭情境1、2的時候,我并沒有運用書中的前兩個例子。第一個例子我改成提供給學(xué)生一張運動會成績統(tǒng)計單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學(xué)生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數(shù)方法的意圖。這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點。
(二)探索新知,形成概念。
1、引導(dǎo)分析,探求特征。
思考:如何用集合的語言來闡述上述三個問題的共同特征?
[設(shè)計意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個角度思考問題,進(jìn)入本節(jié)課的重點。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時對學(xué)生進(jìn)行指引。
提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)。
[設(shè)計意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。
提問(5):兩個集合的元素之間具有怎樣的關(guān)系?(對應(yīng))。
及時給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對應(yīng)。
提問(6):現(xiàn)在你能從集合角度說說這三個問題的共同點嗎?
[設(shè)計意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。
上述一系列問題,始終在學(xué)生知識的“最近發(fā)展區(qū)”,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動,生生互動中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點。
3、探求定義,提出注意。
提問(7):你覺得這個定義中應(yīng)注意哪些問題?
[設(shè)計意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。
4、例題剖析,強(qiáng)化概念。
例1、判斷下列對應(yīng)是否為函數(shù):
[設(shè)計意圖]通過例1的教學(xué),使學(xué)生體會單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。
例2、(1);(2)y=x-1;(3);[設(shè)計意圖]首先對求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強(qiáng)調(diào)只有對應(yīng)法則與定義域相同的兩個函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號的本質(zhì)內(nèi)涵。
例3、試求下列函數(shù)的定義域與值域:
[設(shè)計意圖]讓學(xué)體會理解函數(shù)的三要素。
5、鞏固練習(xí),運用概念。
書本練習(xí)p24:1,2,3,4。
6、課堂小結(jié),提升思想。
引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對本節(jié)課有一個整體把握,將對學(xué)生形成的知識系統(tǒng)產(chǎn)生積極的影響。
七、教學(xué)評價。
1、我通過對一系列問題情景的設(shè)計,讓學(xué)生在問題解決的過程中體驗成功的樂趣,實現(xiàn)對本課重難點的突破。
2、為使課堂形式更加豐富,也可將某些問題改成判斷題。
4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。
函數(shù)概念教案篇十三
教學(xué)目標(biāo):
1、進(jìn)一步理解的概念,能從簡單的實際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會求值,并體會自變量與值間的對應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過的教學(xué)使學(xué)生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.
教學(xué)重點:了解的意義,會求自變量的取值范圍及求值.
教學(xué)難點:概念的抽象性.
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的.
生活中有很多實例反映了關(guān)系,你能舉出一個,并指出式中的自變量與嗎?
1、學(xué)校計劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個)的關(guān)系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個)與單價(a)元的關(guān)系.
解:1、y=30n。
y是,n是自變量。
2、,n是,a是自變量.
(二)講授新課。
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時,要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的取值范圍.。
(1)(2)。
(3)(4)。
(5)(6)。
分析:在(1)、(2)中,x取任意實數(shù),與都有意義.
(3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
同理,第(6)小題也是二次根式,是被開方數(shù),。
解:(1)全體實數(shù)。
(2)全體實數(shù)。
(3)。
(4)且。
(5)。
(6)。
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時,自變量可取全體實數(shù);的解析式是分式時,自變量的取值應(yīng)使分母不為零;的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關(guān)系.即2與-1這兩個值x都不能取.
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)概念教案篇十四
教學(xué)目標(biāo):
1、進(jìn)一步理解的概念,能從簡單的實際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會求值,并體會自變量與值間的對應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過的教學(xué)使學(xué)生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.
教學(xué)重點:了解的意義,會求自變量的取值范圍及求值.
教學(xué)難點:概念的抽象性.
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的.
生活中有很多實例反映了關(guān)系,你能舉出一個,并指出式中的自變量與嗎?
1、學(xué)校計劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個)的關(guān)系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個)與單價(a)元的關(guān)系.
解:1、y=30n。
y是,n是自變量。
2、,n是,a是自變量.
(二)講授新課。
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時,要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的取值范圍.。
(1)(2)。
(3)(4)。
(5)(6)。
分析:在(1)、(2)中,x取任意實數(shù),與都有意義.
(3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
同理,第(6)小題也是二次根式,是被開方數(shù),。
解:(1)全體實數(shù)。
(2)全體實數(shù)。
(3)。
(4)且。
(5)。
(6)。
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時,自變量可取全體實數(shù);的解析式是分式時,自變量的取值應(yīng)使分母不為零;的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關(guān)系.即2與-1這兩個值x都不能取.
函數(shù)概念教案篇十五
反思類型可有縱向反思、橫向反思、個體反思和集體反思等,反思方法可有行動研究法、比較法、總結(jié)法、對話法、錄相法、檔案袋法等等。以下是3篇關(guān)于中數(shù)學(xué)《函數(shù)的概念》教學(xué)反思,供大家參考!
學(xué)習(xí)培訓(xùn)提供的視頻,結(jié)合本節(jié)課的上課經(jīng)歷,我反思如下:
備課要多研究課本,研究課本的題目設(shè)置,備課前還要翻看海南省五年來高考題,以做到和編書者出題者步調(diào)一致。比如新課改后課本多是舉例引入或得出概念、公式、定理,淡化邏輯證明,而高考更多是考基礎(chǔ)性常規(guī)題,那么老實備課的時候就要注意重視應(yīng)用,淡化理論。
我個人的問題是上課思路容易混亂,喜歡用口頭禪,愛重復(fù)啰嗦生怕學(xué)生不懂,隨口加一些不嚴(yán)格的內(nèi)容。那么解決方法就是(1)備課的時候,通過舉例和好玩的生活實例直接引入核心內(nèi)容,從直觀上接受重點“任意x唯一y”,盡可能簡化解釋,多做具體示例;(2)上課時鋪開課本和備課本,是不是掃兩眼,禁止臨時加話。(3)在備課基礎(chǔ)上,上課講完備課的內(nèi)容即可,在各內(nèi)容之間加一句簡單的承上啟下的連接就行了。
我認(rèn)為學(xué)習(xí)是學(xué)生的權(quán)利,而不是我強(qiáng)迫學(xué),所以之前我從不管學(xué)生講話玩手機(jī)睡覺。但是后面發(fā)現(xiàn)居然有一大片睡覺,而且我明明很有激情,講著講著我就困了。于是我采用了請班長科代表記名,每堂課交名單給我,期末匯總上交德育處的方法,正好12月12日學(xué)校在升旗時,發(fā)布了一個自動退學(xué)處分,學(xué)生都是害怕開除的,所以后面每節(jié)課,只有個別自我放棄的學(xué)生睡覺了。上課一眼掃下去,都坐得端端正正,我就有更多表演的欲望和隨機(jī)應(yīng)變的串場內(nèi)容。
數(shù)學(xué)對海南學(xué)生來說,難是肯定的,所以極易疲憊。老師要充滿愛的去搞笑,嬌嗔耍寶裝萌講笑話,或者夸張發(fā)音,故意帶口音,跟學(xué)生一唱一和瞎說,都可以帶來學(xué)生一笑。長期還會融洽師生關(guān)系,得到學(xué)生的喜愛。
對一個老師來說,不管你的課堂多么生動活潑,這只是形式,核心還是在知識點夠不夠精簡好記,重點難點學(xué)生是很輕松地懂了,還是說模模糊糊腦袋都懵了,這全在于老師在備課和上課上下的功夫,在于老師自己想透了沒,找到合適的講授或類比方法沒。突破完全在一瞬間一個簡單的道理,千萬不要把師生都繞進(jìn)去。
每章結(jié)束后,我會和學(xué)生一起在書皮上把本章核心知識點簡潔總結(jié),方便翻看。不重要的不需要記憶,我會直接告訴學(xué)生。
最后,把一本課本和高考強(qiáng)調(diào)的核心知識點總結(jié)成好記的數(shù)字:比如必修1是7。比如必修2是71221k。
函數(shù)是高中數(shù)學(xué)中一個非常重要的內(nèi)容之一,它貫穿整個高中階段的數(shù)學(xué)學(xué)習(xí),乃到一生的數(shù)學(xué)學(xué)習(xí)過程。其重要性主要體現(xiàn)在:1、函數(shù)本身源于在現(xiàn)實生活,例如自然科學(xué)乃至于社會科學(xué)中,具有廣泛的應(yīng)用。2、函數(shù)本身是數(shù)學(xué)的重要內(nèi)容,是溝通代數(shù)、幾何、三角等內(nèi)容的橋梁。亦是今后進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)和方法。3、函數(shù)部分內(nèi)容蘊涵大量的重要數(shù)學(xué)方法,如函數(shù)的思索,方程的思想,分類討論的思想,數(shù)形結(jié)合的思想,化歸的思想,換元法,侍定系數(shù)法、配方法等。這些思想方法是進(jìn)一步學(xué)習(xí)數(shù)學(xué)和解決數(shù)學(xué)問題的基礎(chǔ),是我們教學(xué)過程中應(yīng)注意重點講解學(xué)生重點掌握的部分。
然而函數(shù)這部份知識在教學(xué)中又是一大難點這主要是因為概念的抽象性,學(xué)生理解起來相當(dāng)不容易,接受起來就更難這又是由于函數(shù)這部份知識的主要思想特點體現(xiàn)于一個“變”字。即研究的主要是“變量”與“變量”之間的關(guān)系,要求用變量的眼光,運動變化的關(guān)點去看侍和接觸相關(guān)問題,這與初中學(xué)習(xí)知識的以靜態(tài)觀點為中習(xí)的思維特點有較大差異,所以函數(shù)成了高一新生進(jìn)入高中首先到的一條攔路虎,有些學(xué)生高中畢業(yè)了,對函數(shù)這個概念也沒有理解透澈。
實際上,在學(xué)習(xí)函數(shù)這部份知識中,函數(shù)概念是最重要的,也就是最難的地方,突破了它后面的學(xué)習(xí)就容易了。現(xiàn)行的數(shù)學(xué)教材,其主要內(nèi)容表現(xiàn)的都是數(shù)學(xué)知識的技術(shù)形式。函數(shù)的概念亦是如此,不管是傳統(tǒng)定義也好,還是近代定義也好,表現(xiàn)出來的都是抽象數(shù)學(xué)形式,在數(shù)學(xué)的教學(xué)中,學(xué)習(xí)形式化的表達(dá)是一項基本要求,但是不能只限于形式表達(dá),要強(qiáng)調(diào)對數(shù)學(xué)本質(zhì)的認(rèn)識,否則會將生動活潑的數(shù)學(xué)思維活動淹沒在形式化的海洋里。對數(shù)學(xué)知識的教學(xué)要返璞歸真,努力揭示數(shù)學(xué)概念、法則,結(jié)論發(fā)展過程和本質(zhì)。對越是抽象的數(shù)學(xué)概念,越是如此。所以函數(shù)概念的教學(xué)更忌照本宣科,要注意對知識進(jìn)行重組。努力去提示函數(shù)概念的本質(zhì),使學(xué)生真正理解它,覺得它有用,而樂于學(xué)習(xí)它。
函數(shù)概念的引入一般有兩種方法,一種方法是先學(xué)習(xí)映射,再學(xué)習(xí)函數(shù);另一種方法是通過具體的實例,體會數(shù)集之間的一種特殊的對應(yīng)關(guān)系,即函數(shù)。為了充分運用學(xué)生已有的認(rèn)知基礎(chǔ),為了給抽象概念以足夠的實例背景,以有助于學(xué)生理解函數(shù)概念的本質(zhì),我采用后一種方式,即從三個背景實例入手,在體會兩個變量之間依賴關(guān)系的基礎(chǔ)上,引導(dǎo)學(xué)生運用集合與對應(yīng)的語言刻畫函數(shù)概念。繼而,通過例題,思考、探究、練習(xí)中的問題從三個層次理解函數(shù)概念:函數(shù)定義、函數(shù)符號、函數(shù)三要素,并與初中定義進(jìn)行對比。
在學(xué)習(xí)用集合與對應(yīng)的語言刻畫函數(shù)之前,還可以讓學(xué)生先復(fù)習(xí)初中學(xué)習(xí)過的函數(shù)概念,并用課件進(jìn)行模擬實驗,畫出某一具體函數(shù)的圖像,在函數(shù)的圖像上任取一點p,測出點p的坐標(biāo),觀察點p的坐標(biāo)橫坐標(biāo)與縱坐標(biāo)的變化規(guī)律。使學(xué)生看到函數(shù)描述了變量之間的依賴關(guān)系,即無論點p在哪個位置,點p的橫坐標(biāo)總對應(yīng)唯一的縱坐標(biāo)。由此,使學(xué)生體會到,函數(shù)中的函數(shù)值的變化總是依賴于自變量的變化,而且由自變量唯一確定。
函數(shù)概念教案篇十六
函數(shù)概念的引入一般有兩種方法,一種方法是先學(xué)習(xí)映射,再學(xué)習(xí)函數(shù);另一種方法是通過具體的實例,體會數(shù)集之間的一種特殊的對應(yīng)關(guān)系,即函數(shù)。為了充分運用學(xué)生已有的認(rèn)知基礎(chǔ),為了給抽象概念以足夠的實例背景,以有助于學(xué)生理解函數(shù)概念的本質(zhì),我采用后一種方式,即從三個背景實例入手,在體會兩個變量之間依賴關(guān)系的基礎(chǔ)上,引導(dǎo)學(xué)生運用集合與對應(yīng)的語言刻畫函數(shù)概念。繼而,通過例題,思考、探究、練習(xí)中的`問題從三個層次理解函數(shù)概念:函數(shù)定義、函數(shù)符號、函數(shù)三要素,并與初中定義進(jìn)行對比。
在學(xué)習(xí)用集合與對應(yīng)的語言刻畫函數(shù)之前,還可以讓學(xué)生先復(fù)習(xí)初中學(xué)習(xí)過的函數(shù)概念,并用課件進(jìn)行模擬實驗,畫出某一具體函數(shù)的圖像,在函數(shù)的圖像上任取一點p,測出點p的坐標(biāo),觀察點p的坐標(biāo)橫坐標(biāo)與縱坐標(biāo)的變化規(guī)律。使學(xué)生看到函數(shù)描述了變量之間的依賴關(guān)系,即無論點p在哪個位置,點p的橫坐標(biāo)總對應(yīng)唯一的縱坐標(biāo)。由此,使學(xué)生體會到,函數(shù)中的函數(shù)值的變化總是依賴于自變量的變化,而且由自變量唯一確定。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)概念教案篇十七
對于教師來說,反思教學(xué)就是教師自覺地把自己的課堂教學(xué)實踐,作為認(rèn)識對象而進(jìn)行全面而深入的冷靜思考和總結(jié),它是一種用來提高自身的業(yè)務(wù),改進(jìn)教學(xué)實踐的學(xué)習(xí)方式,不斷對自己的教育實踐深入反思,積極探索與解決教育實踐中的一系列問題。進(jìn)一步充實自己,優(yōu)化教學(xué),并使自己逐漸成長為一名稱職的人類靈魂工程師。以下是我在上了函數(shù)的概念之后的一點反思:
這堂課堂氣氛較為活躍。學(xué)生不僅能在課堂上勇于發(fā)言,而且還敢于質(zhì)疑并且能做到言之有理,還能積極參與小組討論交流,共同分享團(tuán)隊協(xié)作的成果,基本完成教學(xué)目標(biāo)。
這堂課是研究函數(shù)的概念。這節(jié)課主要采用了探索、發(fā)現(xiàn)、歸納、反饋的教學(xué)流程,達(dá)成了對函數(shù)的概念的教學(xué)。
函數(shù)性質(zhì)的研究是高中階段數(shù)學(xué)學(xué)習(xí)的一個重要組成部分,因此函數(shù)概念的學(xué)習(xí)是研究函數(shù)性質(zhì)時應(yīng)予以考查的一個重要方面,并且要在后續(xù)學(xué)習(xí)中體現(xiàn)這個性質(zhì)的應(yīng)用。它在計算函數(shù)值,討論函數(shù)單調(diào)性,繪制函數(shù)圖象均有用處,對學(xué)生來說這是一個新的概念。引進(jìn)新概念的過程也是培養(yǎng)學(xué)生探索問題、發(fā)現(xiàn)規(guī)律、作出歸納的過程。因此在教學(xué)時沒有生硬地提出問題,而是采用生活中的事例引入,繼而引出數(shù)值在直角坐標(biāo)系中的對應(yīng)關(guān)系導(dǎo)出新概念,不僅順乎自然而且為以后研究函數(shù)奇偶性的幾何意義(圖形對稱的兩條定理)埋下伏筆。
本堂課的一個亮點是反饋過程中給出幾個例題后所引起學(xué)生的思考、發(fā)言、爭執(zhí)、討論以至正確答案的達(dá)成一致的過程,其中教師起了很及時和恰當(dāng)?shù)奶崾?。學(xué)生的勇于質(zhì)疑使課堂上呈現(xiàn)一派生氣勃勃的景象,學(xué)習(xí)積極性和主動性得到了充分調(diào)動,使學(xué)生對看似簡單的函數(shù)的概念也產(chǎn)生了不容輕視感,同時也發(fā)展了能力。一般來說學(xué)生在學(xué)習(xí)一些簡單的知識點時會覺得乏味,在組織教學(xué)時充分考慮了這些淺顯、平淡的知識還有一些值得思索和注意的地方。真正體現(xiàn)出“淺顯中有新意,平淡中有雋永”。
我上課的最大風(fēng)格是注重將新概念講清講透,能在師生互動的過程中培養(yǎng)學(xué)生的探索能力和高度概括能力,并使學(xué)生舉一反三。難能可貴有同學(xué)能概括出的結(jié)論,因此可以以它作為下節(jié)課研究函數(shù)奇偶性的引入語。
總體來說,這堂課較好地使學(xué)生在學(xué)習(xí)中完成了“引起關(guān)注————激發(fā)熱情————參與體驗”的過程,是一堂比較成功的課。
遺憾之處是發(fā)言的學(xué)生由于受時間的約束,發(fā)言的人數(shù)和長度不夠理想。
(1)函數(shù)的概念,看起來比較簡單,學(xué)生學(xué)習(xí)時也往往感覺的乏味。因此,在組織教學(xué)時必須考慮到如何使學(xué)生感到這些淺顯、平淡的知識還有一些值得思索與注意的地方。
(2)根據(jù)學(xué)生的接受能力可將內(nèi)容安排兩節(jié)課的教學(xué)。
函數(shù)概念教案篇十八
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標(biāo)。
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點分析確定。
一、教學(xué)基本思路及過程。
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析。
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
三、教法、學(xué)法。
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
函數(shù)概念教案篇十九
【目標(biāo)】。
1.借助生活實例,引領(lǐng)學(xué)生參與函數(shù)概念的形成過程.
2.體會從生活實例抽象出數(shù)學(xué)知識的方法,感知現(xiàn)實世界中變量之間聯(lián)系的復(fù)雜性.
【學(xué)習(xí)目標(biāo)】。
1.初步掌握函數(shù)概念,判斷兩個變量間的關(guān)系是否能看作函數(shù).
2.初步感受函數(shù)表示的三種形式:表格法、圖象法、解析式法.根據(jù)兩個變量間的關(guān)系式,給定其中一個量,會相應(yīng)地求出另一個量的值.
3.經(jīng)歷具體實例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力.
【教學(xué)重點】。
2.判斷兩個變量之間的關(guān)系是否可看作函數(shù).
【教學(xué)難點】。
1.準(zhǔn)確理解函數(shù)概念中“唯一確定”的含義.
2.能把實際問題抽象概括為函數(shù)問題.
計意圖】。
本節(jié)公開課在教師的精心準(zhǔn)備之下,按照djp教學(xué)模式常規(guī)要求,順利完成了教學(xué)目標(biāo)?,F(xiàn)將本節(jié)課中具體作以下幾點反思:
1.函數(shù)對初中生來是第一次接觸,在教學(xué)設(shè)計的時候,充分列舉生活中有關(guān)變量的例子,讓學(xué)生去感受兩個變量之間的關(guān)系,提高學(xué)生的學(xué)習(xí)興趣.
2.本節(jié)課屬于概念課,根據(jù)djp教學(xué)模式下概念課的要求,認(rèn)真設(shè)計教學(xué)過程和修改學(xué)案,經(jīng)過教研組多次研討,最終形成此教學(xué)設(shè)計.
3.本節(jié)課在原有基礎(chǔ)上作出了一些調(diào)整,在情境引入時,列舉生活中的變量,并演示摩天輪模型轉(zhuǎn)動,同時提出問題:在轉(zhuǎn)動過程中,有幾個變量?你了解它們之間的關(guān)系嗎?從而引出本節(jié)課的主題――函數(shù)的概念,并由此進(jìn)入情境1的學(xué)習(xí),此環(huán)節(jié)由教師主講,目的在于為后面學(xué)生講解情境2,3作出示范,特別是在圖像中,判斷兩個變量是否成函數(shù)關(guān)系時,由于學(xué)生還沒學(xué)習(xí)直角坐標(biāo)系,所以通過ppt多次演示,教會學(xué)生判斷方法,為后面的練習(xí)作好鋪墊.
作者簡介:冉龍海,男,1980年4月出生,本科,就職于四川省成都市龍泉驛區(qū)第十中學(xué)校,研究方向:班主任教育工作。
函數(shù)概念教案篇二十
函數(shù)是研究現(xiàn)實世界變化規(guī)律的一個重要模型,對函數(shù)的學(xué)習(xí)一直以來都是中學(xué)階段的一個重要的內(nèi)容。函數(shù)的概念是學(xué)習(xí)后續(xù)“函數(shù)知識”的最重要的基礎(chǔ)內(nèi)容,而函數(shù)的概念又是一個比較抽象的,對它的理解一直是一個教學(xué)難點,學(xué)生對這些問題的探索以及研究思路都是比較陌生的,因此,在教學(xué)過程中,注意通過對以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣;并通過層層深入的問題設(shè)計,引導(dǎo)學(xué)生進(jìn)行觀察、操作、交流、歸納等數(shù)學(xué)活動,在活動中歸納、概括出函數(shù)的概念;并通過師生交流、生生交流、辨析識別等加深學(xué)生對函數(shù)概念的理解。
函數(shù)是初中階段數(shù)學(xué)學(xué)習(xí)的一個重要內(nèi)容,學(xué)生又是第一次接觸函數(shù),充分考慮學(xué)生的接受能力,從生動有趣的問題情景出發(fā),通過對一般規(guī)律的探索過程,從實際問題中抽象出一次函數(shù)和正比例函數(shù)的概念.又通過具有豐富的現(xiàn)實背景的例題,進(jìn)一步理解一次函數(shù)和正比例函數(shù)的概念,為下一步學(xué)習(xí)《一次函數(shù)圖像》奠定基礎(chǔ),并形成用函數(shù)觀點認(rèn)識現(xiàn)實世界的能力與意識.
函數(shù)概念教案篇二十一
作為一個計算機(jī)科學(xué)專業(yè)的學(xué)生,學(xué)習(xí)函數(shù)的概念在日常學(xué)習(xí)中頻繁出現(xiàn)。函數(shù)是計算機(jī)科學(xué)中的基本概念之一,它可以說代表了程序的核心和基礎(chǔ)。在學(xué)習(xí)和使用函數(shù)的過程中,我有幸深入了解了函數(shù)的概念,與之相關(guān)的特點以及它在編程中的應(yīng)用等方面。通過這次學(xué)習(xí),我對函數(shù)有了更深刻的理解并體會到了它的重要性。下面將通過以下五個方面來分享我對函數(shù)的概念的心得體會。
函數(shù)是計算機(jī)科學(xué)中的一個重要概念,它是一段代碼的封裝,可以接受輸入?yún)?shù)并返回一個結(jié)果。在編程中,我們可以將函數(shù)看做是一個工廠,按照我們需求將輸入轉(zhuǎn)化成期望的輸出。通過函數(shù)的抽象,我們可以將復(fù)雜的問題分解成更小的部分,使得代碼更容易被理解和組織。使用函數(shù)還可以提高代碼的復(fù)用性和可維護(hù)性,我們可以多次調(diào)用同一個函數(shù)而不需要重復(fù)寫同樣的代碼。因此,掌握函數(shù)的基本概念對于編程能力的提升和編寫高效代碼來說是至關(guān)重要的。
第二段:函數(shù)的特點。
函數(shù)有三個主要的特點,分別是輸入?yún)?shù)、返回值和可組合性。輸入?yún)?shù)是指函數(shù)接受的輸入,它們可以是任意類型的數(shù)據(jù),同時也可以沒有輸入?yún)?shù)。函數(shù)根據(jù)輸入?yún)?shù)的不同,可以返回不同的結(jié)果。返回值是函數(shù)處理完輸入?yún)?shù)之后得到的結(jié)果,我們可以使用這個結(jié)果進(jìn)行下一步的操作。而可組合性則是指函數(shù)之間可以相互組合,通過一個函數(shù)的輸出作為另一個函數(shù)的輸入來實現(xiàn)更復(fù)雜的功能。函數(shù)的特點使得我們可以通過合理的組織和使用函數(shù)來編寫出更加高效和靈活的代碼。
第三段:函數(shù)在編程中的應(yīng)用。
函數(shù)在編程中有著廣泛的應(yīng)用。首先,函數(shù)可以用于封裝重復(fù)的代碼。在編程中,我們經(jīng)常會遇到同樣的代碼需要多次使用的情況,如果每次都重復(fù)寫這些代碼,不僅效率低下,而且還增加了代碼的冗余性。通過使用函數(shù),我們可以將這些重復(fù)的代碼封裝起來,提高代碼的復(fù)用性,并且使得代碼更易于理解和維護(hù)。其次,函數(shù)可以用于實現(xiàn)特定的功能。例如,計算一個數(shù)的平方、求兩個數(shù)之和等,這些功能都可以通過編寫相應(yīng)的函數(shù)來實現(xiàn),并且可以多次調(diào)用。最后,函數(shù)還可以用于編寫更為復(fù)雜的程序。通過將一個程序分解成多個函數(shù),每個函數(shù)負(fù)責(zé)一個特定的功能,我們可以更好地組織和管理程序。函數(shù)的應(yīng)用豐富多樣,在編程中起到了至關(guān)重要的作用。
第四段:函數(shù)對編程能力提升的作用。
掌握函數(shù)的概念和使用方法,對于編程能力的提升有著顯著的作用。首先,函數(shù)可以提高編程效率。通過合理地封裝和使用函數(shù),可以減少代碼的冗余性,提高代碼的復(fù)用率,從而減少編寫代碼的時間和精力。其次,函數(shù)使得代碼更易于理解和維護(hù)。通過將程序分解成多個函數(shù),每個函數(shù)負(fù)責(zé)一個特定的功能,我們可以更好地理解和維護(hù)程序,降低開發(fā)和維護(hù)的難度。最后,函數(shù)還可以提高程序的組織性和可擴(kuò)展性。通過函數(shù)的抽象特性,我們可以將復(fù)雜的問題分解成多個小的部分,每個部分負(fù)責(zé)特定的功能。這樣既提高了代碼的組織性,又便于后期的擴(kuò)展。
在學(xué)習(xí)函數(shù)的過程中,我體會到了函數(shù)在編程中的重要性和靈活性。學(xué)習(xí)函數(shù)不僅是學(xué)習(xí)計算機(jī)科學(xué)的基礎(chǔ),更是掌握編程能力的關(guān)鍵。通過函數(shù)的學(xué)習(xí),我不僅進(jìn)一步理解了編程語言的結(jié)構(gòu)和邏輯,還對如何利用函數(shù)來提高編程效率和代碼的可維護(hù)性有了更深刻的認(rèn)識。在未來的學(xué)習(xí)和實踐中,我會進(jìn)一步加深對函數(shù)的理解,并在編程中充分發(fā)揮函數(shù)的作用,提高自己的編程能力。
通過對函數(shù)的概念、特點以及在編程中的應(yīng)用等方面的學(xué)習(xí),我對函數(shù)有了更深刻的理解并體會到了它的重要性。函數(shù)是編程的基礎(chǔ)和核心,掌握函數(shù)的概念和使用方法對于編程能力的提升至關(guān)重要。通過函數(shù),我們可以更好地組織和管理代碼,提高編程效率和代碼的可維護(hù)性,并且使得代碼更易于理解和擴(kuò)展。函數(shù)的學(xué)習(xí)心得將引導(dǎo)我在未來的學(xué)習(xí)和實踐中更好地利用函數(shù)來提高編程能力,創(chuàng)造更加高效和優(yōu)雅的代碼。
【本文地址:http://mlvmservice.com/zuowen/15316976.html】