抽屜原理教學(xué)設(shè)計(jì)劉松范文(15篇)

格式:DOC 上傳日期:2023-11-10 21:48:04
抽屜原理教學(xué)設(shè)計(jì)劉松范文(15篇)
時(shí)間:2023-11-10 21:48:04     小編:文軒

通過(guò)總結(jié),我們可以發(fā)現(xiàn)在學(xué)習(xí)和工作中需要改進(jìn)的地方,為未來(lái)提供更好的指導(dǎo)??偨Y(jié)的語(yǔ)氣可以積極向上,鼓勵(lì)自己或他人繼續(xù)努力和進(jìn)步。在寫作過(guò)程中,注意語(yǔ)法和標(biāo)點(diǎn)的正確使用。

抽屜原理教學(xué)設(shè)計(jì)劉松篇一

1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3.通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

經(jīng)歷“抽屜原理”的探究過(guò)程,理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

一、問(wèn)題引入。

1.游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?

游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。

二、探究新知。

(一)教學(xué)例1。

師:請(qǐng)同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

問(wèn)題:

(1)“總有”是什么意思?(一定有)。

(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。

學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的.1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過(guò)平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

問(wèn)題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)。

總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。

2.完成課下“做一做”,學(xué)習(xí)解決問(wèn)題。

問(wèn)題:6只鴿子飛回5個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

(1)學(xué)生活動(dòng)—獨(dú)立思考自主探究。

(2)交流、說(shuō)理活動(dòng)。

引導(dǎo)學(xué)生分析:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個(gè)籠里”的結(jié)論是正確的。

總結(jié):用平均分的方法,就能說(shuō)明存在“總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里”。

(二)教學(xué)例2。

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2.學(xué)生匯報(bào),教師給予表?yè)P(yáng)后并總結(jié):

總結(jié)1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

總結(jié)2:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

問(wèn)題:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)。

引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰(shuí)的結(jié)論對(duì)呢?(學(xué)生小組里進(jìn)行研究、討論。)。

總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。

(三)學(xué)生自學(xué)例題3并進(jìn)行自主交流,試著用手中的用具模擬演示場(chǎng)景。

三、解決問(wèn)題。

四、全課小結(jié)。

將本文的word文檔下載到電腦,方便收藏和打印。

抽屜原理教學(xué)設(shè)計(jì)劉松篇二

《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》六年級(jí)下冊(cè)。

讓學(xué)生初步了解簡(jiǎn)單“抽屜原理”,教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡(jiǎn)單的“抽屜原理”,通過(guò)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題,初步感受數(shù)學(xué)的魅力。主要培養(yǎng)學(xué)生的思考和推理能力,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)原理”的過(guò)程,提高學(xué)生數(shù)學(xué)應(yīng)用意識(shí)。

教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡(jiǎn)單的“抽屜原理”。學(xué)生在操作實(shí)物的過(guò)程中可以發(fā)現(xiàn)一個(gè)現(xiàn)象:不管怎么放,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆,從而產(chǎn)生疑問(wèn),激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。

1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

每組都有3個(gè)文具盒和4枝鉛筆。

教師:同學(xué)們,你們?cè)陔娔X上玩過(guò)“電腦算命”嗎?“電腦算命”看起來(lái)很深?yuàn)W,只要報(bào)出你的出生的年、月、日和性別,一按鍵,屏幕上就會(huì)出現(xiàn)所謂性格、命運(yùn)、財(cái)運(yùn)等。通過(guò)今天的學(xué)習(xí),我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非??尚突奶频?,是不能信的鬼把戲。

教師:通過(guò)學(xué)習(xí),你想解決那些問(wèn)題?

師:請(qǐng)同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0)(2,1)。

生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?

師:是這樣嗎?誰(shuí)還有這樣的發(fā)現(xiàn),再說(shuō)一說(shuō)。

師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請(qǐng)同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))。

師:誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

(4,0,0)(3,1,0)(2,2,0)(2,1,1),

師:還有不同的放法嗎?

生:沒(méi)有了。

師:你能發(fā)現(xiàn)什么?

生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

師:“總有”是什么意思?

生:一定有。

師:“至少”有2枝什么意思?

生:不少于兩只,可能是2枝,也可能是多于2枝?

師:就是不能少于2枝。(通過(guò)操作讓學(xué)生充分體驗(yàn)感受)。

學(xué)生思考——組內(nèi)交流——匯報(bào)。

師:哪一組同學(xué)能把你們的想法匯報(bào)一下?

組1生:我們發(fā)現(xiàn)如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。

師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)。

師:同學(xué)們自己說(shuō)說(shuō)看,同位之間邊演示邊說(shuō)一說(shuō)好嗎?

師:這種分法,實(shí)際就是先怎么分的?

生眾:平均分。

師:為什么要先平均分?(組織學(xué)生討論)。

生1:要想發(fā)現(xiàn)存在著“總有一個(gè)盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?

師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結(jié)合操作,說(shuō)一說(shuō))。

師:哪位同學(xué)能把你的想法匯報(bào)一下,

生:(一邊演示一邊說(shuō))5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?

生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

師:把7枝筆放進(jìn)6個(gè)盒子里呢?

把8枝筆放進(jìn)7個(gè)盒子里呢?

把9枝筆放進(jìn)8個(gè)盒子里呢?……。

你發(fā)現(xiàn)什么?

生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說(shuō)一遍。

1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2.學(xué)生匯報(bào)。

生1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

板書:5本2個(gè)2本……余1本(總有一個(gè)抽屜里至有3本書)。

7本2個(gè)3本……余1本(總有一個(gè)抽屜里至有4本書)。

9本2個(gè)4本……余1本(總有一個(gè)抽屜里至有5本書)。

師:2本、3本、4本是怎么得到的?生答完成除法算式。

5÷2=2本……1本(商加1)。

7÷2=3本……1本(商加1)。

9÷2=4本……1本(商加1)。

師:觀察板書你能發(fā)現(xiàn)什么?

生1:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

師:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

生:“總有一個(gè)抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。

生:不同意!先把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書,不是3本書。

師:到底是“商+1”還是“商+余數(shù)”呢?誰(shuí)的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。

交流、說(shuō)理活動(dòng):

生1:我們組通過(guò)討論并且實(shí)際分了分,結(jié)論是總有一個(gè)抽屜里至少有2本書,不是3本書。

生2:把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,余下的2本可以在2個(gè)抽屜里再各放1本,結(jié)論是“總有一個(gè)抽屜里至少有2本書”。

生3我們組的結(jié)論是5本書平均分放到3個(gè)抽屜里,“總有一個(gè)抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。

師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個(gè)抽屜里至少有幾個(gè)物體呢?

生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

師:同學(xué)們同意吧?

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。

3.解決問(wèn)題。71頁(yè)第3題。(獨(dú)立完成,交流反饋)。

小結(jié):經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,我們獲得了解決這類問(wèn)題的好辦法,下面讓我們輕松一下做個(gè)小游戲。

生:2張/因?yàn)?÷4=1…1。

師:先驗(yàn)證一下你們的猜測(cè):舉牌驗(yàn)證。

師:如有3張同花色的,符合你們的猜測(cè)嗎?

師:如果9個(gè)人每一個(gè)人抽一張呢?

生:至少有3張牌是同一花色,因?yàn)?÷4=2…1。

上面我們所證明的數(shù)學(xué)原理就是最簡(jiǎn)單的“抽屜原理”,可以概括為:把m個(gè)物體任意放到m-1個(gè)抽屜里,那么總有一個(gè)抽屜中放進(jìn)了至少2個(gè)物體。

1.從街上隨便找來(lái)13人,就可以斷定他們中至少有兩個(gè)人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說(shuō)明理由。

2.任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^(guò)生日。說(shuō)明理由。

1、小組活動(dòng)很容易抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問(wèn)題即好玩又有意義。

3、部分學(xué)生很難判斷誰(shuí)是物體,誰(shuí)是抽屜。

抽屜原理教學(xué)設(shè)計(jì)劉松篇三

桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是我們所說(shuō)的“抽屜原理”。

激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過(guò)小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建?!保箯?fù)雜問(wèn)題簡(jiǎn)單化,簡(jiǎn)單問(wèn)題模型化,充分體現(xiàn)了新課標(biāo)要求。

1、經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

2、通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3、通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

師:同學(xué)們?cè)谖覀兩险n之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來(lái),誰(shuí)愿來(lái)?(學(xué)生上來(lái)后)。

師:聽清要求,老師說(shuō)開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。

師:開始。

師:都坐下了嗎?

生:坐下了。

生:對(duì)!

師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。(抽屜原理)。

1、研究3枝鉛筆放進(jìn)2個(gè)文具盒。

(1)要把3枝鉛筆放進(jìn)2個(gè)文具盒,有幾種放法?請(qǐng)同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。

(2)反饋:兩種放法:(3,0)和(2,1)。

(3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說(shuō)得真有道理)。

(4)“總有”什么意思?(一定有)。

(5)“至少”有2枝什么意思?(不少于2枝)。

小結(jié):在研究3枝鉛筆放進(jìn)2個(gè)文具盒時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)文具盒放進(jìn)2枝鉛筆)。

2、研究4枝鉛筆放進(jìn)3個(gè)文具盒。

(1)要把4枝鉛筆放進(jìn)3個(gè)文具盒里,有幾種放法?請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

(3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)筆盒至少有2枝鉛筆)。

(4)你是怎么發(fā)現(xiàn)的?

(5)大家通過(guò)枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)文具盒放進(jìn)2枝鉛筆”。如果要讓每個(gè)文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個(gè)文具盒都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)文具盒,總會(huì)有一個(gè)文具盒至少有2枝筆)(你真是一個(gè)善于思想的孩子。)。

(6)這位同學(xué)運(yùn)用了假設(shè)法來(lái)說(shuō)明問(wèn)題,你是假設(shè)先在每個(gè)文具盒里放1枝鉛筆,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)。

3、類推:把5枝鉛筆放進(jìn)4個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

把6枝鉛筆放進(jìn)5個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

把7枝鉛筆放進(jìn)6個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

把100枝鉛筆放進(jìn)99個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。)。

5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)筆盒至少有2枝鉛筆?!?/p>

6、小結(jié):剛才我們分析了把鉛筆放進(jìn)文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時(shí),總有一個(gè)文具盒至少放進(jìn)2枝鉛筆。

這就是今天我們要學(xué)習(xí)的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么文具盒就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體?!?/p>

過(guò)渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問(wèn)題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮?lái)研究這樣一組問(wèn)題。

1、研究把5本書放進(jìn)2個(gè)抽屜。

(1)把5本書放進(jìn)2個(gè)抽屜會(huì)有幾種情況?(5,0)、(4,1)和(3,2)。

(2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個(gè)抽屜至少放進(jìn)了3本書)。

(3)還可以怎樣理解這個(gè)結(jié)論?先在每個(gè)抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個(gè)抽屜,這個(gè)抽屜就有3本書了。

2、類推:如果把7本書放進(jìn)2個(gè)抽屜中,至少有一個(gè)抽屜放進(jìn)4本書。

如果把9本書放進(jìn)2個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)5本書。

3、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時(shí),我們可以運(yùn)用假設(shè)法,把物體盡可量多地“平均分”給各個(gè)抽屜,總有一個(gè)抽屜比平均分得的物體數(shù)多1。)。

4、經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。“抽屜原理”最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。

5、做一做:

7只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)佶舍里。為什么?

8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛時(shí)同一個(gè)鴿舍里。為什么?

(先讓學(xué)生獨(dú)立思考,在小組里討論,再全班反饋)。

下面我們一起來(lái)放松一下,做個(gè)小游戲。

這節(jié)課,你有什么收獲?

抽屜原理教學(xué)設(shè)計(jì)劉松篇四

桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是我們所說(shuō)的“抽屜原理”。

教學(xué)理念:

激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過(guò)小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建?!保箯?fù)雜問(wèn)題簡(jiǎn)單化,簡(jiǎn)單問(wèn)題模型化,充分體現(xiàn)了新課標(biāo)要求。

教學(xué)目標(biāo):

1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3.通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

教學(xué)重難點(diǎn):

重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

教學(xué)過(guò)程:

一、課前游戲引入。

師:同學(xué)們?cè)谖覀兩险n之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來(lái),誰(shuí)愿來(lái)?(學(xué)生上來(lái)后)。

師:聽清要求,老師說(shuō)開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。

師:開始。

師:都坐下了嗎?

生:坐下了。

生:對(duì)!

師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。(抽屜原理)。

二、通過(guò)操作,探究新知。

(一)探究例1。

1、研究3枝鉛筆放進(jìn)2個(gè)文具盒。

(1)要把3枝鉛筆放進(jìn)2個(gè)文具盒,有幾種放法?請(qǐng)同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。

(2)反饋:兩種放法:(3,0)和(2,1)。

(3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說(shuō)得真有道理)。

(4)“總有”什么意思?(一定有)。

(5)“至少”有2枝什么意思?(不少于2枝)。

小結(jié):在研究3枝鉛筆放進(jìn)2個(gè)文具盒時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)文具盒放進(jìn)2枝鉛筆)。

2、研究4枝鉛筆放進(jìn)3個(gè)文具盒。

(1)要把4枝鉛筆放進(jìn)3個(gè)文具盒里,有幾種放法?請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

(3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)筆盒至少有2枝鉛筆)。

(4)你是怎么發(fā)現(xiàn)的?

(5)大家通過(guò)枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)文具盒放進(jìn)2枝鉛筆”。如果要讓每個(gè)文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個(gè)文具盒都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)文具盒,總會(huì)有一個(gè)文具盒至少有2枝筆)(你真是一個(gè)善于思想的孩子。)。

(6)這位同學(xué)運(yùn)用了假設(shè)法來(lái)說(shuō)明問(wèn)題,你是假設(shè)先在每個(gè)文具盒里放1枝鉛筆,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)。

3、類推:把5枝鉛筆放進(jìn)4個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

把6枝鉛筆放進(jìn)5個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

把7枝鉛筆放進(jìn)6個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

把100枝鉛筆放進(jìn)99個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。)。

5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)筆盒至少有2枝鉛筆?!?/p>

6、小結(jié):剛才我們分析了把鉛筆放進(jìn)文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時(shí),總有一個(gè)文具盒至少放進(jìn)2枝鉛筆。

這就是今天我們要學(xué)習(xí)的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么文具盒就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體。”

過(guò)渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問(wèn)題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮?lái)研究這樣一組問(wèn)題。

(二)探究例2。

1、研究把5本書放進(jìn)2個(gè)抽屜。

(1)把5本書放進(jìn)2個(gè)抽屜會(huì)有幾種情況?(5,0)、(4,1)和(3,2)。

(2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個(gè)抽屜至少放進(jìn)了3本書)。

(3)還可以怎樣理解這個(gè)結(jié)論?先在每個(gè)抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個(gè)抽屜,這個(gè)抽屜就有3本書了。

2、類推:如果把7本書放進(jìn)2個(gè)抽屜中,至少有一個(gè)抽屜放進(jìn)4本書。

如果把9本書放進(jìn)2個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)5本書。

3、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時(shí),我們可以運(yùn)用假設(shè)法,把物體盡可量多地“平均分”給各個(gè)抽屜,總有一個(gè)抽屜比平均分得的物體數(shù)多1。)。

4、經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。“抽屜原理”最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。

5、做一做:

7只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)佶舍里。為什么?

8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛時(shí)同一個(gè)鴿舍里。為什么?

(先讓學(xué)生獨(dú)立思考,在小組里討論,再全班反饋)。

三、遷移與拓展。

下面我們一起來(lái)放松一下,做個(gè)小游戲。

四、總結(jié)全課。

這節(jié)課,你有什么收獲?

將本文的word文檔下載到電腦,方便收藏和打印。

抽屜原理教學(xué)設(shè)計(jì)劉松篇五

1.使學(xué)生能理解抽取問(wèn)題中的一些基本原理,并能解決有關(guān)簡(jiǎn)單的問(wèn)題。

2.體會(huì)數(shù)學(xué)與日常生活的聯(lián)系,了解數(shù)學(xué)的價(jià)值,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。

一、創(chuàng)設(shè)情境,復(fù)習(xí)舊知。

1、出示復(fù)習(xí)題:

師:老師這兒有一個(gè)問(wèn)題,不知道哪位同學(xué)能幫助解答一下?

2、課件出示:把3個(gè)蘋果放進(jìn)2個(gè)抽屜里,總有一個(gè)抽屜至少放2個(gè)蘋果,為什么?

3、學(xué)生自由回答。

二、教學(xué)例2。

(1)組織學(xué)生讀題,理解題意。

教師:你們能猜出結(jié)果嗎?

組織學(xué)生猜一猜,并相互交流。

指名學(xué)生匯報(bào)。

學(xué)生匯報(bào)時(shí)可能會(huì)答出:只摸4個(gè)球就可以了,至少要摸出5個(gè)球……。

教師:能驗(yàn)證嗎?

教師拿出準(zhǔn)備好的紅球及藍(lán)球,組織學(xué)生到講臺(tái)前來(lái)動(dòng)手摸一摸,驗(yàn)證匯報(bào)結(jié)果的正確性。

2、組織學(xué)生議一議,并相互交流。再指名學(xué)生匯報(bào)。

教師:上面的問(wèn)題是一個(gè)抽屜問(wèn)題,請(qǐng)同學(xué)們找一找:“抽屜”是什么?“抽屜”有幾個(gè)?

組織學(xué)生議一議,并相互交流。

指名學(xué)生匯報(bào),使學(xué)生明確:抽屜就是顏色數(shù)。(板書)。

教師:能用例1的知識(shí)來(lái)解答嗎?

組織學(xué)生議一議,并相互交流。

指名學(xué)生匯報(bào)。

使學(xué)生明確:只要分的物體比抽屜多,就能保證總有一個(gè)抽屜至少放蕩2個(gè)球,因此要保證摸出兩個(gè)同色的球,摸出球的數(shù)量至少要比顏色的種數(shù)多一。

(3)組織學(xué)生對(duì)例題的解答過(guò)程議一議,相互交流,理解解決問(wèn)題的方法。

學(xué)生不難發(fā)現(xiàn):只要摸出的'球比它們的顏色種數(shù)多1,就能保證有兩個(gè)球同色。

3、做一做。

第1題。

1、獨(dú)立思考,判斷正誤。

2、同學(xué)交流,說(shuō)明理由。其中“370名學(xué)生中一定有兩人的生日是同一天”與例1中的“抽屜原理”是一類,“49名學(xué)生中一定有5人的出生月份相同”則與例2的類型相同。教師要引導(dǎo)學(xué)生把“生日問(wèn)題”轉(zhuǎn)化成“抽屜問(wèn)題”。因?yàn)橐荒曛凶疃嘤?66天,如果把這366天看作366個(gè)抽屜,把370個(gè)學(xué)生放進(jìn)366個(gè)抽屜,人數(shù)大于抽屜數(shù),因此總有一個(gè)抽屜里至少有兩個(gè)人,即他們的生日是同一天。而一年中有12個(gè)月,如果把這12個(gè)月看作12個(gè)抽屜,把49個(gè)學(xué)生放進(jìn)12個(gè)抽屜,49÷12=4……1,因此,總有一個(gè)抽屜里至少有5(即4+1)個(gè)人,也就是他們的生日在同一個(gè)月。

三鞏固練習(xí)。

完成課文練習(xí)十二第1、3題。

四、總結(jié)評(píng)價(jià)。

1、師:這節(jié)課你有哪些收獲或感想?

五、布置作業(yè)。

3、拓展練習(xí)(選做)。

抽屜原理教學(xué)設(shè)計(jì)劉松篇六

1、經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

2、通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3、通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

經(jīng)歷“抽屜原理”的探究過(guò)程,理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

一、問(wèn)題引入。

1、游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

2、討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?

游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。

二、探究新知。

(一)教學(xué)例1。

師:請(qǐng)同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

問(wèn)題:

(1)“總有”是什么意思?(一定有)。

(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。

學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過(guò)平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

問(wèn)題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)。

總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。

2、完成課下“做一做”,學(xué)習(xí)解決問(wèn)題。

問(wèn)題:6只鴿子飛回5個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

(1)學(xué)生活動(dòng)—獨(dú)立思考自主探究。

(2)交流、說(shuō)理活動(dòng)。

引導(dǎo)學(xué)生分析:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個(gè)籠里”的結(jié)論是正確的。

總結(jié):用平均分的方法,就能說(shuō)明存在“總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里”。

(二)教學(xué)例2。

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2、學(xué)生匯報(bào),教師給予表?yè)P(yáng)后并總結(jié):

總結(jié)1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

總結(jié)2:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

問(wèn)題:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)。

引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰(shuí)的'結(jié)論對(duì)呢?(學(xué)生小組里進(jìn)行研究、討論。)。

總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。

(三)學(xué)生自學(xué)例題3并進(jìn)行自主交流,試著用手中的用具模擬演示場(chǎng)景。

三、解決問(wèn)題。

四、全課小結(jié)。

抽屜原理教學(xué)設(shè)計(jì)劉松篇七

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2.學(xué)生匯報(bào),教師給予表?yè)P(yáng)后并總結(jié):

總結(jié)1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

總結(jié)2:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

問(wèn)題:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)。

引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰(shuí)的結(jié)論對(duì)呢?(學(xué)生小組里進(jìn)行研究、討論。)。

總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的`應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。

抽屜原理教學(xué)設(shè)計(jì)劉松篇八

教科書第68、69頁(yè)例1、2。

1、使學(xué)生經(jīng)歷將一些實(shí)際問(wèn)題抽象為代數(shù)問(wèn)題的過(guò)程,并能運(yùn)用所學(xué)知識(shí)解決有關(guān)實(shí)際問(wèn)題。

2、能與他人交流思維過(guò)程和結(jié)果,并學(xué)會(huì)有條理地、清晰地闡述自己的觀點(diǎn)。

教學(xué)重點(diǎn):分配方法。

教學(xué)難點(diǎn):分配方法。

教學(xué)方法:列舉法、分析法。

學(xué)習(xí)方法:嘗試法、自主探究法。

教學(xué)用具:課件。

(一)游戲引入。

1、游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

2、討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?

游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。

(二)揭示目標(biāo)。

理解并掌握解決鴿巢問(wèn)題的解答方法。

1、看書68頁(yè),閱讀例1:把4枝鉛筆放進(jìn)3個(gè)文具盒中,可以怎么放?有幾種情況?

(1)理解“總有”和“至少”的意思。

(2)理解4種放法。

2、全班同學(xué)交流思維的過(guò)程和結(jié)果。

3、跟蹤練習(xí)。

68頁(yè)做一做:5只鴿子飛回3個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

(1)說(shuō)出想法。

如果每個(gè)鴿舍只飛進(jìn)1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進(jìn)其中的一個(gè)鴿舍或分別飛進(jìn)其中的兩個(gè)鴿舍。所以至少有2只鴿子飛進(jìn)同一個(gè)鴿舍。

(2)嘗試分析有幾種情況。

(3)說(shuō)一說(shuō)你有什么體會(huì)。

1、出示例2。

把7本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書?(1)合作交流有幾種放法。

不難得出,總有一個(gè)抽屜至少放進(jìn)3本。

(2)指名說(shuō)一說(shuō)思維過(guò)程。

如果每個(gè)抽屜放2本,放了6本書。剩下的1本還要放進(jìn)其中一個(gè)抽屜,所以至少有1個(gè)抽屜放進(jìn)3本書。

2、如果一共有8本書會(huì)怎樣呢10本呢?

3、你能用算式表示以上過(guò)程嗎?你有什么發(fā)現(xiàn)?

7÷3=2……1(至少放3本)。

8÷3=2……2(至少放4本)。

10÷3=3……1(至少放5本)。

4、做一做。

11只鴿子飛回4個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

1、鴿巢問(wèn)題怎樣求?

小結(jié):先平均分配,再把余數(shù)進(jìn)行分配,得出的就是一個(gè)抽屜至少放進(jìn)的本數(shù)。

2、做一做。

69頁(yè)做一做2題。

(一)小結(jié)。

鴿巢問(wèn)題的解答方法是什么?

物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜里至少放進(jìn)(商+1)個(gè)物體。

(二)檢測(cè)。

1、填空。

(1)7只鴿子飛進(jìn)5個(gè)鴿舍,至少有()只鴿子要飛進(jìn)同伴的鴿舍里。

(2)有9本書,要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放()本書。

(3)四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有()人是同一月出生的。4、任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的和是()數(shù)。

2、選擇。

3、幼兒園老師準(zhǔn)備把15本圖畫書分給14個(gè)小朋友,結(jié)果是什么?

完成課本練習(xí)十二第2、4題。

板書。

物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜至少放進(jìn)(商+1)物體。

抽屜原理教學(xué)設(shè)計(jì)劉松篇九

1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3.通過(guò)“抽屜原理”的`靈活應(yīng)用感受數(shù)學(xué)的魅力。

經(jīng)歷“抽屜原理”的探究過(guò)程,理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

1.游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?

游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。

抽屜原理教學(xué)設(shè)計(jì)劉松篇十

1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3.通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

經(jīng)歷“抽屜原理”的探究過(guò)程,理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

一、問(wèn)題引入。

1.游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?

游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。

二、探究新知。

(一)教學(xué)例1。

師:請(qǐng)同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

問(wèn)題:

(1)“總有”是什么意思?(一定有)。

(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。

學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過(guò)平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

問(wèn)題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)。

總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。

2.完成課下“做一做”,學(xué)習(xí)解決問(wèn)題。

問(wèn)題:6只鴿子飛回5個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

(1)學(xué)生活動(dòng)—獨(dú)立思考自主探究。

(2)交流、說(shuō)理活動(dòng)。

引導(dǎo)學(xué)生分析:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個(gè)籠里”的結(jié)論是正確的。

總結(jié):用平均分的`方法,就能說(shuō)明存在“總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里”。

(二)教學(xué)例2。

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2.學(xué)生匯報(bào),教師給予表?yè)P(yáng)后并總結(jié):

總結(jié)1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

總結(jié)2:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

問(wèn)題:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)。

引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰(shuí)的結(jié)論對(duì)呢?(學(xué)生小組里進(jìn)行研究、討論。)。

總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。

(三)學(xué)生自學(xué)例題3并進(jìn)行自主交流,試著用手中的用具模擬演示場(chǎng)景。

三、解決問(wèn)題。

四、全課小結(jié)。

抽屜原理教學(xué)設(shè)計(jì)劉松篇十一

這一冊(cè)教材包括下面一些內(nèi)容:負(fù)數(shù)、圓柱與圓錐、比例、統(tǒng)計(jì)、數(shù)學(xué)廣角、整理和復(fù)習(xí)等。

教學(xué)重點(diǎn):百分?jǐn)?shù)的應(yīng)用、圓柱的側(cè)面積和表面積的計(jì)算方法、圓柱和圓錐的體積計(jì)算方法、比例的意義和基本性質(zhì)、正比例和反比例、扇形統(tǒng)計(jì)圖、轉(zhuǎn)化的解題策略以及總復(fù)習(xí)的四個(gè)板塊的系列內(nèi)容。

教學(xué)難點(diǎn):圓柱和圓錐體積計(jì)算方法的推導(dǎo)、成正比例和反比例量的判斷、用方向和距離確定位置、眾數(shù)和中位數(shù)平均數(shù)、解題策略的靈活運(yùn)用。

這一冊(cè)教材的教學(xué)目標(biāo)是讓學(xué)生:

1.了解負(fù)數(shù)的意義,會(huì)用負(fù)數(shù)表示一些日常生活中的問(wèn)題。

2.理解比例的意義和基本性質(zhì),會(huì)解比例,理解正比例和反比例的意義,能夠判斷兩種量是否成正比例或反比例,會(huì)用比例知識(shí)解決比較簡(jiǎn)單的實(shí)際問(wèn)題;能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標(biāo)系的方格紙上畫圖,并能根據(jù)其中一個(gè)量的值估計(jì)另一個(gè)量的值。

3.會(huì)看比例尺,能利用方格紙等形式按一定的比例將簡(jiǎn)單圖形放大或縮小。

4.認(rèn)識(shí)圓柱、圓錐的特征,會(huì)計(jì)算圓柱的表面積和圓柱、圓錐的體積。

5.能從統(tǒng)計(jì)圖表準(zhǔn)確提取統(tǒng)計(jì)信息,正確解釋統(tǒng)計(jì)結(jié)果,并能作出正確的判斷或簡(jiǎn)單的預(yù)測(cè);初步體會(huì)數(shù)據(jù)可能產(chǎn)生誤導(dǎo)。

6.經(jīng)歷從實(shí)際生活中發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、解決問(wèn)題的過(guò)程,體會(huì)數(shù)學(xué)在日常生活中的作用,初步形成綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。

7.經(jīng)歷對(duì)“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題,發(fā)展分析、推理的能力。

8.通過(guò)系統(tǒng)的整理和復(fù)習(xí),加深對(duì)階段所學(xué)的數(shù)學(xué)知識(shí)的理解和掌握,形成比較合理的、靈活的計(jì)算能力,發(fā)展和空間觀念,提高綜合運(yùn)用所學(xué)數(shù)學(xué)知識(shí)解決問(wèn)題的能力。

9.體會(huì)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,提高學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

10.養(yǎng)成認(rèn)真作業(yè)、書寫整潔的良好習(xí)慣。

在數(shù)與代數(shù)方面,這一冊(cè)教材安排了負(fù)數(shù)和比例兩個(gè)單元。結(jié)合生活實(shí)例使學(xué)生初步認(rèn)識(shí)負(fù)數(shù),了解負(fù)數(shù)在實(shí)際生活中的應(yīng)用。比例的教學(xué),使學(xué)生理解比例、正比例和反比例的概念,會(huì)解比例和用比例知識(shí)解決問(wèn)題。

在空間與圖形方面,這一冊(cè)教材安排了圓柱與圓錐的教學(xué),在已有知識(shí)和經(jīng)驗(yàn)的基礎(chǔ)上,使學(xué)生通過(guò)對(duì)圓柱、圓錐特征和有關(guān)知識(shí)的探索與學(xué)習(xí),掌握有關(guān)圓柱表面積,圓柱、圓錐體積計(jì)算的基本方法,促進(jìn)空間觀念的進(jìn)一步發(fā)展。

在統(tǒng)計(jì)方面,本冊(cè)教材安排了有關(guān)數(shù)據(jù)可能產(chǎn)生誤導(dǎo)的內(nèi)容。通過(guò)簡(jiǎn)單事例,使學(xué)生認(rèn)識(shí)到利用統(tǒng)計(jì)圖表雖便于作出判斷或預(yù)測(cè),但如不認(rèn)真分析也有可能獲得不準(zhǔn)確的信息導(dǎo)致錯(cuò)誤判斷或預(yù)測(cè),明確對(duì)統(tǒng)計(jì)數(shù)據(jù)進(jìn)行認(rèn)真、客觀、全面的分析的重要性。

在用數(shù)學(xué)解決問(wèn)題方面,教材一方面結(jié)合圓柱與圓錐、比例、統(tǒng)計(jì)等知識(shí)的學(xué)習(xí),教學(xué)用所學(xué)的知識(shí)解決生活中的簡(jiǎn)單問(wèn)題;另一方面安排了“數(shù)學(xué)廣角”的教學(xué)內(nèi)容,引導(dǎo)學(xué)生通過(guò)觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng),經(jīng)歷探究“抽屜原理”的過(guò)程,體會(huì)如何對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題“模型化”,從而學(xué)習(xí)用“抽屜原理”加以解決,感受數(shù)學(xué)的魅力,發(fā)展學(xué)生解決問(wèn)題的能力。

本冊(cè)教材根據(jù)學(xué)生所學(xué)習(xí)的數(shù)學(xué)知識(shí)和生活經(jīng)驗(yàn),安排了多個(gè)數(shù)學(xué)綜合應(yīng)用的實(shí)踐活動(dòng),讓學(xué)生通過(guò)小組合作的探究活動(dòng)或有現(xiàn)實(shí)背景的活動(dòng),運(yùn)用所學(xué)知識(shí)解決問(wèn)題,體會(huì)探索的樂(lè)趣和數(shù)學(xué)的實(shí)際應(yīng)用,感受用數(shù)學(xué)的愉悅,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和實(shí)踐能力。

整理和復(fù)習(xí)單元是在完成小學(xué)數(shù)學(xué)的全部教學(xué)內(nèi)容之后,引導(dǎo)學(xué)生對(duì)所學(xué)內(nèi)容進(jìn)行一次系統(tǒng)的、全面的回顧與整理,這是小學(xué)數(shù)學(xué)教學(xué)的一個(gè)重要環(huán)節(jié)。通過(guò)整理和復(fù)習(xí),使原來(lái)分散學(xué)習(xí)的知識(shí)得以梳理,由數(shù)學(xué)的知識(shí)點(diǎn)串成知識(shí)線,由知識(shí)線構(gòu)成知識(shí)網(wǎng),從而幫助學(xué)生完善頭腦中的.數(shù)學(xué)認(rèn)知結(jié)構(gòu),為的數(shù)學(xué)學(xué)習(xí)打下良好的基礎(chǔ);同時(shí)進(jìn)一步提高學(xué)生綜合運(yùn)用所學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力。

本班共有學(xué)生29人,大部分學(xué)生對(duì)數(shù)學(xué)有上進(jìn)心;有些學(xué)生的學(xué)習(xí)態(tài)度還需不斷端正;有部分學(xué)生自覺性不夠,上課注意力不集中;不能及時(shí)完成作業(yè)等;還有個(gè)別學(xué)生(胡志強(qiáng)、裴玉琴、陳建宏)基礎(chǔ)知識(shí)掌握不夠扎實(shí),學(xué)習(xí)數(shù)學(xué)有很大困難。所以在新的學(xué)期里,在端正學(xué)生學(xué)習(xí)態(tài)度的同時(shí),應(yīng)加強(qiáng)培養(yǎng)他們的各種學(xué)習(xí)數(shù)學(xué)的能力,利用小組討論的學(xué)習(xí)方式,使學(xué)生在討論中人人參與,各抒己見,互相啟發(fā),自己找出解決問(wèn)題的方法,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的快樂(lè)。

教學(xué)方法:

1、創(chuàng)設(shè)愉悅的教學(xué)情境,激發(fā)學(xué)生學(xué)習(xí)的興趣。提倡學(xué)法的多樣性,關(guān)注學(xué)生的個(gè)人體驗(yàn)。

2、在集體備課基礎(chǔ)上,還應(yīng)同年級(jí)老師交換聽課,及時(shí)反思,真正領(lǐng)會(huì)教學(xué)設(shè)計(jì)意圖,提高駕御課堂的能力。教師應(yīng)轉(zhuǎn)變觀念,采用“激勵(lì)性、自主性、創(chuàng)造性”教學(xué)策略,以問(wèn)題為線索,恰當(dāng)運(yùn)用教材、媒體、現(xiàn)實(shí)材料突破重點(diǎn)、難點(diǎn),變多講多練,為精講精練,真正實(shí)現(xiàn)師生互動(dòng)、生生互動(dòng),從而調(diào)動(dòng)學(xué)生積極主動(dòng)學(xué)習(xí),提高教與學(xué)的效益。

3、不增減課程和課時(shí),不提高要求,不購(gòu)買其他復(fù)習(xí)資料,不留機(jī)械、重復(fù)、懲罰性作業(yè)和作業(yè)總量不超過(guò)規(guī)定時(shí)間,課堂訓(xùn)練形式的多樣化,重視一題多解,從不同角度解決問(wèn)題。

4、加強(qiáng)基礎(chǔ)知識(shí)的教學(xué),使學(xué)生切實(shí)掌握好這些基礎(chǔ)知識(shí)。本學(xué)期要以新的教學(xué)理念,為學(xué)生的持續(xù)發(fā)展提供豐富的和空間。要充分發(fā)揮教材的優(yōu)勢(shì),在教學(xué)過(guò)程中,密切數(shù)學(xué)與生活的聯(lián)系,確立學(xué)生在學(xué)習(xí)中的主體地位,創(chuàng)設(shè)愉悅、開放式的教學(xué)情境,使學(xué)生在愉悅、開放式的教學(xué)情境中滿足個(gè)性習(xí)需求,從而達(dá)到掌握基礎(chǔ)知識(shí)基本技能,培養(yǎng)學(xué)生創(chuàng)新意識(shí)和實(shí)踐能力的目的。

5、在教學(xué)中注意采用開放式教學(xué),培養(yǎng)學(xué)生根據(jù)具體情境選擇適當(dāng)方法解決實(shí)際問(wèn)題的意識(shí)。如通過(guò)一題多解、一題多變、一題多問(wèn)、一題多編等途徑,拓寬學(xué)生的知識(shí)面,溝識(shí)之間的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生的應(yīng)變能力。

6、練習(xí)的安排,要由淺入深,體現(xiàn)層次性。對(duì)優(yōu)生、學(xué)困生都要體現(xiàn)有所指導(dǎo)。增強(qiáng)數(shù)學(xué)實(shí)踐活動(dòng),讓學(xué)生認(rèn)識(shí)數(shù)學(xué)知識(shí)與實(shí)際生活的關(guān)系,使學(xué)生感到生活中時(shí)時(shí)處處有數(shù)學(xué),用數(shù)學(xué)的實(shí)際意義來(lái)誘發(fā)和培養(yǎng)學(xué)生熱愛數(shù)學(xué)的情感。

抽屜原理教學(xué)設(shè)計(jì)劉松篇十二

教學(xué)內(nèi)容:

教科書第68、69頁(yè)例1、2。

教學(xué)目標(biāo):

1、使學(xué)生經(jīng)歷將一些實(shí)際問(wèn)題抽象為代數(shù)問(wèn)題的過(guò)程,并能運(yùn)用所學(xué)知識(shí)解決有關(guān)實(shí)際問(wèn)題。

2、能與他人交流思維過(guò)程和結(jié)果,并學(xué)會(huì)有條理地、清晰地闡述自己的觀點(diǎn)。

教學(xué)重點(diǎn):分配方法。

教學(xué)難點(diǎn):分配方法。

教學(xué)方法:列舉法分析法。

學(xué)習(xí)方法:嘗試法自主探究法。

教學(xué)用具:課件。

教學(xué)過(guò)程:

一、定向?qū)W(xué)(3分)。

(一)游戲引入。

1、游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

2、討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?

游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。

(二)揭示目標(biāo)。

理解并掌握解決鴿巢問(wèn)題的解答方法。

二、自主學(xué)習(xí)(8分)。

1、看書68頁(yè),閱讀例1:把4枝鉛筆放進(jìn)3個(gè)文具盒中,可以怎么放?有幾種情況?

(1)理解“總有”和“至少”的意思。

(2)理解4種放法。

2、全班同學(xué)交流思維的過(guò)程和結(jié)果。

3、跟蹤練習(xí)。

68頁(yè)做一做:5只鴿子飛回3個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

(1)說(shuō)出想法。

如果每個(gè)鴿舍只飛進(jìn)1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進(jìn)其中的一個(gè)鴿舍或分別飛進(jìn)其中的兩個(gè)鴿舍。所以至少有2只鴿子飛進(jìn)同一個(gè)鴿舍。

(2)嘗試分析有幾種情況。

(3)說(shuō)一說(shuō)你有什么體會(huì)。

三、合作交流(8)。

1、出示例2。

把7本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書?(1)合作交流有幾種放法。

不難得出,總有一個(gè)抽屜至少放進(jìn)3本。

(2)指名說(shuō)一說(shuō)思維過(guò)程。

如果每個(gè)抽屜放2本,放了6本書。剩下的1本還要放進(jìn)其中一個(gè)抽屜,所以至少有1個(gè)抽屜放進(jìn)3本書。

2、如果一共有8本書會(huì)怎樣呢10本呢?

3、你能用算式表示以上過(guò)程嗎?你有什么發(fā)現(xiàn)?

7÷3=2……1(至少放3本)。

8÷3=2……2(至少放4本)。

10÷3=3……1(至少放5本)。

4、做一做。

11只鴿子飛回4個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

四、質(zhì)疑探究(5分)。

1、鴿巢問(wèn)題怎樣求?

小結(jié):先平均分配,再把余數(shù)進(jìn)行分配,得出的就是一個(gè)抽屜至少放進(jìn)的本數(shù)。

2、做一做。

69頁(yè)做一做2題。

五、小結(jié)檢測(cè)(10)。

(一)小結(jié)。

鴿巢問(wèn)題的解答方法是什么?

物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜里至少放進(jìn)(商+1)個(gè)物體。

(二)檢測(cè)。

1、填空。

(1)7只鴿子飛進(jìn)5個(gè)鴿舍,至少有()只鴿子要飛進(jìn)同伴的鴿舍里。

(2)有9本書,要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放()本書。

(3)四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有()人是同一月出生的。

(4)任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的和是()數(shù)。

2、選擇。

3、幼兒園老師準(zhǔn)備把15本圖畫書分給14個(gè)小朋友,結(jié)果是什么?

六、作業(yè)(6分)。

完成課本練習(xí)十二第2、4題。

板書。

物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜至少放進(jìn)(商+1)物體。

抽屜原理教學(xué)設(shè)計(jì)劉松篇十三

《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》六年級(jí)下冊(cè)第68頁(yè)。

【教學(xué)目標(biāo)】。

1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3.通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

【教學(xué)重點(diǎn)】。

經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

【教學(xué)難點(diǎn)】。

理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

【教具、學(xué)具準(zhǔn)備】。

每組都有相應(yīng)數(shù)量的盒子、鉛筆、書。

【教學(xué)過(guò)程】。

一、課前游戲引入。

師:同學(xué)們?cè)谖覀兩险n之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來(lái),誰(shuí)愿來(lái)?(學(xué)生上來(lái)后)。

師:聽清要求,老師說(shuō)開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。

師:開始。

師:都坐下了嗎?

生:坐下了。

生:對(duì)!

【點(diǎn)評(píng)】教師從學(xué)生熟悉的“搶椅子”游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象,激發(fā)了學(xué)生的學(xué)習(xí)興趣,為后面開展教與學(xué)的活動(dòng)做了鋪墊。

二、通過(guò)操作,探究新知。

(一)教學(xué)例1。

師:請(qǐng)同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0)(2,1)。

【點(diǎn)評(píng)】此處設(shè)計(jì)教師注意了從最簡(jiǎn)單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動(dòng)所有的學(xué)生積極參與進(jìn)來(lái)。

生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?

是:是這樣嗎?誰(shuí)還有這樣的發(fā)現(xiàn),再說(shuō)一說(shuō)。

師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請(qǐng)同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))。

師:誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

(4,0,0)。

(3,1,0)。

(2,2,0)。

(2,1,1),

師:還有不同的放法嗎?

生:沒(méi)有了。

師:你能發(fā)現(xiàn)什么?

生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

師:“總有”是什么意思?

生:一定有。

師:“至少”有2枝什么意思?

生:不少于兩只,可能是2枝,也可能是多于2枝?

師:就是不能少于2枝。(通過(guò)操作讓學(xué)生充分體驗(yàn)感受)。

學(xué)生思考——組內(nèi)交流——匯報(bào)。

師:哪一組同學(xué)能把你們的想法匯報(bào)一下?

組1生:我們發(fā)現(xiàn)如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。

師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)。

師:同學(xué)們自己說(shuō)說(shuō)看,同位之間邊演示邊說(shuō)一說(shuō)好嗎?

師:這種分法,實(shí)際就是先怎么分的?

生眾:平均分。

師:為什么要先平均分?(組織學(xué)生討論)。

生1:要想發(fā)現(xiàn)存在著“總有一個(gè)盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?

師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結(jié)合操作,說(shuō)一說(shuō))。

師:哪位同學(xué)能把你的想法匯報(bào)一下,

生:(一邊演示一邊說(shuō))5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?

生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

師:把7枝筆放進(jìn)6個(gè)盒子里呢?

把8枝筆放進(jìn)7個(gè)盒子里呢?

把9枝筆放進(jìn)8個(gè)盒子里呢?……。

你發(fā)現(xiàn)什么?

生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說(shuō)一遍。

【點(diǎn)評(píng)】教師關(guān)注了“抽屜原理”的最基本原理,物體個(gè)數(shù)必須要多于抽屜個(gè)數(shù),化繁為簡(jiǎn),此處確實(shí)有必要提領(lǐng)出來(lái)進(jìn)行教學(xué)。在學(xué)生自主探索的基礎(chǔ)上,教師注意引導(dǎo)學(xué)生得出一般性的結(jié)論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。通過(guò)教師組織開展的扎實(shí)有效的教學(xué)活動(dòng),學(xué)生學(xué)的有興趣,發(fā)展了學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

抽屜原理教學(xué)設(shè)計(jì)劉松篇十四

物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜里至少放進(jìn)(商+1)個(gè)物體。

(二)檢測(cè)。

1、填空。

(1)7只鴿子飛進(jìn)5個(gè)鴿舍,至少有()只鴿子要飛進(jìn)同伴的鴿舍里。

(2)有9本書,要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放()本書。

(3)四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有()人是同一月出生的。

(4)任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的和是()數(shù)。

2、選擇。

(1)5個(gè)人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于()元。

a、60b、61c、62d、59。

(2)3種商品的總價(jià)是13元,每種商品的價(jià)格都是整數(shù),至少有一種商品的價(jià)格不低于()元。

a、3b、4c、5d、無(wú)法確定。

3、幼兒園老師準(zhǔn)備把15本圖畫書分給14個(gè)小朋友,結(jié)果是什么?

六、作業(yè)(6分)。

完成課本練習(xí)十二第2、4題。

板書。

物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜至少放進(jìn)(商+1)物體。

抽屜原理教學(xué)設(shè)計(jì)劉松篇十五

《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)六年級(jí)下冊(cè)第五單元數(shù)學(xué)廣角的教學(xué)內(nèi)容。這部分教材通過(guò)幾個(gè)直觀例子,借助實(shí)際操作,向?qū)W生介紹“抽屜原理”,使學(xué)生在理解“抽屜原理”這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以“模型化”,會(huì)用“抽屜原理”加以解決。

2.學(xué)情分析。

“抽屜原理”在生活中運(yùn)用廣泛,學(xué)生在生活中常常能遇到實(shí)例,但并不能有意識(shí)地從數(shù)學(xué)的角度來(lái)理解和運(yùn)用“抽屜原理”。教學(xué)中應(yīng)有意識(shí)地讓學(xué)生理解“抽屜原理”的“一般化模型”。六年級(jí)學(xué)生的邏輯思維能力、小組合作能力和動(dòng)手操作能力都有了較大的提高,加上已有的生活經(jīng)驗(yàn),很容易感受到用“抽屜原理”解決問(wèn)題帶來(lái)的樂(lè)趣。

3.教學(xué)理念。

激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過(guò)小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建?!?,使復(fù)雜問(wèn)題簡(jiǎn)單化,簡(jiǎn)單問(wèn)題模型化,充分體現(xiàn)了新課標(biāo)要求。

4.教學(xué)目標(biāo)。

1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3.通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

5.教學(xué)重難點(diǎn)。

重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

6.教學(xué)過(guò)程。

一、課前游戲引入。

上課前,我們先來(lái)熱身一下,一起來(lái)玩搶椅子的游戲。

游戲規(guī)則是:在老師說(shuō)開始時(shí),3位同學(xué)繞著椅子走,當(dāng)老師說(shuō)停的,三位同學(xué)都要坐在椅子上。

為什么總有一張椅子至少坐兩個(gè)同學(xué)?

在這個(gè)游戲中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理叫做抽屜理原,這節(jié)課我們就一起來(lái)研究抽屜理原。(板書課題)。

二、通過(guò)操作,探究新知。

(一)探究例1。

【本文地址:http://mlvmservice.com/zuowen/10417457.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔