高中數(shù)學(xué)必背公式整理,數(shù)學(xué)的計(jì)算離不開公式,很多基礎(chǔ)的題目都是靠公式直接計(jì)算出來的,為此小編為大家搜集整理了高中數(shù)學(xué)必背公式整理。下面就由小編帶大家具體了解一下,大家可以參考一下。
拋物線公式
y=ax^2+bx+c就是y等于ax的平方加上b
a>0時(shí)開口向上
a<0時(shí)開口向下
c=0時(shí)拋物線經(jīng)過原點(diǎn)
b=0時(shí)拋物線對(duì)稱軸為y軸
拋物線標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)準(zhǔn)線方程為x=-p/2
由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py
面積公式
圓的體積公式4/3(pi)(r^3)
圓的面積公式(pi)(r^2)
圓的周長公式2(pi)r
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h
正棱錐側(cè)面積S=1/2c*h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'
圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=S'L注:其中S'是直截面面積L是側(cè)棱長
柱體體積公式V=s*h圓柱體V=pi*r2h
橢圓周長計(jì)算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
橢圓面積計(jì)算公式
橢圓面積公式:S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
三角函數(shù)公式
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
導(dǎo)數(shù)公式
y=f(x)=c(c為常數(shù))則f'(x)=0
f(x)=x^n(n不等于0)f'(x)=nx^(n-1)(x^n表示x的n次方)
f(x)=sinxf'(x)=cosx
f(x)=cosxf'(x)=-sinx
f(x)=a^xf'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^xf'(x)=e^x
f(x)=logaXf'(x)=1/xlna(a>0且a不等于1,x>0)
f(x)=lnxf'(x)=1/x(x>0)
f(x)=tanxf'(x)=1/cos^2x
f(x)=cotxf'(x)=-1/sin^2x
導(dǎo)數(shù)運(yùn)算法則
加法法則:(f(x)-g(x))'=f'(x)-g'(x)
減法法則:(f(x)+g(x))'=f'(x)+g'(x)
乘法法則:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法則:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2
1、答題先易后難
原則上應(yīng)從前往后答題,因?yàn)樵诳碱}的設(shè)計(jì)中一般都是按照先易后難的順序設(shè)計(jì)的。先答簡單、易做的題,有助于緩解緊張情緒,同時(shí)也避免因會(huì)做的題目沒有做完而造成的失分。如果在實(shí)際答卷中確有個(gè)別知識(shí)點(diǎn)遺忘可以“跳”過去,先做后面的題。
2、答卷仔細(xì)審題穩(wěn)中求快
最簡章的題目可以看一遍,一般的題目至少要看兩遍??荚嚂r(shí)間對(duì)于大多數(shù)學(xué)生來說,答題時(shí)間比較緊,尤其是最后兩道題占用的時(shí)間較多,很多考生檢查的時(shí)間較少。所以得分的高低往往取決于第一次的答題上。另外,像解方程、求函數(shù)解析式等題應(yīng)先檢查再向后做。
3、答數(shù)學(xué)卷要注意陷阱
答題時(shí)需注意題中的要求。例如、科學(xué)計(jì)數(shù)法在題中是對(duì)哪一個(gè)數(shù)據(jù)進(jìn)行科學(xué)計(jì)數(shù)要求保留幾位有效數(shù)字等等。
警惕考題中的“零”陷阱。這類題也是考生們常做錯(cuò)的題,常見的有分式的分母“不為零”;一元二次方程的二項(xiàng)系數(shù)“不為零”(注意有沒有強(qiáng)調(diào)是一元二次方程);函數(shù)中有關(guān)系數(shù)“不為零”;a0=1中“a不為零”等比性質(zhì)中分母之和“不為零”(注意分類討論)等等。
好了,以上就是小編為大家?guī)淼年P(guān)于高中數(shù)學(xué)必背公式整理,希望對(duì)大家能夠有所幫助,想要了解更多資訊文章,請(qǐng)關(guān)注學(xué)分網(wǎng),最后,感謝大家的閱讀!
@xuefen.com.cn 2013-2022 蘇ICP備2022025589號(hào)-4-1 最近更新