閱讀可以讓我們感受到不同的情感和思想,提高自己的情商。閱讀時要注重細節(jié),把握文章的深層含義。每個范文都有其獨特之處,我們可以從中挑選適合自己風格和需要的寫作素材。
對高等數(shù)學的體會篇一
高等代數(shù)學習是大學數(shù)學重要的一部分,相較于初等代數(shù),高等代數(shù)更為抽象和理論化,對于學生來說大有難度。但是隨著時間的推移,我漸漸開始感到了高等代數(shù)的魅力,也逐漸發(fā)現(xiàn)了學習高等代數(shù)的重要性。在這篇文章中,我將分享自己在高等代數(shù)學習過程中所得到的心得和體會。
第二段:抵抗初衷
學習高等代數(shù)的第一階段,我感到了很大的挑戰(zhàn)和困惑。在不斷滑坡中,我內(nèi)心渴望退出,想要擺脫這門讓我疲憊的學科。四年前,我開始學習線性代數(shù),我認為自己已經(jīng)成功掌握了這種代數(shù)學基礎(chǔ),在此基礎(chǔ)上學習更高級的代數(shù)只需要一點點努力就可以了。然而,我發(fā)現(xiàn)自己所擁有的數(shù)學知識并沒有真正利于我掌握高等代數(shù)的本質(zhì)和更深層的觀念。開始的時候,我覺得自己面對了一個難題,無法克服這個阻礙心名字邁出的頑爍。
第三段:不斷嘗試
然而,隨著不斷的努力、不斷的嘗試,我開始慢慢了解到了自己所面對問題的真正本質(zhì)。我閱讀了更多更深的數(shù)學論文,掌握了基本概念,進而對所學的東西有了更深刻的理解。我漸漸地意識到,只是單純地閱讀數(shù)學問題和相關(guān)理論是遠遠不夠的。我也需要進行自己的實踐,去親身探究一些問題。因為只有通過實踐,才能夠找到真正有效的方法和途徑。
第四段:逐漸領(lǐng)悟
在實踐之中,我越來越理解到高等代數(shù)學的優(yōu)點。高等代數(shù)學的優(yōu)點在于其極具抽象性以及精致的理論系統(tǒng)。我發(fā)現(xiàn)高等代數(shù)對數(shù)學、物理、工程學以及計算機科學等方面非常重要,而且與其他學科密切相關(guān)。在我逐漸習慣、理解和掌握高等代數(shù)的過程中,我越來越喜歡它的項目。。我感到,高等代數(shù)不僅有助我掌握各種概覽和概念,還可以幫助我更精準地理解其他學科的內(nèi)容。能夠被如此深刻的理解事物的方法,我認為是很難得的。
第五段:結(jié)論
總之,學習高等代數(shù)是一個充滿挑戰(zhàn)性的過程。如果你認真學習,努力訓練,并找到了有效的學習方法,那么這個過程 will將讓你受益良多,并且對我們今后的職業(yè)生涯和個人思考能力都會受益。我感謝高等代數(shù)讓我拓寬了我的視野,并讓我認識到,對于我的專業(yè)及其他方面,學習和鉆研決不是終點。相反,它開啟了一個探索不斷、充滿挑戰(zhàn)但也充滿可能性的新世界。
對高等數(shù)學的體會篇二
經(jīng)濟學是考察社會經(jīng)濟現(xiàn)象、行為及其規(guī)律的學科,而計量經(jīng)濟學則是揭示經(jīng)濟學理論所考察的社會經(jīng)濟現(xiàn)象之間的數(shù)量規(guī)律。計量經(jīng)濟學的學習與應用能力,關(guān)鍵取決于能否運用經(jīng)濟學的思維方式觀察理解經(jīng)濟現(xiàn)象,能否構(gòu)建恰當?shù)慕?jīng)濟模型,能否準確進行參數(shù)估計與模型檢驗,使研究結(jié)論客觀反映經(jīng)濟規(guī)律,進而為政策決策提供有意義的參考。目前,雖然計量經(jīng)濟學已被列為高等院校經(jīng)管類各專業(yè)的重要課程,但我國計量經(jīng)濟學教學與研究與發(fā)達國家相比還有較大差距,進一步培養(yǎng)好計量經(jīng)濟學人才任重道遠。為更好提升學生學習和應用能力,應著重從以下方面入手進行計量經(jīng)濟學人才的培養(yǎng)。
(一)有助于培養(yǎng)學生觀察與分析經(jīng)濟現(xiàn)象的能力
計量經(jīng)濟學重在培養(yǎng)學生基于經(jīng)濟學理論觀察社會經(jīng)濟現(xiàn)象,勇于提出問題。譬如,在研究通貨膨脹時,學生應回顧成本推動型、需求拉動型等通脹形成機制,思考這些理論能否解釋現(xiàn)實。以始于2009年下半年的通貨膨脹為例,顯然,每個人都經(jīng)歷與感知到了該輪通貨膨脹對自身的影響,企業(yè)家感覺到原材料上漲,居民感覺到菜價上漲,學生發(fā)現(xiàn)食堂飯菜價格上升。對于計量經(jīng)濟學的學生來說,首先要思考此輪通脹的原因與貨幣供給過多是否相關(guān),進而要思考此輪通脹與過去通脹是否存在相同特征。教師要將這些問題引入課堂,適時引導學生思考與研究社會經(jīng)濟現(xiàn)象,這實質(zhì)就是培養(yǎng)學生學習與研究計量經(jīng)濟學的能力。
(二)有助于培養(yǎng)學生研究社會經(jīng)濟現(xiàn)象的能力
計量經(jīng)濟學教學是引導學生應用經(jīng)濟學理論理解經(jīng)濟問題的過程。由于社會經(jīng)濟現(xiàn)象的形成機制非常復雜,對同一經(jīng)濟現(xiàn)象經(jīng)濟學家存在不同的看法。經(jīng)濟學理論和計量經(jīng)濟學方法發(fā)展日新月異,這種快速的知識更新使得師生需要不斷學習與研究。此外,經(jīng)濟現(xiàn)象本身也伴隨經(jīng)濟體制、運行機制與經(jīng)濟結(jié)構(gòu)的變化而發(fā)生復雜變化,對這些日益復雜的現(xiàn)實經(jīng)濟現(xiàn)象的深入考察,也考驗著我們運用計量經(jīng)濟模型的能力。因此,深刻理解經(jīng)濟現(xiàn)象及其背后的機制,重在能否正確應用計量經(jīng)濟學。仍以通脹現(xiàn)象為例,學生可能首先聯(lián)想到的是貨幣需求函數(shù),此時,教師可以引導學生比較分析消費價格指數(shù)(cpi)與廣義貨幣(m2)的時間序列數(shù)據(jù)。通過觀察,m2增速于2009年起快速下降,但與此同時,通脹卻表現(xiàn)出持續(xù)上漲的態(tài)勢。該現(xiàn)象提醒我們,若以非線性貨幣需求函數(shù)建模,則可以揭示通脹與貨幣需求間的復雜關(guān)系。為此,適時引導學生針對我國特定的數(shù)據(jù),探索性研究通脹與貨幣需求間的復雜關(guān)系,能夠培養(yǎng)其學習與解決問題的能力。
(三)有助于培養(yǎng)學生研究計量經(jīng)濟理論的能力
高等教育的重要落腳點是開發(fā)學生創(chuàng)新能力。在計量經(jīng)濟學學習中,學生的創(chuàng)新能力體現(xiàn)于能否發(fā)展計量經(jīng)濟學理論。比如,通過引導學生觀察通脹現(xiàn)象,逐步提出以下問題:如何檢驗通貨膨脹與m2是否是平穩(wěn)序列?這兩個變量是否存在協(xié)整關(guān)系?該關(guān)系是否具有非對稱、非線性的特征?怎樣檢驗與估計非對稱、非線性的長期均衡關(guān)系?要回答以上問題,必須學習與發(fā)展計量理論,這需要我們拓展既有非平穩(wěn)時間序列分析的理論與方法。因此,在研究中準確理解與應用相關(guān)理論與方法,特別是針對數(shù)據(jù)特征拓展計量理論,是培養(yǎng)與提升學生學習與應用能力的重點。
二、計量經(jīng)濟學教學實踐改革路徑
現(xiàn)代計量經(jīng)濟學的主要內(nèi)容有:單位根檢驗與基于非平穩(wěn)變量的建模技術(shù);描述經(jīng)濟現(xiàn)象復雜動態(tài)性的模型;使用面板數(shù)據(jù)建立的模型。這些理論與方法與之前的經(jīng)典計量經(jīng)濟學相比存在較大區(qū)別,為使教學與現(xiàn)代計量經(jīng)濟學的發(fā)展相適應,許多教師從教材改革、教學方法創(chuàng)新、突出實驗教學等角度思考了計量經(jīng)濟學的教學方法改革?;谂囵B(yǎng)學生能力這一角度,借鑒以往教學改革的有益建議,結(jié)合我國計量經(jīng)濟學教學的現(xiàn)實狀況,在計量經(jīng)濟學教學實踐中,嘗試從以下方面踐行教學活動。
(一)立足引導與啟發(fā)
首先要清晰講授相關(guān)概念、理論和方法,梳理知識之間的內(nèi)在聯(lián)系,適時對學生提出問題,培養(yǎng)其智能。例如,在講解參數(shù)估計量的線性無偏最小方差性質(zhì)中,應分析估計量是被解釋變量的線性樣本組合,從而引導學生認識估計量的本質(zhì),在理解估計量為一個隨機變量的基礎(chǔ)上,提出其是否服從特定的分布,最終引導學生理解估計量的方差以及對備選估計量的方差分析比較?;诠烙嬃康挠行?,再講解漸進無偏與漸進最優(yōu)估計量。接下來,適時展示線性無偏最小方差估計量的仿真結(jié)果,以此引導學生理解基本的計量經(jīng)濟理論,把引導學生學習和“教會學生學習”一體化。
(二)貫穿“理論、方法和應用”三位一體
在教學中因勢利導,從經(jīng)典計量經(jīng)濟學適當拓展到現(xiàn)代計量經(jīng)濟學,并據(jù)此闡釋計量經(jīng)濟學的相關(guān)理論,注重學生的學習反應,清晰介紹相關(guān)前沿理論。培養(yǎng)學生學習與應用計量經(jīng)濟學的能力重在:一要闡釋回歸分析的產(chǎn)生背景及其內(nèi)涵;二是要培養(yǎng)學生根據(jù)我國數(shù)據(jù)構(gòu)建計量模型的能力;三是要根據(jù)學生的實際情況對講授內(nèi)容進行延伸。計量經(jīng)濟學前沿的理論與方法集中在文獻中,應根據(jù)學生的知識基礎(chǔ)與結(jié)構(gòu)從教材延伸至文獻中。比如,在講授異方差時,適時引出arch模型及其應用;在講授面板模型時,適時延伸到動態(tài)面板模型與廣義矩估計,并結(jié)合我國各省市城鎮(zhèn)居民收入的面板數(shù)據(jù),介紹動態(tài)面板模型和廣義矩估計的分析思路。這種適時適度地引申新的知識,不但使學生深入理解基礎(chǔ)概念,還啟發(fā)學生拓展知識進行應用研究。
(三)充分利用蒙特卡洛仿真技術(shù)
針對學生對計量經(jīng)濟學理論望而生畏的現(xiàn)狀,我們利用蒙特卡洛仿真技術(shù),通過編程將計量經(jīng)濟學中晦澀難懂的估計與檢驗理論轉(zhuǎn)化為仿真結(jié)果,使得學生對抽象數(shù)學公式的模糊認識,轉(zhuǎn)化為對仿真圖形直觀深入的理解。比如,線性無偏有效估計量的統(tǒng)計含義,既是參數(shù)估計中最基礎(chǔ)的知識,又是大多數(shù)學生難懂的部分。在教學中采用仿真實驗和仿真圖形,讓學生對抽象的計量理論產(chǎn)生直觀的認識。又如,模型的誤設(shè)定(如隨機誤差項的異方差性)及其導致的相應后果,是學習傳統(tǒng)線性計量模型基本假設(shè)的重點,由于需要較強的數(shù)理統(tǒng)計學基礎(chǔ),這部分內(nèi)容不但學生難理解,也是教師難以詮釋清楚的問題。通過仿真實驗結(jié)果能夠形象展示違背經(jīng)典計量經(jīng)濟假設(shè)下所導致的結(jié)果,促進學生對設(shè)定正確模型的重要意義產(chǎn)生深刻理解。這種仿真實驗的教學模式不僅避免數(shù)學方面繁雜的推導過程,防止學生對計量經(jīng)濟理論“望而生畏”,還培養(yǎng)了其創(chuàng)新性的學習與研究能力。
三、計量經(jīng)濟學教學創(chuàng)新策略
不斷創(chuàng)新教學方法,培養(yǎng)學生對計量經(jīng)濟學的學習興趣與解決問題的能力,是“學生主動學習”與“干中學”這種新型教學理念的出發(fā)點與落腳點。在教學實踐中,我們采用如下策略。
1.在課堂講授中有意識地提出問題,與學生互動,共同討論問題,適時延伸問題,將學生引入到對相關(guān)前沿文獻的學習。例如,為何采用標準差衡量估計量的精度?ols與廣義gmm的估計原理區(qū)別在哪?單位根檢驗統(tǒng)計量的概率分布為何區(qū)別于常規(guī)分布?通過不斷提出類似問題,與學生“互動式”討論并且解答問題,不僅可以啟發(fā)學生的思維向深度與廣度發(fā)展,還有助于激發(fā)其學習積極性。
2.在課堂教學中協(xié)調(diào)理論講授、案例分析、實驗教學之間的關(guān)系。課堂教學的核心是模型設(shè)定、參數(shù)估計與假設(shè)檢驗等,案例分析和實驗教學的目的在于幫助學生直觀理解理論和方法,并促進其學以致用,能夠進行經(jīng)濟學研究,但絕對不應以軟件操作教學替代基礎(chǔ)理論的教學。在講解理論的基礎(chǔ)上,適時操作相關(guān)的計量經(jīng)濟學軟件,解釋軟件輸出結(jié)果,是實現(xiàn)理論教學和實驗教學融合的有效路徑。
3.通過案例與數(shù)據(jù)分析,建立恰當?shù)挠嬃拷?jīng)濟學模型,引導學生靈活運用。不管是經(jīng)濟學理論,還是計量經(jīng)濟學的研究,經(jīng)濟現(xiàn)象及其背后的運行規(guī)律是學生關(guān)注的問題?;谖覈膶嶋H例子講授計量模型,容易激發(fā)學生對計量經(jīng)濟學的學習興趣,能夠有效促進學生應用所學知識解決現(xiàn)實經(jīng)濟問題的能力。針對計量經(jīng)濟學“難教、難學、難懂”,上述教學方法體現(xiàn)“學生主動學習”和“干中學”等先進教學理論的精神實質(zhì),不僅使學生帶著濃厚的興趣學習計量經(jīng)濟學,也開拓了其知識視野,培養(yǎng)學習、研究與應用計量經(jīng)濟學的能力。
[高等數(shù)學經(jīng)濟學論文]
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
對高等數(shù)學的體會篇三
作為一門數(shù)學專業(yè)的必修課程,高等數(shù)學對學生來說并不易于掌握,需要在學習中不斷地消化吸收。而吳昊,則是一位對高等數(shù)學有深入研究,并且在教學中取得了較好成績的老師。因此,我們會特別關(guān)注吳昊的高等數(shù)學心得體會,從中汲取經(jīng)驗,提高學習效率。
第二段:心得體會一:高等數(shù)學需要系統(tǒng)性學習
吳昊表示,高等數(shù)學知識體系龐雜,而且知識之間的聯(lián)系非常緊密。因此,學生需要先從系統(tǒng)性入手,掌握高等數(shù)學的整體框架和學習路線。在學習中要注意先后順序,不能掉以輕心,否則就會遇到迷失方向的情況。
第三段:心得體會二:掌握基礎(chǔ)知識是關(guān)鍵
高等數(shù)學中的每一個概念,都是建立在基礎(chǔ)之上的。如果基礎(chǔ)學習不扎實,那么后期的學習也無從談起。因此,吳昊建議學生在學習高等數(shù)學之前,先重視基礎(chǔ)概念的學習,鞏固數(shù)學的基礎(chǔ)知識,才能更好地理解和掌握高等數(shù)學。
第四段:心得體會三:靈活運用解題思路
高等數(shù)學中的問題并不單一,其解題方法也需要靈活變通。吳昊提醒學生,在學習高等數(shù)學時,不能僅僅停留在概念和公式的記憶,而應該注重解決具體問題的能力。在解題過程中,應該運用多種思路,靈活變換解題方法,從而提高解題的效率和準確性。
第五段:結(jié)尾及總結(jié)
高等數(shù)學在數(shù)學專業(yè)中占據(jù)著重要的地位,不僅有助于理論的研究,還能為工程應用提供數(shù)學依據(jù)。吳昊的高等數(shù)學心得體會不僅是學生能夠?qū)W好高等數(shù)學的經(jīng)驗之談,也能幫助教師對高等數(shù)學教學的優(yōu)化。通過吳昊的經(jīng)驗與體會,我們可以更加準確地把握高等數(shù)學的學習方向,提高學習效率,做好學科的拓展與深化。
對高等數(shù)學的體會篇四
【摘 要】本文根據(jù)筆者自身的教學經(jīng)驗,提出大學生在學習高等數(shù)學時存在認為學習高等數(shù)學沒有用、學也學不會、學習思維定式三大誤區(qū),并針對三大誤區(qū)提出端正學習態(tài)度、激發(fā)學生學習興趣、提高教師自身素質(zhì)、創(chuàng)新教師教學方法、建立良好的師生關(guān)系等方法,從而提高高等數(shù)學教學質(zhì)量,改善教學效果。
【關(guān)鍵詞】高等數(shù)學教學;教學質(zhì)量;心得體會
高等數(shù)學作為理工科大學生的一門必修的基礎(chǔ)課,具有高度的抽象性、嚴密的邏輯性和廣泛的應用性的特點,可以培養(yǎng)學生的抽象概括能力、邏輯思維能力、解決分析問題的能力,對科技進步也起著基礎(chǔ)性推動作用。隨著國家高等教育從精英型轉(zhuǎn)入大眾型,學生素質(zhì)呈下降趨勢,大部分學生在學習高等數(shù)學時感到困難,從而提高高等數(shù)學教學質(zhì)量、改革高等數(shù)學教育教學方法已成為一個亟需解決的問題。
1 高等數(shù)學教學中學生存在的誤區(qū)
1.1 誤區(qū)一很多學生認為學數(shù)學沒有用
高中階段學生已經(jīng)接觸到了高等數(shù)學中比較簡單的極限、導數(shù)、定積分,但沒有深入學習其概念、定義,高考也只是考了一點點,學生認為自己掌握了高等數(shù)學的知識,再學了也沒有什幺用,在將來實際工作中也用不到數(shù)學。
1.2 誤區(qū)二高等數(shù)學具有很高的抽象性,很多學生覺得學也學不會
現(xiàn)在學生不愿意動腦、動筆,碰到題目就在想答案。往往因為大學的高數(shù)題運算步驟比較多,想是想不出來的,不動筆又不畫圖,學生坐一會就有點困了,自然就認為高等數(shù)學非常難。
1.3 誤區(qū)三學生習慣于用中學的思維來解題
很多學生學習數(shù)學的一些簡單想法就是來解數(shù)學題,愿意用中學的方法去解決高等數(shù)學里的題目,只要能做出答案就行。在這種思想的影響下,不愿意去掌握定義、定理,做題少步驟或只有答案,但是有的題目肯本做不出來。隨著學習的深入學生發(fā)現(xiàn)題目越來越不會做。
2 提高高等數(shù)學教學質(zhì)量的方法
2.1 端正學生學習態(tài)度
許多同學認為,考上大學就可以放松了,自我要求標準降低了。只有有了明確的學習目標,端正學習態(tài)度,才能增加學習高等數(shù)學的動力。教師要以身作則,這要求教師熱愛數(shù)學,對每節(jié)課都要以飽滿的激情、對數(shù)學美的無限欣賞呈現(xiàn)在學生面前,教師積極地態(tài)度從而感染學生學習高等數(shù)學的熱情。部分同學在應試教育的影響下,應經(jīng)形成了消極的數(shù)學態(tài)度,教師還應該全方位、多角度扭轉(zhuǎn)學生學習態(tài)度,如課下談心談話、建立互助興趣小組、“一對一”結(jié)對子等方法,提高學生學習數(shù)學的動力。端正學生的學習態(tài)度首先從數(shù)學字母的寫法、發(fā)信做起,很多學生古希臘字母不會寫也不會讀,上課多練習幾遍,老師在做題過程中要注重解題的每一步驟,告訴學生每一步驟的重要性,做題中感受數(shù)學題的美。
2.2 激發(fā)學生學習興趣
興趣是最好的老師,只有有了學習高等數(shù)學的興趣,學生才有了學習動力。在教學過程中,可以穿插一些關(guān)于數(shù)學的歷史,數(shù)學家的故事,數(shù)學文化,來激發(fā)學生的興趣。如定積分的講解時,自然引入牛頓、萊布尼茨兩位數(shù)學家的故事。教師在課堂講解時,把抽象的問題具體化,通過幾何畫圖提高學生的理解能力,這樣學生才更容易接受。
2.3 提高教師自身素質(zhì)
教師是課堂教育的主導者,是良好課堂氛圍的主要營造者,要想學生緊跟教師講課的思路,教師必須具有良好的人格魅力和深厚的專業(yè)功底。這就要求教師一方面要提高自身的文化底蘊,多讀一些與另一方面刻苦專研專業(yè)知識、完善知識結(jié)構(gòu)、提高教育教學能力,只有做到這樣,教師的課堂教育才能吸引學生,課下學生才愿意并主動與教師交流、溝通。教師在上課的時候要身體力行,做題要在步驟上下功夫,解釋每一步驟的重要性,既要用最少的步驟把題做完,又要講解每一步驟的重要性。這樣雖然浪費了一點時間,但是學生還是會做的,同時學生也得到了怎樣去做題以及真正的理解數(shù)學題,并從中發(fā)現(xiàn)數(shù)學美,時間長了能培養(yǎng)學生良好的數(shù)學興趣、數(shù)學能力和創(chuàng)新能力。對所講授的課程要有深入的了解,知識的內(nèi)在聯(lián)系及在學生專業(yè)上的應用要有所了解,可以給學生提一提,以便引起學生足夠的重視。
2.4 創(chuàng)新教師教學方法
2.5 建立良好的師生關(guān)系
在教育教學活動中,良好的師生關(guān)系是保證教育效果和質(zhì)量的前提。新時代的大學生具有自我意識強,個性張揚等特點,要提高課堂教育效果,必須建立良好的師生關(guān)系。只有師生間相互了解、相互尊重、相互賞識,把教學過程看做是教師與學生的交流、交往過程,才能建立輕松、和諧的課堂氛圍,從而才能提高課堂教育效果和教學質(zhì)量。教師在教學的過程中,要學會換位思考,站在學生的角度估計講授問題的難易程度。對學生容易出錯或者經(jīng)常犯錯誤的地方,上課要強調(diào)知識的重要性,舉例說明讓學生理解知識點及了解出錯的原因。
2.6 重視作業(yè)中存在的問題
作業(yè)是學生學習知識好壞的一面鏡子,雖然現(xiàn)在學生有抄襲作業(yè)的現(xiàn)象,但是大部分學生還是自己做作業(yè)。從作業(yè)中可以看出學生對知識掌握的程度,沒掌握好的話,想辦法用最簡單的題目來說明問題。也許作業(yè)有可能做的非常好,這就要求教師對知識有很好的理解,對學生容易出錯的地方,上課時可以提問學生做過的題目或者讓學生課前上黑板重新做。這樣一學期下來,學生對難點重點會掌握的很好,考試成績自然會很好,同時對高等數(shù)學理解的程度也會很高。學生取得了好的成績,對高等數(shù)學了解的多了,自然對高等數(shù)學學習興趣提高了。在以后的學習過程中,自然會對各種數(shù)學課更加努力的去學習,從而對其本專業(yè)課也起到了很好的促進作用。最終學生會發(fā)現(xiàn)大學生活是非常快樂的,學到了很多知識,學校也培養(yǎng)出了合格的大學生。
【參考文獻】
對高等數(shù)學的體會篇五
高等數(shù)學是理工科專業(yè)必修的一門重要課程,對于提升數(shù)學思維,培養(yǎng)分析和解決實際問題的能力有著重要的作用。在高等數(shù)學下冊學習的過程中,我深感受益匪淺。下面就是我對高等數(shù)學下冊的心得體會。
首先,高等數(shù)學下冊強調(diào)的是更深入的數(shù)學理論和應用。在上冊我們學習了微積分的基礎(chǔ)知識,在下冊我們進一步學習了微分方程、多元函數(shù)、空間解析幾何等內(nèi)容。這些內(nèi)容對于學習者來說都是比較新穎和抽象的,要求我們更深入地理解和掌握數(shù)學的概念和方法。通過學習下冊高等數(shù)學,我逐漸明白了數(shù)學是一門探索自然規(guī)律和解決實際問題的學科,數(shù)學理論與實際應用是密不可分的。
其次,高等數(shù)學下冊的學習注重于培養(yǎng)學生的邏輯思維和問題解決能力。數(shù)學是一門以邏輯為基礎(chǔ)的學科,通過學習高等數(shù)學下冊,我更加深刻地理解了邏輯思維和問題解決能力的重要性。在解題過程中,我們需要根據(jù)所學的數(shù)學理論與知識,運用邏輯推理,靈活運用解題方法,從而解決各種復雜的數(shù)學問題。通過不斷練習和思考,我逐漸提升了我的邏輯思維和問題解決能力,并且在其他學科中也能夠得到運用和提升。
第三,高等數(shù)學下冊的學習培養(yǎng)了我的數(shù)學抽象和建模能力。數(shù)學作為一門抽象的學科,需要我們學會抽象問題、建立數(shù)學模型,并在模型的基礎(chǔ)上進行分析和解決問題。在學習下冊高等數(shù)學的過程中,我有了更多的機會進行數(shù)學建模,并且通過實例分析和計算來驗證和應用模型。這種訓練不僅提高了我的數(shù)學抽象思維能力,還培養(yǎng)了我應對實際問題的能力。數(shù)學建模能力是未來工作和研究中必不可少的能力,通過學習下冊高等數(shù)學,我在這方面的能力得到了提升。
第四,高等數(shù)學下冊的學習強調(diào)了數(shù)學與實際問題的聯(lián)系。數(shù)學作為一門工具學科,它的應用范圍廣泛,與物理、化學、經(jīng)濟和工程等學科存在著密切的聯(lián)系。在學習下冊高等數(shù)學的過程中,我通過一些實際問題的分析和解決,深刻體會到了數(shù)學的實際應用。例如,在學習微分方程時,我們可以通過微分方程來描述一些物理現(xiàn)象、生態(tài)系統(tǒng)的變化規(guī)律等。這樣的學習過程增強了我對數(shù)學與實際問題之間聯(lián)系的認識,也讓我更加明確了數(shù)學的重要性。
最后,高等數(shù)學下冊的學習給我?guī)砹撕芏嗟目鞓?。?shù)學是一門極具美感的學科,通過解題和推導,我們可以發(fā)現(xiàn)數(shù)學之美。在學習下冊高等數(shù)學的過程中,我常常感受到當成功解答一個困難的問題時的喜悅和成就感,這也激發(fā)了我對數(shù)學的興趣和熱愛。在解題過程中,我探索、思考和創(chuàng)新,不斷挑戰(zhàn)自己,這種過程本身就是一種樂趣。
總之,通過學習高等數(shù)學下冊,我不僅在數(shù)學理論和應用上有了更深入的了解和認識,也發(fā)現(xiàn)了邏輯思維和問題解決能力在學習和工作中的重要性,培養(yǎng)了數(shù)學抽象和建模能力,增強了數(shù)學與實際問題之間的聯(lián)系,同時也感受到了數(shù)學學習的樂趣和成就感。這些都使我對高等數(shù)學下冊留下了深刻的印象和珍貴的回憶。我相信,通過對高等數(shù)學下冊的學習和體會,我將在今后的學習和工作中更好地運用數(shù)學,更好地解決各種實際問題。
對高等數(shù)學的體會篇六
原本以為憑借小學到高中這十余年所總結(jié)出的數(shù)學學習方法,就能輕松應對大學高等數(shù)學的學習。
然而,經(jīng)過一個多學期的學習,我真正體會到高等數(shù)學的學習特點與以往所學習的數(shù)學大相徑庭。因此,我必須在學習過程中找到高等數(shù)學的獨特之處,總結(jié)出一套新的有效的方法,才能在高等數(shù)學的學習中做到游刃有余。
就我個人而言,我認為高等數(shù)學有以下幾個顯著特點:
(1)識記的知識相對減少,理解的知識點相對增加;
(2)不僅要求會運用所學的知識解題,還要明白其來龍去脈;
(3)系實際多,對專業(yè)學習幫助大;
(4)教師授課速度快,課下復習與預習必不可少。
以前上數(shù)學課,老師在黑板上寫滿各種公式和結(jié)論,我便一邊在書上勾畫,一邊在筆記本上記錄。
然后像背單詞一樣,把一堆公式與結(jié)論死記硬背下來。
哪種類型的題目用哪個公式、哪條結(jié)論,老師都已一一總結(jié)出來,我只需要將其對號入座,便可將問題解答出來。
而現(xiàn)在,我不再有那么多需要識記的結(jié)論。
唯一需要記住的只是數(shù)目不多的一些定義、定理和推論。
老師也不會給出固定的解題套路。因為高等數(shù)學與中學數(shù)學不同,它更要求理解。只要充分理解了各個知識點,遇到題目可以自己分析出正確的解題思路。
所以,學習高等數(shù)學,記憶的負擔輕了,但對思維的要求卻提高了。
每一次高數(shù)課,都是一次大腦的思維訓練,都是一次提升理解力的好機會。
高等數(shù)學的學習目的不是為了應付考試,因此,我們的學習不能停留在以解出答案為目標。
我們必須知道解題過程中每一步的依據(jù)。正如我前面所提到的,中學時期學過的許多定理并不特別要求我們理解其結(jié)論的推導過程。
而高等數(shù)學課本中的每一個定理都有詳細的證明。
最初,我以為只要把定理內(nèi)容記住,能做題就行了。
然而,漸漸地,我發(fā)現(xiàn)如果沒有真正明白每個定理的來龍去脈,就不能真正掌握它,更談不上什么運用自如了。
于是,我開始認真地學習每一個定理的推導。有時候,某些地方很難理解,我便反復思考,或請教老師、同學。盡管這個過程并不輕松,但我卻認為非常值得。
因為只有通過自己去探索的知識,才是掌握得最好的。
總而言之,高等數(shù)學的以上幾個特點,使我的數(shù)學學習歷程充滿了挑戰(zhàn),同時也給了我難得的鍛煉機會,讓我收獲多多。
進入大學之前,我們都是學習基礎(chǔ)的數(shù)學知識,聯(lián)系實際的東西并不多。在大學卻不同了。
不同專業(yè)的學生學習的數(shù)學是不同的。
正是因為如此,高等數(shù)學的課本上有了更多與實際內(nèi)容相關(guān)的`內(nèi)容,這對專業(yè)學習的幫助是不可低估的。
比如“常用簡單經(jīng)濟函數(shù)介紹”中所列舉的需求函數(shù),供給函數(shù),生產(chǎn)函數(shù)等等在西方經(jīng)濟學的學習中都有用到。
而“極值原理在經(jīng)濟管理和經(jīng)濟分析中的應用”這一節(jié)與經(jīng)濟學中的“邊際問題”密切相關(guān)。如果沒有這些知識作為基礎(chǔ),經(jīng)濟學中的許多問題都無法解決。
當我親身學習了高等數(shù)學,并試圖把它運用到經(jīng)濟問題的分析中時,才真正體會到了數(shù)學方法是經(jīng)濟學中最重要的方法之一,是經(jīng)濟理論取得突破性發(fā)展的重要工具。這也堅定了我努力學好高等數(shù)學的決心。希望未來自己可以憑借扎實的數(shù)理基礎(chǔ),在經(jīng)濟領(lǐng)域里大展鴻圖。
高等數(shù)學作為大學的一門課程,自然與其它課程有著共同之處,那就是講課速度快。
剛開始,我非常不適應。上一題還沒有消化,老師已經(jīng)講完下一題了。帶著幾分焦慮,我向?qū)W長請教學習經(jīng)驗,才明白大學學習的重點不僅僅是課堂,課下的預習與復習是學好高數(shù)的必要條件。
于是,每節(jié)課前我都認真預習,把不懂的地方作上記號。課堂上有選擇、有計劃地聽講。
課后及時復習,歸納總結(jié)。逐漸地,我便感到高數(shù)課變得輕松有趣。只要肯努力,高等數(shù)學并不會太難。
高等數(shù)學有其獨特之處,但它畢竟是數(shù)學,那么一定量的習題自然必不可少。
通過練習,才能更深入地理解,運用。
以上便是本人一個多學期以來,學習高等數(shù)學的一些體會。
希望自己能在以后的學習中更上一層樓!
對高等數(shù)學的體會篇七
高等數(shù)學作為理工科大學生的一門必修的基礎(chǔ)課,具有高度的抽象性、嚴密的邏輯性和廣泛的應用性的特點,可以培養(yǎng)學生的抽象概括能力、邏輯思維能力、解決分析問題的能力,對科技進步也起著基礎(chǔ)性推動作用。隨著國家高等教育從精英型轉(zhuǎn)入大眾型,學生素質(zhì)呈下降趨勢,大部分學生在學習高等數(shù)學時感到困難,從而提高高等數(shù)學教學質(zhì)量、改革高等數(shù)學教育教學方法已成為一個亟需解決的問題。
一、高等數(shù)學教學中學生存在的誤區(qū) 1.誤區(qū)一很多學生認為學數(shù)學沒有用
高中階段學生已經(jīng)接觸到了高等數(shù)學中比較簡單的極限、導數(shù)、定積分,但沒有深入學習其概念、定義,高考也只是考了一點點,學生認為自己掌握了高等數(shù)學的知識,再學了也沒有什么用,在將來實際工作中也用不到數(shù)學。
2.誤區(qū)二高等數(shù)學具有很高的抽象性,很多學生覺得學也學不會
現(xiàn)在學生不愿意動腦、動筆,碰到題目就在想答案。往往因為大學的高數(shù)題運算步驟比較多,想是想不出來的,不動筆又不畫圖,學生坐一會就有點困了,自然就認為高等數(shù)學非常難。
3.誤區(qū)三學生習慣于用中學的思維來解題
很多學生學習數(shù)學的一些簡單想法就是來解數(shù)學題,愿意用中學的方法去解決高等數(shù)學里的題目,只要能做出答案就行。在這種思想的影響下,不愿意去掌握定義、定理,做題少步驟或只有答案,但是有的題目肯本做不出來。隨著學習的深入學生發(fā)現(xiàn)題目越來越不會做。
二、提高高等數(shù)學教學質(zhì)量的方法 1.端正學生學習態(tài)度
許多同學認為,考上大學就可以放松了,自我要求標準降低了。只有有了明確的學習目標,端正學習態(tài)度,才能增加學習高等數(shù)學的動力。教師要以身作則,這要求教師熱愛數(shù)學,對每節(jié)課都要以飽滿的激情、對數(shù)學美的無限欣賞呈現(xiàn)在學生面前,教師積極地態(tài)度從而感染學生學習高等數(shù)學的熱情。部分同學在應試教育的影響下,應經(jīng)形成了消極的數(shù)學態(tài)度,教師還應該全方位、多角度扭轉(zhuǎn)學生學習態(tài)度,如課下談心談話、建立互助興趣小組、“一對一”結(jié)對子等方法,提高學生學習數(shù)學的動力。端正學生的學習態(tài)度首先從數(shù)學字母的寫法、發(fā)信做起,很多學生古希臘字母不會寫也不會讀,上課多練習幾遍,老師在做題過程中要注重解題的每一步驟,告訴學生每一步驟的重要性,做題中感受數(shù)學題的美。
2.激發(fā)學生學習興趣
興趣是最好的老師,只有有了學習高等數(shù)學的興趣,學生才有了學習動力。在教學過程中,可以穿插一些關(guān)于數(shù)學的歷史,數(shù)學家的故事,數(shù)學文化,來激發(fā)學生的興趣。如定積分的講解時,自然引入牛頓、萊布尼茨兩位數(shù)學家的故事。教師在課堂講解時,把抽象的問題具體化,通過幾何畫圖提高學生的理解能力,這樣學生才更容易接受。
3.提高教師自身素質(zhì)
教師是課堂教育的主導者,是良好課堂氛圍的主要營造者,要想學生緊跟教師講課的思路,教師必須具有良好的人格魅力和深厚的專業(yè)功底。這就要求教師一方面要提高自身的文化底蘊,多讀一些與另一方面刻苦專研專業(yè)知識、完善知識結(jié)構(gòu)、提高教育教學能力,只有做到這樣,教師的課堂教育才能吸引學生,課下學生才愿意并主動與教師交流、溝通。教師在上課的時候要身體力行,做題要在步驟上下功夫,解釋每一步驟的重要性,既要用最少的步驟把題做完,又要講解每一步驟的重要性。這樣雖然浪費了一點時間,但是學生還是會做的,同時學生也得到了怎樣去做題以及真正的理解數(shù)學題,并從中發(fā)現(xiàn)數(shù)學美,時間長了能培養(yǎng)學生良好的數(shù)學興趣、數(shù)學能力和創(chuàng)新能力。對所講授的課程要有深入的了解,知識的內(nèi)在聯(lián)系及在學生專業(yè)上的應用要有所了解,可以給學生提一提,以便引起學生足夠的重視。
4.創(chuàng)新教師教學方法
好的教學方法能激發(fā)學生思維能力,啟迪學生的思維悟性。教師在教學方法上進行創(chuàng)新能有效改善課堂教學的效果。如教師在講授極限時,可以采用情景教學方法,把抽象的定義、定理與實際生活相聯(lián)系,營造學生認知懸念,從而激發(fā)學生自主探索的積極性,從而提高學生思維能力和發(fā)現(xiàn)、分析問題的能力。在教學空閑的時候、或者學生比較累的時候、或者在講到某一個問題時,可以講一些實際的東西。如在剛開始學極限時,現(xiàn)在學生都在教學樓上課,教室里到處可見支撐樓的柱子。柱子不能太細,細了樓就有可能倒掉,也不能非常粗,那樣雖然結(jié)實了,但是浪費材料,建筑商也不會同意。這樣柱子肯定要通過數(shù)學計算得到一個合理的數(shù)值,既要能承重又要節(jié)約材料,這個確定的數(shù)就可以認為是一個極限。
5.建立良好的師生關(guān)系
在教育教學活動中,良好的師生關(guān)系是保證教育效果和質(zhì)量的前提。新時代的大學生具有自我意識強,個性張揚等特點,要提高課堂教育效果,必須建立良好的師生關(guān)系。只有師生間相互了解、相互尊重、相互賞識,把教學過程看做是教師與學生的交流、交往過程,才能建立輕松、和諧的課堂氛圍,從而才能提高課堂教育效果和教學質(zhì)量。教師在教學的過程中,要學會換位思考,站在學生的角度估計講授問題的難易程度。對學生容易出錯或者經(jīng)常犯錯誤的地方,上課要強調(diào)知識的重要性,舉例說明讓學生理解知識點及了解出錯的原因。
6.重視作業(yè)中存在的問題
作業(yè)是學生學習知識好壞的一面鏡子,雖然現(xiàn)在學生有抄襲作業(yè)的現(xiàn)象,但是大部分學生還是自己做作業(yè)。從作業(yè)中可以看出學生對知識掌握的程度,沒掌握好的話,想辦法用最簡單的題目來說明問題。也許作業(yè)有可能做的非常好,這就要求教師對知識有很好的理解,對學生容易出錯的地方,上課時可以提問學生做過的題目或者讓學生課前上黑板重新做。這樣一學期下來,學生對難點重點會掌握的很好,考試成績自然會很好,同時對高等數(shù)學理解的程度也會很高。學生取得了好的成績,對高等數(shù)學了解的多了,自然對高等數(shù)學學習興趣提高了。在以后的學習過程中,自然會對各種數(shù)學課更加努力的去學習,從而對其本專業(yè)課也起到了很好的促進作用。最終學生會發(fā)現(xiàn)大學生活是非??鞓返?,學到了很多知識,學校也培養(yǎng)出了合格的大學生。
對高等數(shù)學的體會篇八
高等數(shù)學是大學重要的數(shù)學基礎(chǔ)課程,涉及到微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等多個學科領(lǐng)域,為學生的數(shù)學素養(yǎng)和綜合能力的提高帶來了巨大的幫助。如今,我已經(jīng)學習高等數(shù)學一年多,并考取了高分。在學習中,我積累了一些心得體會,現(xiàn)在愿意分享給大家。
一、認真理解概念
高等數(shù)學中包含了大量的數(shù)學概念,這些概念是該學科的基礎(chǔ)。我們要經(jīng)常復習、深刻理解這些概念,才能更好地庖闡數(shù)學原理,推導出數(shù)學公式。對于某些難以理解的概念,可以尋找一些相關(guān)的實例進行解釋,或者和同學一起討論,共同掌握這些概念,這樣才能更好地理解后面的內(nèi)容。
二、透徹掌握習題
高等數(shù)學的習題類型較多,需要我們不斷地練習,從而鞏固和提高自己的掌握程度。在做習題時,我們要遵循“由易到難”的原則,先做容易的,逐漸增加難度,提升自身的解題水平。做題時,也要注意拓展視野,不要僅局限于老師講授的范圍,多嘗試一些新的方法和角度。
三、整合思維方式
高等數(shù)學的學習需要我們具有一定的數(shù)學思維能力,這也是高等數(shù)學和初等數(shù)學一份四的區(qū)別所在。在學習中,我們要注重培養(yǎng)自己的數(shù)學思考能力,學會用多種方式解決一道問題,整合不同的思維方式,拓展自己的思路。這種能力的培養(yǎng)要靠平時的訓練,結(jié)合習題、考試和解題課等多種形式進行。
四、注重細節(jié)處理
在高等數(shù)學課程中,一個小小的細節(jié)往往決定著整道題的成敗。因此,在學習高等數(shù)學時,我們必須將注意力集中在題目的細節(jié)上,嚴謹?shù)貙Υ恳徊接嬎悖苊獬霈F(xiàn)計算錯誤。同時,在做習題和考試時,我們也要注意填寫卷面和計算器的使用規(guī)范,這樣才能避免走彎路,保證高分通過。
五、多方面尋求幫助
高等數(shù)學作為一門比較重要的基礎(chǔ)課程,難度比較大,我們學習中難免會遇到困難。遇到問題時,我們應該多方面尋求幫助,可以找老師、同學或者其他渠道,與他人交流和探討,相互幫助提高解決問題的能力。此外,也要注重查找有關(guān)的參考書籍和一些網(wǎng)上的研究綜述,引領(lǐng)自己更快地掌握課程要點。
總之,高等數(shù)學雖然難,但只要認真刻苦,多方尋求幫助,注重方向且扎實整合思維方式,嚴謹處理學習細節(jié),逐漸提升自己的數(shù)學素養(yǎng)和思維能力,就可以取得好成績,為自己的學業(yè)和未來的發(fā)展提供堅實的保障。
對高等數(shù)學的體會篇九
現(xiàn)在我不妨引領(lǐng)大家把我們所學的容易遺漏的數(shù)學知識再仔細地閱讀一下:
集合部分:
(1)集合的概念:把具有某種特性的事物組成的整體叫集合,同學們往往忽略整體二字。如:
(1)方程x22x30的解集,x22x10的解集,x22x10的解集,x22x10的解集。
(2)空集:不含任何元素,表示為。
(3)集合與元素的關(guān)系:兩種符號,不能正確的填寫,主要原因是不能理解元素和集合的書寫,不明白那些是元素那些事集合。
(4)集合與集合的關(guān)系。
(5),這兩種關(guān)系的具體含義。
不等式部分:
(1)不等式的基本性質(zhì),容易出錯的就是如ab,則ac2bc2()。
對一個數(shù)的平方理解不透徹,
(3)邏輯用語,(充分,必要,充要,非充分非必要)。
函數(shù)部分:
(1)函數(shù)的概念。
(2)函數(shù)的三要素。
(3)如何研究函數(shù),主要是從以下內(nèi)容,一定義域,二值域,三。
函數(shù)的三性(單調(diào)性、奇偶性、周期性)。
(4)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)。
(5)三角函數(shù):特別是對三角函數(shù)的定義,利用好三角函數(shù)的定。
義,可自然地得出(三角函數(shù)正負符號的判定、同角三角函數(shù)的關(guān)系)。
數(shù)列部分:
(1)兩特殊數(shù)列等差和等比。
(2)規(guī)律。
向量部分:
(1)向量相等,共線,向量垂直。
(2)向量的運算。
(3)向量的坐標。
(4)向量的內(nèi)內(nèi)積。
直線和圓的方程部分:
(1)直線的相關(guān)部件(斜率和傾斜角),圓的相關(guān)部件(圓心和半徑)。
(2)直線方程的求法,圓的方程求法。
立體幾何部分:
(1)點、線、面。
(2)線線的關(guān)系。
(3)線面的關(guān)系。
(4)面面的關(guān)系。
以上我把職高的所有易錯易忘難理解的知識點羅列出來,在平時我們閱讀的時候要注意掌握解決問題的依據(jù)和解決問題的方法。
閱讀的同時,我們要理解書中的`句子,那么對數(shù)學而言,我們該理解什么呢?
(1)理解定義概念。
(2)理解公式定理。
(1)練習要有目的練習要有針對性。
(2)練習不要盲目,有同學喜歡做題,覺得題做得越多越好,其實不然,題要做,要少而精,會的熟練地題我們只動腦不動手,理一理解題思路就可以了,不會的、或經(jīng)常出錯的那就得好好練練。
(1)總結(jié)各章節(jié)的知識點,各章節(jié)的典型例題。
(2)總結(jié)解題思路。
(3)總結(jié)解題的方法。
學無定法,適合自己的能夠幫助自己學習成績提高的方法都是好的方法,寫這篇文章只是拋磚引玉,希望我的建議能夠幫助同學找到適合自己的學習方法。能夠通過好的學習方法快速的提高數(shù)學學習成績。
對高等數(shù)學的體會篇十
數(shù)學中有很多概念。概念反映的是事物的本質(zhì),弄清楚了它是如何定義的、有什么性質(zhì),才能真正地理解一個概念。所有的問題都在理解的基礎(chǔ)上才能做好。
第二,要掌握定理。
定理是一個正確的命題,分為條件和結(jié)論兩部分。對于定理除了要掌握它的條件和結(jié)論以外,還要搞清它的適用范圍,做到有的放矢。
第三,在弄懂例題的基礎(chǔ)上作適量的習題。
要特別提醒學習者的是,課本上的例題都是很典型的,有助于理解概念和掌握定理,要注意不同例題的特點和解法在理解例題的基礎(chǔ)上作適量的習題。作題時要善于總結(jié)——不僅總結(jié)方法,也要總結(jié)錯誤。這樣,作完之后才會有所收獲,才能舉一反三。
第四,理清脈絡(luò)。
要對所學的知識有個整體的把握,及時總結(jié)知識體系,這樣不僅可以加深對知識的理解,還會對進一步的學習有所幫助。
高等數(shù)學中包括微積分和立體解析幾何,級數(shù)和常微分方程。其中尤以微積分的內(nèi)容最為系統(tǒng)且在其他課程中有廣泛的應用。微積分的理論,是由牛頓和萊布尼茨完成的。(當然在他們之前就已有微積分的應用,但不夠系統(tǒng))。
數(shù)學備考一定要有一個復習時間表,也就是要有一個周密可行的計劃。按照計劃,循序漸進,切忌搞突擊,臨時抱佛腳。其實數(shù)學是基礎(chǔ)性學科,解題能力的提高,是一個長期積累的過程,因而復習時間就應適當提前,循序漸進。大致在三、四月分開始著手進行復習,如果數(shù)學基礎(chǔ)差可以將復習的時間適當提前。復習一定要有一個可行的計劃,通過計劃保證復習的進度和效果。一般可以將復習分成四個階段,每個階段的起止時間和所要完成的任務(wù)考生應給予明確規(guī)定,以保證計劃的可行性。第一個階段是按照考試大綱劃分復習范圍,在熟悉大綱的基礎(chǔ)上對考試必備的基礎(chǔ)知識進行系統(tǒng)的復習,了解考研數(shù)學的基本內(nèi)容、重點、難點和特點。這個時間段一般劃定為六月前。第二個階段是在第一階段的基礎(chǔ)上,做一定數(shù)量的題,重點解決解題思路的問題。一般從七月到十月。這個階段要注意歸納總結(jié),即拿到題后要知道從什么角度,可以分幾步去求解,每道題并不要求都要寫出完整步驟,只要思路有了,運算過程會做了,可以視情況而靈活掌握,這樣省出時間來看更多的題。所選試題可以是歷年真題,也可以是書上的練習題,但真題一定要做,而且要嚴格按照實考的要求去做,把握真題的特點和解題思路及運算步驟。第三個階段是實戰(zhàn)訓練階段,從十一月到十二月的中旬,這也是臨考前非常重要的階段??忌獙Υ缶V所要求的知識點做最后的梳理,熟記公式,系統(tǒng)地做幾套模擬試卷,進行實戰(zhàn)訓練,自測復習成果。在做模擬題前先要系統(tǒng)記憶掌握基本公式,做題要講究質(zhì)量,既要有速度,又要有嚴格的步驟、格式和計算的準確性。最后階段是考前沖刺,從十二月下旬到考試。針對在做模擬試題過程中出現(xiàn)的問題作最后的補習,查缺補漏,以便以的狀態(tài)參加考試。學好數(shù)學是一個長期的過程,來不得半點的投機取巧,所以考前突擊,臨時抱佛腳的做法是不足取的,只有按照自己的計劃,踏踏實實的進行準備,才能以不變應萬變,只要自己的綜合能力提高了,不管考試如何變化,都能取得好的成績。
數(shù)學的學習一定要每天都有個進度,每天都要有題量,我們不應該搞題海戰(zhàn)術(shù),但是通過做題提高實戰(zhàn)經(jīng)驗也是必須的,首先有個大的學習框架,然后計劃到每天,怎么去學習,每天做那方面的題,定期的查漏補缺,這樣的學習才真正的有效果。
在高等教育自學考試的很多專業(yè)中,很多都有高等數(shù)學課程。很多考生反映,高等數(shù)學(一)通過非常難,林士中老師所教授的高等數(shù)學課程一直受到廣大網(wǎng)校學員的好評。在授課之余,林教授傳授了通過高數(shù)的訣竅。他說,在學習高數(shù)(一)之前,首先你要打好基礎(chǔ),把初中的數(shù)學補回來,再參加這兩門課程的考試就好的多。
林士中:我對同學了解的情況,一種是原來中學學的初等知識掌握太少,高等數(shù)學沒有用大量的初等數(shù)學知識,但是要用一部分的知識。有些同學不是高等數(shù)學知識沒掌握好,主要是初等數(shù)學知識不夠數(shù)量,或者掌握太少,變形變不過來,這樣就算你知道高等數(shù)學,但是初等掌握不好,考試肯定會遇到一定困難。如果你是初等數(shù)學掌握過少影響考試不及格,你應該把最基本的初等數(shù)學知識復習。自考365網(wǎng)校已經(jīng)推出了高等數(shù)學的基礎(chǔ)輔導課程,介紹微積分當中用到的初等數(shù)學有哪些,大概有6課時。介紹微積分當中用到的初等數(shù)學有哪些,如果有一部分同學感到初等數(shù)學知識不夠用,我希望同學不要害怕,你即便初等數(shù)學知識不夠好,不見得過不了。希望大家多花點時間學習,可以起到事半功倍的效果。
第二個,有些同學覺得,學高等數(shù)學,或者微積分,主要靠理解,但是實際上這里邊有一些誤會,數(shù)學主要是靠理解,但是和其他課程有區(qū)別,其他課程靠記憶比較多,當然也要理解,但是數(shù)學,靠理解的比較多,不等于不要記憶,特別有些基本的東西必須記的大家還要記憶,比如說一些基本概念,導數(shù)的定義,連續(xù)性的定義這些基本的東西要適當?shù)挠浺幌隆?/p>
第三個,基本公式表,微分公式表也要記,這些基本的東西大家還要記。積分公式表記不住,積分就過不了關(guān),在記憶的基礎(chǔ)上適當做一些題達到融會貫通,我希望大家做好這兩方面的復習。
有同學初等數(shù)學不會的,經(jīng)過努力,這樣的都能考過,其他人一定能考過。當然得補一些數(shù)學,不補是不行的,你們提出來補什么好,我跟大家說,初等數(shù)學不像你們中學那樣什么都要考,中學老師教你們主要是競爭,考大學是一種競爭性質(zhì),要求的內(nèi)容相當多,偏題怪題都有,但是作為學高等數(shù)學不是競爭性質(zhì),只要求掌握基本知識,所以這部分就要把初等數(shù)學的基本內(nèi)容掌握好就行,實際上我個人覺得,你只要有決心補初等數(shù)學,有兩三天就夠了。
認真聽課。既然是高數(shù)課,自然是老師講課,一周的高數(shù)課的節(jié)數(shù)肯定不會少。所以,老師上課就是最好的一個學習媒介。少年們,上課努力早起去做前排吧。如果老師夠認真負責,相信做好了這一步,那就基本上成功了一半.
買一本靠譜的考研書。如果老師不認真負責,只會用蚊子般大小的聲音念念ppt怎么辦;根本聽不下去怎么辦。這個時候,不用慌張,其實還是有很多很好的選擇,推薦去買一本厚厚的考研書,不用擔心,考研書就是幫你們復習大一的高數(shù)知識,而且上面通常整理的非常好。各類例題也都是平時??嫉念愋?。
做好筆記。書上一些沒有的證明和老師上課隨性發(fā)揮的精華可是一瞬即逝的噠。做好筆記還有益于自己上課認真專注。如果是自己看書也需要記筆記。
按時做作業(yè)。還記得高中時怎么沒日沒夜的做作業(yè)嗎,practicemakesperfect,這句話是沒有錯的,高數(shù)的作業(yè)會有很多,而它對你學好高數(shù)的重要性也不言而喻的。而且,作業(yè)好還有平時分還高,最后總評也高不是。
學習公開課。如果對一些證明,推理,或者概念不清楚,想要找個名師的話,網(wǎng)絡(luò)上的公開課其實是一個非常好的選擇。這也是現(xiàn)在的教育的一種趨勢,這里推薦一些常用的,比如mooc,愛課程網(wǎng),網(wǎng)易公開課等等。國外名校的都是大師,聽完他們的講解相信一定會對高數(shù)和整個數(shù)學體系有一個新的理解,并對它產(chǎn)生興趣。
對高等數(shù)學的體會篇十一
隨著科技日新月異的發(fā)展和電腦無孔不入的應用。高等數(shù)學課程作為一種數(shù)學工具的功能正在逐步縮減。但作為一種思維方法的載體的功能(例如訓練學生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學軟件。但一個實際問題如何通過數(shù)學建模轉(zhuǎn)化為一個數(shù)學同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學這樣的課程作為載體來進行系統(tǒng)訓練,將是事半功倍的。
以往對工科學生來講,高等數(shù)學的教學比較偏重于計算方法的訓練,例如,如何計算極限,計算導數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學習高等數(shù)學的一條捷便之徑。但是從二十一世紀更加需要創(chuàng)新人才的觀點看,從高等數(shù)學的概念中直接去提煉一種分析推理能力及實際應用能力,將是更加重要的。(當然,在改革的力度還未到位時,由于教學要求及教材等原因。學習高等數(shù)學并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學好高等數(shù)學的基本概念。提出一些拙見供同學參考。
我們觀察一個物體,如果僅僅通過平視去進行,那么對這個物體的認識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止。只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的。還是充分的'?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應該包含兩層意思:一是對一個概念的否定是怎樣表達的?二是如果錯誤的理解了概念中的一些條件會導致什么樣的錯誤結(jié)果。
發(fā)現(xiàn)問題呢?首先要提倡自學,在自己預習教材(也鍛煉了一種自學能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習題之前要認真復習消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
學習數(shù)學,不做習題是絕對不行的。因為耐概念究竟理解與否檢驗的最后關(guān)口是習題。一道習題不會做或者做錯了,肯定是某些概念投有消化好,帶著習題再來復習理解概念,拄往會摩擦出新的思想火花。學習高等數(shù)學的過程中,我們不主張采用中學的題海戰(zhàn),但對每道習題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導致的錯誤結(jié)果。經(jīng)過又一次正反兩個層面的開掘。思考深入了,學習的興趣也會逐步培育起來。
對高等數(shù)學的體會篇十二
第一段:引言(150字)
在大學學習期間,高等數(shù)學是我們無法回避的一門課程。對于許多學生來說,高等數(shù)學可能是他們第一次接觸到抽象的數(shù)學概念和復雜的數(shù)學運算。然而,通過數(shù)學家和教育家的不斷努力,高等數(shù)學正在變得越來越有趣和易于理解。在我個人的學習過程中,我逐漸領(lǐng)悟到高等數(shù)學的重要性和應用場景,并從中獲得了許多寶貴的經(jīng)驗和體會。
第二段:興趣驅(qū)動學習(250字)
我發(fā)現(xiàn),對于高等數(shù)學的學習來說,培養(yǎng)興趣是至關(guān)重要的。在開始學習高等數(shù)學之前,我對這門課程沒有太多的期待。然而,通過與教師的互動和進一步的研究,我開始意識到高等數(shù)學是一門實際應用廣泛且充滿挑戰(zhàn)的學科。我發(fā)現(xiàn)高等數(shù)學在物理、經(jīng)濟學甚至金融學中都起著重要的作用,并且具有許多實用性的應用。為了更好地理解和應用高等數(shù)學的知識,我主動參加數(shù)學建模和實驗課程,并且積極加入數(shù)學學術(shù)團隊。通過這些課程和團隊活動,我發(fā)現(xiàn)高等數(shù)學能夠幫助我們解決實際問題,并且在現(xiàn)實生活中起到重要的作用。
第三段:實踐驅(qū)動理論(250字)
在高等數(shù)學的學習過程中,我體會到實踐是鞏固理論知識的重要手段。通過解決一系列的習題和實際問題,我逐漸運用所學的數(shù)學方法來解決復雜的問題。并在此過程中體會到從紙上計算到實際應用的轉(zhuǎn)換。在學習微積分時,我除了翻閱課本上的例題和習題外,還多次利用數(shù)學軟件進行計算和模擬,并嘗試將所學的理論用于解決實際問題。通過這樣的實踐過程,我不僅加深了對高等數(shù)學理論的理解,還培養(yǎng)了解決實際問題的能力。
第四段:提升邏輯思維(250字)
高等數(shù)學的學習讓我逐漸鍛煉了邏輯思維能力。通過學習證明方法、推理規(guī)則以及數(shù)學定理等知識,我逐漸培養(yǎng)了嚴密的邏輯思維和分析問題的能力。高等數(shù)學課程中的證明過程迫使我們思考每一個步驟的合理性和正確性,并提出自己的證明思路。這種思考方式使我從中受益匪淺,不僅在數(shù)學領(lǐng)域受益,還在其他學科中應用中受益。
第五段:結(jié)語(300字)
通過高等數(shù)學的學習,我逐漸發(fā)現(xiàn)抽象的數(shù)學世界與現(xiàn)實生活是息息相關(guān)的。高等數(shù)學的學習讓我在思維、邏輯、實踐等多個方面得到了全面的提升。通過在數(shù)學領(lǐng)域中的探索與研究,我重新定義了對于高等數(shù)學這門課程的認知,并且樹立起全新的目標和動力。高等數(shù)學不僅僅是為了通過考試,更是培養(yǎng)我們終身學習的能力和思維方式的橋梁。在未來的學習和工作中,我相信高等數(shù)學所賦予的知識和能力會繼續(xù)對我產(chǎn)生重大影響。因此,我會繼續(xù)努力學習高等數(shù)學,并將所學應用于實際生活中,為現(xiàn)實問題的解決提供更多有益的思考和方法。
對高等數(shù)學的體會篇十三
數(shù)學教研室緊緊圍繞以提高教學質(zhì)量,抓好內(nèi)涵建設(shè)為中心,以優(yōu)化教師業(yè)務(wù)素質(zhì),不斷提高教師的教學、教研水平和提高學生運用數(shù)學解決實際問題的能力為基本點;始終以應用為目的,以為專業(yè)服務(wù)為教學重點,充分發(fā)揮數(shù)學課程在高職教育特色中的基礎(chǔ)作用。
二、本學期開展的工作。
1.組織好數(shù)學補考以及試卷的批改和成績上報工作;。
2.配合基礎(chǔ)部作好正常的教學及管理工作;。
3.按學院和教務(wù)處教學要求完成正常的教學,如聽課、公開課聽課評課任務(wù),集體備課等活動.
(1)深入開展各專業(yè)對高等數(shù)學知識點需求的研討會,真正做到數(shù)學為專業(yè)課服務(wù);。
(3)為充分調(diào)動學生學習《高等數(shù)學》課程的積極性,組織一次全院數(shù)學調(diào)研。
5.定期召開教研室會議,堅持高職高專教育理論的'學習與研究,吸收先進的教學理念與教學經(jīng)驗,改進自己的教學方法、教學思想。要求撰寫一篇教學或教研論文。
6.搞好院級研究課題;。
7.進一步完善《高等數(shù)學》校本教材、教學課件等工作;。
8.做好教研室本學期的總結(jié)、下學期計劃等工作;。
9.配合基礎(chǔ)部做好一些臨時性工作。
三、工作具體時間安排見下表:
第一學期數(shù)學教研室具體工作安排。
周次。
時間。
教學活動內(nèi)容。
8月28至9月30日。
做好教學前準備工作(如教學計劃、教案的撰寫),要求教師上好每一堂課,確保教育教學質(zhì)量,并要求沒課的教師隨機聽取有課老師的課。做好學生的補考工作。
6
10月1日至10月7日。
國慶放假,假期間認真?zhèn)湔n,撰寫論文。
7
10月8日至10月14日。
確定教師舉行公開課、組織安排數(shù)學教研室教師參加聽課、評課活動。檢查教案、教學計劃的撰寫情況。
8
10月17日至10月21日。
組織數(shù)學教師召開專題會議:針對學生數(shù)學基礎(chǔ)差,如何上好高等數(shù)學課,如何體現(xiàn)為專業(yè)課服務(wù)。
9
10月24日至10月28日。
高等數(shù)學院級精品課程以及校本教材的進一步完善,公開課按計劃開展。教師集體備課。
10。
10月31日至11月4日。
要求每位教師撰寫一篇教學或教研論文。作業(yè)抽查、公開課、觀摩課等活動的監(jiān)督與實施。
11。
11月7日至11月11日。
期中教學檢查,教案檢查、作業(yè)批改情況抽查,做好數(shù)學教研室期中工作小結(jié)。
12。
11月14日至11月18日。
組織安排數(shù)學調(diào)研。
13。
11月21日至。
11月25日。
組織教師集體備課。
14。
11月28日。
至12月2日。
繼續(xù)開展公開課、觀摩課等活動,并召開專題會議:如何提高學生學習高等數(shù)學的興趣;如何提高教學教研質(zhì)量。
15。
12月5日至。
教案、作業(yè)隨機抽查,教學進度、教學效果的反饋,做好總結(jié)工作.
16。
12月12日至。
12月16日。
根據(jù)高數(shù)為專業(yè)課服務(wù)的原則,進一步做好高等數(shù)學課程教學改革,上好數(shù)學實驗課。
17。
12月19日。
至12月23日。
討論、交流教學心得,總結(jié)成功與不足。
18。
12月26日至。
12月30日。
開展教學、教研交流活動;檢查實踐教學的落實。
19。
公開課、觀摩課等教研活動總結(jié)。院級課題落實情況的檢查與反饋。有關(guān)實驗、實踐教學落實情況的總結(jié)。安排期末考試試卷的編制、保密、閱卷注意事項等事宜;本學期教學工作總結(jié)。
20。
元月9日至元月13日。
做好數(shù)學考試試卷分析與總結(jié);做好本學期教研室工作總結(jié)以及下學期教研室工作計劃。試卷裝訂情況檢查,并做好有關(guān)資料的收集與整理并歸檔。
對高等數(shù)學的體會篇十四
俗話說,熟能生巧。練習做多了,看到類似的問題就能輕松應付,對癥下藥。在做練習時,要清楚每一步的思路,上一步為什么會得到下一步,都要了如指掌。對不懂的問題一定要問。說到問,陶行知先生說過:“發(fā)明千千萬,起點在一問?!睂W數(shù)學也是一樣,一定要多動手,動口。在動口之前要先學會思考,因為思考了才會有問題可問。不要以為思考是那些做學問的學者們的專利,只要是有思想的人,任何人都可以步入思考的行列。只有在不斷思考探求中才能充實自己的大腦。當然也要避免盲目做習題,改變中學時期“只知道做題”的習慣。要獨立思考,不要做太多的難題、偏題。另外要注意數(shù)學語言表述的正確性,論證的嚴密性,養(yǎng)成一種科學嚴謹?shù)乃季S習慣。
對高等數(shù)學的體會篇十五
第一段:引言(120字)
高等數(shù)學作為大學數(shù)學課程中的一門重要學科,不僅是理工科學生的必修課,更是培養(yǎng)學生分析解決問題能力的重要途徑。在學習高等數(shù)學的過程中,我感受到了數(shù)學的美妙與魅力,同時也深刻體會到了數(shù)學學習的重要性。通過這門課程的學習,我不僅提高了自己的數(shù)學水平,更具備了解決實際問題的能力,下面將分為邏輯推理能力的提升、問題解決能力的培養(yǎng)、批判性思維的養(yǎng)成、嚴密的思維訓練以及團隊合作精神的培養(yǎng)五個方面,詳細論述我在高等數(shù)學學習中的心得體會。
第二段:邏輯推理能力的提升(250字)
高等數(shù)學學習需要運用各種公式定理,進行推導證明。在這個過程中,我不斷鍛煉了自己的邏輯推理能力。老師引導我們學會分析問題,從多個角度去思考,利用數(shù)學方法解決問題。通過數(shù)學定理的證明,我更加深入地理解了邏輯推理的重要性以及問題求解的思路。此外,在高等數(shù)學的學習過程中,我還學會了如何將復雜問題分解為簡單子問題,逐步推導出一個完整的解決方案。這一過程的鍛煉不僅提高了我的數(shù)學素養(yǎng),還培養(yǎng)了我的邏輯思維能力,使我能夠更好地應對其他學科的學習和實際問題的解決。
第三段:問題解決能力的培養(yǎng)(250字)
高等數(shù)學學習強調(diào)實際問題的建模與求解,培養(yǎng)學生解決實際問題的能力。在課堂上,我親身體驗了數(shù)學在解決實際問題中的作用。通過案例分析和問題解決討論,我學會了將抽象概念和公式與實際問題相結(jié)合,找到問題的關(guān)鍵點,提出有效的解決方案。此外,高等數(shù)學課程還讓我了解了數(shù)學與其他學科的交叉點,從而拓寬了視野,幫助我更好地理解和解決其他學科的實際問題。
第四段:批判性思維的養(yǎng)成(250字)
高等數(shù)學學習強調(diào)學生的批判性思維能力的培養(yǎng)。在學習過程中,我發(fā)現(xiàn)數(shù)學不僅有固定答案,還有多種解決路徑和解釋方法。通過解析問題的不同方面,從不同的角度思考,我逐漸養(yǎng)成了批判性思維的習慣。我開始質(zhì)疑問題是否被正確解決,是否有更好的方法,這種思維方式不僅在高等數(shù)學學習中幫助我更好地理解概念和定理,還在其他學科和實際生活中使我更加理性和客觀。
第五段:嚴密的思維訓練與團隊合作精神的培養(yǎng)(320字)
高等數(shù)學中的復雜定理和抽象概念要求學生掌握嚴密的思維能力。在解題過程中,我不得不重復思考,審查每一個環(huán)節(jié),確保每個推導步驟的準確性和嚴密性。這過程雖然艱辛,但成功地提升了我的思維嚴密性和細心程度。另外,高等數(shù)學學習中的小組討論和團隊合作也給了我很大的啟示。通過與同學合作,每個人可以帶來不同的思路和見解,我們可以互相學習、互相鼓勵,并共同解決問題。這種團隊合作精神不僅在高等數(shù)學中得到培養(yǎng),還可以應用到其他學科和實際工作中。
結(jié)尾:總結(jié)(90字)
總的來說,高等數(shù)學的學習不僅提高了我的數(shù)學水平,更重要的是培養(yǎng)了我解決問題的能力、批判性思維以及團隊合作精神。這些能力將在我的未來學習和工作中發(fā)揮重要作用。通過高等數(shù)學的學習,我明白了數(shù)學不僅僅是一種學科,更是一種思維方式和處理問題的工具。
對高等數(shù)學的體會篇十六
相對于現(xiàn)階段高等職業(yè)教育發(fā)展的綜合性和終身性趨勢來說,高等數(shù)學不僅僅是學生掌握數(shù)學工具學習其他相關(guān)專業(yè)課程的基礎(chǔ),更是培養(yǎng)學生邏輯思維嚴謹性的重要載體,高等數(shù)學的重要性是不言而喻的。因此高等數(shù)學的有效學習成了高數(shù)教師和同學們共同關(guān)注的一個重要問題。
通過平時與學生的交流和上課,學生的學習困難一般集中在認為教學內(nèi)容太抽象聽不懂、不會做題,數(shù)學概念太抽象,不易理解(如極限、無窮小等)。學生對于接受高等數(shù)學的思想、原理、方法非常不適應,對于如何學好高等數(shù)學,如何理解它的思想、方法茫然無知。下面我們大家一起討論一下高數(shù)學不好的原因。
首先,對大多數(shù)高中生而言,考取大學是最具誘惑力的行為歸因,但進人大學后,這一因素就不復存在了,大一新生基本上處于如釋重負的解脫狀態(tài),缺乏主動進取的精神,學習目標不明確,學習動機不強烈。有些同學則認為學高等數(shù)學對將來的工作也沒有多大用處,有些同學本來數(shù)學的基礎(chǔ)就不好,進人大學后一接觸高等數(shù)學,發(fā)現(xiàn)難以與中學數(shù)學知識直接銜接,學習高等數(shù)學的興趣蕩然無存,對高等數(shù)學的學習消極應付。
再次,學生在高中階段已形成一定的思維方式及學習習慣,解數(shù)學題基本上采取模式辨認、方法回憶的思維方式,對解題方法和技巧模仿、記憶、套用,對知識不求甚解,并未真正理解和內(nèi)化,沒有進行數(shù)學思考的意識,也沒有掌握數(shù)學思考的方法。大學課堂上,對高等數(shù)學各部分內(nèi)容的理解支離破碎,自學能力差,缺乏獨立思考的意識,沒有反思學習過程的習慣,更沒有總結(jié)、歸納知識和思想方法的習慣,對教師有較強的依賴心理,學生已形成的思維方式及學習習慣直接影響學生接受高等數(shù)學。
最后,大學與高中的教學都以講授法為主,但受高考的影響和制約,高中教師對知識的講授詳細,題型、方法歸納完整,較多的精力用于通過大題量的訓練來培養(yǎng)學生的技能技巧,并及時進行輔導和鞏固;而大學的教學由于知識點較多,課時有限,課容量大,教師更注重思想方法的深刻理解,和數(shù)學思想的培養(yǎng)。
對于上述幾個原因建議大家從以下幾方面入手:
第一、調(diào)整好自己的心態(tài),盡快適應大學生活,對自己有一個準確的定位。
學的學習,根據(jù)高數(shù)課的特點和自己的學習習慣,盡快總結(jié)出適合自己的學習方法。
第三、高數(shù)的學習是一個日積月累的過程,不是幾天或一段時間的突擊成績就可以上來的。只要你把平時的多努力,那么你的付出一定會有所得。
對高等數(shù)學的體會篇十七
學好高等數(shù)學是一個長期的過程,要做到邊學邊鞏固,今天的事今天完成,分階段有目的的復習,學習來不得半點的投機取巧,所以考前突擊,臨時抱佛腳的做法都是不足取的,只有按照自己的計劃,踏踏實實的進行準備,才能以不變應萬變,只要自己的綜合能力提高了,就能取得好的成績。
數(shù)學是嚴密的科學。數(shù)學是由概念、公理、定理、公式等,按照一定的邏輯規(guī)則組成的嚴密的知識體系,有很強的系統(tǒng)性。因此,在數(shù)學的學習中,一定要循序漸進,打好基礎(chǔ),完整地、系統(tǒng)地掌握基本概念和基本原理,這樣才能為解題打好堅實的基礎(chǔ)??傊?,學好高等數(shù)學并不是一件難事,只要你付出必要的努力,數(shù)學不應是枯燥乏味的符號,只要你鉆進去就會感到趣味盎然,數(shù)學不是一堆繁瑣無用的公式,掌握了它的真諦,就會給你增添知識和力量。
對高等數(shù)學的體會篇十八
在我的意識里,但凡數(shù)學成績好的同學,一定都是天資聰穎;而對數(shù)學一往情深的同學,都絕非等閑之輩。自從上了高中,數(shù)學對我來說就成了軟肋,硬傷,成了讓我神傷的科目,突然間變得對數(shù)學一竅不通,才猛然間發(fā)覺自己的思維不知道被什么所禁錮,變得呆板而僵硬,做題猶如啃磚頭。
大一的時候,意外地發(fā)現(xiàn)我們必須學習高數(shù)課,我雖然很敬佩我們的高數(shù)老師,他和藹可親,對我們關(guān)愛有加,把高數(shù)講得清楚易懂,還告訴我們?nèi)绾螌W好高數(shù)以便更好地發(fā)展中醫(yī)。盡管如此,結(jié)局還是悲涼的,我終日以淚洗面,甚至產(chǎn)生了輕生的念頭,大一對我來說是不堪重負,不忍回首的一年,期末了,還一道題都不會做,考完了,才發(fā)現(xiàn)自己是班上的墊底。高數(shù),讓我開始懷疑自己的智商,懷疑我以后能否自食其力。每一次上課,我都像個呆子,鉆進耳朵的那些專業(yè)術(shù)語不知道該怎么去消化,而周圍的同學也都還是能回答問題,自信滿滿,這種強烈的對比讓我受挫,我開始重新審視自己。高數(shù),帶給我改變的動力,我感謝高數(shù),但僅僅因為它是高“樹”,而我被掛在了上面。
在后來的學習中,我再也不敢對專業(yè)課掉以輕心,我開始覺得期末考試的內(nèi)容其實也沒有那么難,那么高數(shù)呢?究竟是它太難還是我從心里對它產(chǎn)生畏懼,以至我沒有勇氣相信自己可以認識它?我怕,怕有朝一日終會再次遇到它,因為陌生,所以恐懼。
經(jīng)歷了一年多的成長,我發(fā)現(xiàn)其實很多事情都沒有想象中那么難,也沒有想象中那么簡單,關(guān)鍵在于你如何對待它。我想起我可以為了自己做一個筆袋而一動不動坐一下午,并且為了解決出現(xiàn)的不足而把數(shù)據(jù)計算一遍又一遍,一遍遍拆,一遍遍改,在探索中前進,樂此不疲。而學習高數(shù)呢,一開始我怕,遇到不懂了,我更怕,最后呢,我只能逃課,不去聽,不去想,以為這樣就能躲過一切,我才發(fā)現(xiàn),我是個徹徹底底的懦夫,我只會做逃兵,我并沒有盡最大的努力。
在選課的時候,我發(fā)現(xiàn)還能選修高數(shù),這次,我不想再錯過。我想起了《追風箏的人》的一句話:“那里,有再一次成為好人的路?!笔堑?,我選擇重新認識高數(shù),我要為自己過去的罪行贖罪。
再次接觸高數(shù),捧著2年前讓我頭疼的課本,我發(fā)現(xiàn)其實真的可以懂,老師講的比較簡單,思路也很清晰。重新認識了牛頓萊布尼茲的微積分,驚嘆他們天才般的才智,運用無限的模糊理論,可以解決許多醫(yī)學上的問題,我才覺得高數(shù)真的是充滿了魅力和魔力,它能讓我們把簡單的問題先給復雜化最后再簡單化,培養(yǎng)我們的思維,更智慧巧妙地解決生活中的問題。學好了高數(shù),就像給你增添了一雙隱形的翅膀,你擁有了更開闊縝密的思維,許多問題突然變得迎刃而解了。
當然,學好高數(shù)并非那么簡單,但探索其中的奧秘確實非常有價值,我想,如果能把自己學到的高數(shù)知識運用到自己的生活,學習,工作上,才算是真正學好了高數(shù),感謝高數(shù),這次不僅僅因為它是高“樹”,而是我明白,攀登上這棵高樹,我看見了前所未有的迷人風景。
對高等數(shù)學的體會篇十九
隨著科技日新月異的發(fā)展和電腦無孔不入的應用.高等數(shù)學課程作為一種數(shù)學工具的功能正在逐步縮減.但作為一種思維方法的載體的功能(例如訓練學生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學軟件。但一個實際問題如何通過數(shù)學建模轉(zhuǎn)化為一個數(shù)學同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學這樣的課程作為載體來進行系統(tǒng)訓練,將是事半功倍的。
以往對工科學生來講,高等數(shù)學的教學比較偏重于計算方法的訓練,例如,如何計算極限,計算導數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學習高等數(shù)學的一條捷便之徑。但是從二十一世紀更加需要創(chuàng)新人才的觀點看,從高等數(shù)學的概念中直接去提煉一種分析推理能力及實際應用能力,將是更加重要的。(當然,在改革的力度還未到位時,由于教學要求及教材等原因.學習高等數(shù)學并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學好高等數(shù)學的基本概念。提出一些拙見供同學參考。
1)從正反兩個層面理解概念
我們觀察一個物體,如果僅僅通過平視去進行,那么對這個物體的認識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止.只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的.還是充分的?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應該包含兩層意思:一是對一個概念的否定是怎樣表達的?二是如果錯誤的理解了概念中的一些條件會導致什么樣的錯誤結(jié)果。
2)學與問
發(fā)現(xiàn)問題呢?首先要提倡自學,在自己預習教材(也鍛煉了一種自學能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習題之前要認真復習消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
3)做習題與想習題
學習數(shù)學,不做習題是絕對不行的.因為耐概念究竟理解與否檢驗的最后關(guān)口是習題。一道習題不會做或者做錯了,肯定是某些概念投有消化好,帶著習題再來復習理解概念,拄往會摩擦出新的思想火花。學習高等數(shù)學的過程中,我們不主張采用中學的題海戰(zhàn),但對每道習題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導致的錯誤結(jié)果.經(jīng)過又一次正反兩個層面的開掘.思考深入了,學習的興趣也會逐步培育起來。
【本文地址:http://mlvmservice.com/zuowen/6707140.html】