人工智能論文參考文獻(xiàn)(優(yōu)質(zhì)10篇)

格式:DOC 上傳日期:2023-10-20 16:52:02
人工智能論文參考文獻(xiàn)(優(yōu)質(zhì)10篇)
時(shí)間:2023-10-20 16:52:02     小編:紫薇兒

無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們?cè)撊绾螌懸黄^為完美的范文呢?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。

人工智能論文參考文獻(xiàn)篇一

:隨著社會(huì)信息技術(shù)和計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)的發(fā)展,人們對(duì)網(wǎng)絡(luò)應(yīng)用的需求也原來越多,這就需要不斷研究計(jì)算機(jī)網(wǎng)絡(luò)技術(shù),由于人工智能在一定程度上成為科學(xué)技術(shù)前言領(lǐng)域,所以世界上各個(gè)國家對(duì)人工智能的發(fā)展越來越重視。本文首先分析其所具有的重要意義,然后研究其在應(yīng)用過程中的作用,提出以下內(nèi)容。

計(jì)算機(jī);人工智能;應(yīng)用;分析

目前由于人工智能的不斷成熟,人們?cè)谏罘矫嬉约肮ぷ鞯倪^程中,智能化產(chǎn)品隨處可見。這不僅對(duì)人們?cè)诠ぷ髦械男蔬M(jìn)行提高,同時(shí)還對(duì)其生活質(zhì)量進(jìn)行加強(qiáng)。所以人工智能的發(fā)展在一定程度上離不開計(jì)算機(jī)網(wǎng)絡(luò)技術(shù),只有對(duì)計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)進(jìn)行相應(yīng)的依靠,才能夠讓人工智能研究出更多的成果。

由于計(jì)算機(jī)技術(shù)的快速發(fā)展,網(wǎng)絡(luò)信息安全問題在一定程度上是人們目前比較關(guān)注的一個(gè)重要問題。在網(wǎng)絡(luò)管理系統(tǒng)應(yīng)用中,其網(wǎng)絡(luò)監(jiān)控以及網(wǎng)絡(luò)控制是其比較重要的功能,信息能夠及時(shí)有效的獲取以及正確的處理對(duì)其起著決定性作用。所以,對(duì)計(jì)算機(jī)技術(shù)智能化進(jìn)行實(shí)現(xiàn)是比較必要的。由于計(jì)算機(jī)得到了不斷的深入以及管廣泛的運(yùn)用,在一定程度上導(dǎo)致用戶對(duì)網(wǎng)絡(luò)安全在管理方面的需求比較高,對(duì)自身的信息安全進(jìn)行有效的保證。目前網(wǎng)絡(luò)犯罪現(xiàn)象比較多,計(jì)算機(jī)只有在具備較快的反應(yīng)力和靈敏觀察力的狀況下,才能夠?qū)τ脩粜畔⑦M(jìn)行侵犯的違法活動(dòng)進(jìn)行及時(shí)遏制。充分的利用人工智能技術(shù),建立起相對(duì)較系統(tǒng)化的管理,讓其不僅對(duì)信息進(jìn)行自動(dòng)的收集,同時(shí)還能夠?qū)W(wǎng)絡(luò)出現(xiàn)的故障進(jìn)行及時(shí)診斷,對(duì)網(wǎng)絡(luò)故障及時(shí)遏制,運(yùn)用有效的措施對(duì)計(jì)算機(jī)網(wǎng)絡(luò)系統(tǒng)進(jìn)行及時(shí)的恢復(fù),保證用戶信息的安全。計(jì)算機(jī)技術(shù)在發(fā)展的過程中對(duì)人工智能應(yīng)用起著決定性作用,人工智能技術(shù)也在一定程度上對(duì)計(jì)算機(jī)技術(shù)的發(fā)展起著促進(jìn)作用。不斷的跟蹤動(dòng)態(tài)化信息,為用戶提供準(zhǔn)確的信息資源??偟膩碚f,計(jì)算機(jī)網(wǎng)絡(luò)在管理的過程中有效的運(yùn)用人工智能,對(duì)網(wǎng)絡(luò)管理水平進(jìn)行不斷的提高。

2.1安全管理應(yīng)用

網(wǎng)絡(luò)安全所具有的漏洞相對(duì)比較多,用戶在網(wǎng)絡(luò)中自身的資料信息安全是現(xiàn)階段人們比較關(guān)注以及重視的主要問題。在對(duì)網(wǎng)絡(luò)安全進(jìn)行管理時(shí),可以對(duì)人工智能技術(shù)進(jìn)行充分的運(yùn)用,在一定程度上能夠?qū)τ脩糇陨淼碾[身進(jìn)行有效的保護(hù)。主要表現(xiàn)為:一是,智能防火墻的應(yīng)用;二是,智能反應(yīng)垃圾郵件方面;三是,入侵檢測(cè)方面等。智能防護(hù)墻主要應(yīng)用的就是智能化識(shí)別技術(shù),通過概率以及統(tǒng)計(jì)方式、決策方法和計(jì)算等對(duì)信息數(shù)據(jù)不僅進(jìn)行有效的識(shí)別,同時(shí)還能對(duì)其相應(yīng)的處理,對(duì)匹配檢查過程中需要的計(jì)算進(jìn)行消除,充分認(rèn)識(shí)網(wǎng)絡(luò)行為特征值,訪問可以直接進(jìn)行控制,把存在的網(wǎng)絡(luò)及時(shí)發(fā)現(xiàn),攔截以及阻止有害信息的彈出。智能防火墻能夠在一定程度上避免網(wǎng)絡(luò)站點(diǎn)受到黑客的攻擊,遏制病毒傳播,對(duì)相關(guān)局域網(wǎng)進(jìn)行相應(yīng)的管理和控制,反之就會(huì)導(dǎo)致病毒以及木馬的傳播。在智能防火墻中,比較重要的就是入侵檢測(cè),它屬于防護(hù)墻后的.第二安全閘門,在對(duì)網(wǎng)絡(luò)安全保證方面起著重要的作用。針對(duì)入侵檢測(cè)技術(shù)而言,主要能夠在一定程度上對(duì)網(wǎng)絡(luò)中的數(shù)據(jù)進(jìn)行有效的分析,并且對(duì)其進(jìn)行及時(shí)的處理,把部分?jǐn)?shù)據(jù)過濾出去,數(shù)據(jù)檢測(cè)后的報(bào)告分析報(bào)告給用戶。入侵檢測(cè)在對(duì)網(wǎng)絡(luò)性能不產(chǎn)生影響的前提下監(jiān)測(cè)網(wǎng)絡(luò),為操作上的失誤以及內(nèi)外部攻擊提供一定的保護(hù)。針對(duì)智能型反垃圾而言,其自身的郵件系統(tǒng)能夠?qū)τ脩羿]箱進(jìn)行有效的監(jiān)測(cè),對(duì)郵箱進(jìn)行相應(yīng)識(shí)別,把郵箱中存在的垃圾充分的篩選出來。如果郵件進(jìn)入郵箱后,就會(huì)進(jìn)行掃描郵箱,在一定程度上把垃圾郵箱的分類信息發(fā)給用戶,提醒用戶要對(duì)其進(jìn)行及時(shí)的處理,避免給郵箱安全帶來影響。

2.2人工智能agent技術(shù)應(yīng)用分析

針對(duì)人工智能agent技術(shù)而言,它屬于人工智能代理的一種技術(shù),屬于不同部分所組成的軟件實(shí)體,包括:一是,知識(shí)域庫;二是數(shù)據(jù)庫;三是解釋推理器;四是各個(gè)agent之間的通訊部分等。人工智能agent技術(shù)通過任何一個(gè)agent域庫對(duì)新數(shù)據(jù)的相關(guān)信息進(jìn)行處理,并且溝通以至完成任務(wù)。人工智能agent技術(shù)能夠在一定程度上通過用戶自定義對(duì)信息獲得自動(dòng)搜索,然后將其發(fā)送到指定位置。人們通過agent技術(shù)得到人性化服務(wù)。例如:用戶在用電腦查相關(guān)信息時(shí),該技術(shù)不僅能對(duì)信息進(jìn)行處理,同時(shí)還能夠進(jìn)行有效的分析,最后把有用的信息出題給用戶,充分節(jié)省用戶的時(shí)間。agent技術(shù)為用戶在日常生活中提供相應(yīng)的服務(wù),例如:在網(wǎng)上進(jìn)行購物以及會(huì)議等方面的安排。它不僅自主性以及學(xué)習(xí)性,讓計(jì)算機(jī)對(duì)用戶所分配的任務(wù)自動(dòng)完成,進(jìn)一步推動(dòng)機(jī)計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)的發(fā)展。

2.3在網(wǎng)絡(luò)系統(tǒng)管理以及評(píng)價(jià)過程中的應(yīng)用分析

針對(duì)網(wǎng)絡(luò)管理系統(tǒng)來說,其智能化在一定程度上需要人工技能的不斷發(fā)展。在對(duì)網(wǎng)絡(luò)綜合管理系統(tǒng)進(jìn)行建立的過程中,不僅可以對(duì)人工智能中的專家知識(shí)庫進(jìn)行充分的利用,同時(shí)還能夠?qū)Υ嬖诘募夹g(shù)問題進(jìn)行有效的解決和處理。網(wǎng)絡(luò)存在著動(dòng)態(tài)以及變化性,所以,網(wǎng)絡(luò)在管理的過程中會(huì)面臨著困難,這就需要對(duì)網(wǎng)絡(luò)管理技術(shù)人工智能化進(jìn)行實(shí)現(xiàn)。在人工智能技術(shù)中,其專家知識(shí)庫主要指的就是把各個(gè)相關(guān)領(lǐng)域?qū)<业闹R(shí)以及經(jīng)驗(yàn)進(jìn)行相應(yīng)的結(jié)語出來,錄入系統(tǒng)中,只有這樣才能形成比較完善的知識(shí)庫系統(tǒng),促進(jìn)智能計(jì)算機(jī)程序的發(fā)展和提高。如果遇到某個(gè)領(lǐng)域問題的過程中,要充分利用專家經(jīng)驗(yàn)程序?qū)ζ溥M(jìn)行及時(shí)的處理。專家知識(shí)經(jīng)驗(yàn)系統(tǒng)促進(jìn)計(jì)算機(jī)網(wǎng)絡(luò)管理得到順利開展的同時(shí),對(duì)系統(tǒng)評(píng)價(jià)相關(guān)進(jìn)行工作不斷的提高和加強(qiáng)。

科學(xué)技術(shù)在發(fā)展的同時(shí),也促進(jìn)人工智能技術(shù)的提高,計(jì)算機(jī)在網(wǎng)絡(luò)技術(shù)中得到了比較多的需求,在一定程度上提高其應(yīng)用范圍和領(lǐng)域,因此可以看出,人工智能其應(yīng)用發(fā)展前景是比較廣泛的,人類對(duì)人工智能技術(shù)的進(jìn)一步研究,會(huì)在未來開創(chuàng)出更多的應(yīng)用領(lǐng)域。

人工智能論文參考文獻(xiàn)篇二

摘要:社會(huì)在發(fā)展、時(shí)代在進(jìn)步,信息技術(shù)水平也在不斷的提高,在此時(shí)代背景下,越來越多的技術(shù)手段開始在各個(gè)領(lǐng)域滲透和融入,而科技的進(jìn)步,使得各類的先進(jìn)技術(shù)衍生出來,其中的人工智能技術(shù)可謂是典型代表,許多的技術(shù)人員意識(shí)到人工智能技在計(jì)算機(jī)中的發(fā)展和應(yīng)用,所以對(duì)人工智能技術(shù)在計(jì)算機(jī)中的應(yīng)用和發(fā)展這一課題進(jìn)行分析具有一定的必然性,以下內(nèi)容是個(gè)人的見解。

關(guān)鍵詞:人工智能技術(shù);計(jì)算機(jī);發(fā)展;應(yīng)用;

受科學(xué)技術(shù)手段的推動(dòng)性影響,人類文明的發(fā)展步伐日漸加快,現(xiàn)階段,已經(jīng)基本步入到了信息化的時(shí)代背景下,計(jì)算機(jī)在當(dāng)下已經(jīng)是各行各業(yè)中常見的輔助工具,甚至許多行業(yè)的發(fā)展已經(jīng)視計(jì)算機(jī)技術(shù)為基本的動(dòng)力支撐,同時(shí)增加了技術(shù)應(yīng)用的要求,在此社會(huì)不斷發(fā)展的趨勢(shì)下,只有使得計(jì)算機(jī)技術(shù)逐步朝向著個(gè)性化以及智能化的方向發(fā)展,方可體現(xiàn)人工智能技術(shù)手段的作用,并為計(jì)算機(jī)技術(shù)手段的長遠(yuǎn)化發(fā)展提供相應(yīng)的保障。

一、人工智能技術(shù)的發(fā)展

人工智能一般指的是借助計(jì)算機(jī)技術(shù)手段,將其作為有效的基礎(chǔ),對(duì)人類的行為以及思想進(jìn)行模擬的綜合學(xué)科,它所涉及的行業(yè)較多,比如,心理學(xué)以及哲學(xué)等等均為典型,而后實(shí)現(xiàn)對(duì)人體觸覺或是感知方面的模擬,通常會(huì)將其安裝到機(jī)械設(shè)備之上,并使得機(jī)器更具智能化特色,借助智能化處理方式或是智能化編程等方法,逐步實(shí)現(xiàn)自動(dòng)化操作、智能化運(yùn)行,對(duì)人類難以完成的、高難度的、威脅較大的工作進(jìn)行有效處理,極大的提高工作效率,進(jìn)而保證人們的人身財(cái)產(chǎn)安全。

現(xiàn)階段,人工智能技術(shù)已經(jīng)初步取得了一定的成就,相關(guān)的專家學(xué)者在研究和探討以后,也發(fā)現(xiàn)了人工神經(jīng)網(wǎng)絡(luò)體系構(gòu)建的發(fā)展方向,希望借此完成工程項(xiàng)目設(shè)計(jì)工作,實(shí)現(xiàn)軟件系統(tǒng)和智能化模塊的有機(jī)結(jié)合,對(duì)軟件的性能進(jìn)行改良,進(jìn)而符合用戶的實(shí)際需求,在基本達(dá)到了人工智能的目標(biāo)以后,還需要對(duì)用戶界面進(jìn)行優(yōu)化和改良,最終為人工智能技術(shù)的發(fā)展和更新提供更多的保障。

二、人工智能技術(shù)手段在計(jì)算機(jī)中的應(yīng)用

(一)網(wǎng)絡(luò)安全方面的應(yīng)用

最近幾年來,人工智能技術(shù)的運(yùn)用已經(jīng)成為未來幾年來許多領(lǐng)域的發(fā)展趨向,它的利用將計(jì)算機(jī)網(wǎng)絡(luò)的優(yōu)勢(shì)全方位的體現(xiàn),值得一提的是,它在計(jì)算機(jī)網(wǎng)絡(luò)安全方面所占據(jù)的地位在日漸提高,同時(shí)其應(yīng)用價(jià)值也不斷凸顯。

而后,入侵檢測(cè)也是計(jì)算網(wǎng)絡(luò)安全工作落實(shí)的主要工作,這一過程中,防火墻可發(fā)揮自身的作用,這一過程中它的運(yùn)行效果,將會(huì)給整體的系統(tǒng)運(yùn)作安全性帶來極大的影響,可通過數(shù)據(jù)整合、搜集的方式,將有價(jià)值的參數(shù)呈現(xiàn)給用戶,通過郵件的形式發(fā)送給用戶,隨著時(shí)間的推移,郵件數(shù)量也會(huì)不斷的增加。經(jīng)過筆者的分析和探討,建議將智能型垃圾郵件系統(tǒng)安裝到用戶的系統(tǒng)之中,而后再實(shí)施風(fēng)險(xiǎn)檢測(cè),及時(shí)告知用戶相關(guān)的風(fēng)險(xiǎn)信息,并給予一定的提示,引導(dǎo)用戶妥善處理垃圾信息。

(二)企業(yè)管理方面的應(yīng)用

現(xiàn)階段,人工智能技術(shù)手段已經(jīng)被越來越多的企業(yè)管理者所認(rèn)知,比如,自動(dòng)報(bào)警系統(tǒng)和監(jiān)控系統(tǒng)的應(yīng)用就為典型代表,它們的運(yùn)用,利于企業(yè)實(shí)現(xiàn)智能化的管理目標(biāo),為企業(yè)的內(nèi)部運(yùn)作營造安全的氛圍和環(huán)境,此外,還可以一定程度的減少企業(yè)的運(yùn)作成本,逐步達(dá)到資源配置和優(yōu)化的效果,將企業(yè)的運(yùn)營和發(fā)展目標(biāo)落實(shí)到實(shí)處,體現(xiàn)出企業(yè)管理的智能化和現(xiàn)代化特色。

(三)教學(xué)領(lǐng)域的應(yīng)用

隨著新課程改革的推進(jìn),使得標(biāo)準(zhǔn)化教學(xué)體制也在日趨深化,逐步實(shí)現(xiàn)了計(jì)算機(jī)技術(shù)和教學(xué)工作的有機(jī)融合,人工智能計(jì)算機(jī)輔助教學(xué)系統(tǒng)的運(yùn)用體現(xiàn)了極大的應(yīng)用優(yōu)勢(shì),為傳統(tǒng)教學(xué)模式的優(yōu)化和改革注入了新的活力,可借此方法,完成教學(xué)方法和教學(xué)內(nèi)容的表達(dá),進(jìn)而相應(yīng)的的提高教學(xué)效率,確保教學(xué)質(zhì)量。

此外,引入人工智能技術(shù)的過程中,也需要重視知識(shí)庫的運(yùn)用,將其作為教學(xué)中有效的輔助工具,而后把教學(xué)中的要點(diǎn)以及相關(guān)定義等融入到知識(shí)庫職之中,教師的在落實(shí)教學(xué)工作之時(shí),可對(duì)知識(shí)庫之內(nèi)的理論知識(shí)加進(jìn)行準(zhǔn)確推理,為學(xué)生呈現(xiàn)更加直觀的推理過程和運(yùn)算過程,得出推理后的結(jié)果。從教學(xué)領(lǐng)域日后的發(fā)展角度來講,人工智能技術(shù)理念的引入,可謂是以此教學(xué)模式的革新,也是突破傳統(tǒng)教學(xué)模式桎梏的有效途徑。

(四)家居行業(yè)的應(yīng)用

當(dāng)前,人們的生活質(zhì)量和生活水平日漸提高,從而自然而然的增加了對(duì)于住房家居的應(yīng)用需要,在此社會(huì)發(fā)展形勢(shì)之下,可將人工智能技術(shù)手段應(yīng)用到家居生活中,盡可能滿人們的日常生活需要,比如,運(yùn)用人工智能技術(shù),對(duì)門窗的閉合進(jìn)行有效控制,或是對(duì)家居環(huán)境進(jìn)行調(diào)整,營造良好的生活氛圍。

三、結(jié)語

綜上所述,在此信息技術(shù)發(fā)展如此迅猛的時(shí)代背景下,人工智能技術(shù)手段的運(yùn)用被許多行業(yè)所認(rèn)識(shí)和關(guān)注,此項(xiàng)技術(shù)是一項(xiàng)典型的新型技術(shù)手段,它的應(yīng)用體現(xiàn)了極大的優(yōu)勢(shì),與域外發(fā)達(dá)國家相比較,我國的人工智能技術(shù)水平仍舊不足,但是,其發(fā)展速度卻相對(duì)較快,在我國的諸多行業(yè)中得到了廣泛運(yùn)用,它的未來發(fā)展前景相對(duì)較佳,值得大力推廣。

參考文獻(xiàn)

[2]黃鑫。分析計(jì)算機(jī)人工智能識(shí)別技術(shù)的應(yīng)用瓶頸[j].數(shù)字技術(shù)與應(yīng)用,20xx,26(7):244.

人工智能論文參考文獻(xiàn)篇三

智能交通系統(tǒng)(intelligent transportation systems,簡稱its)是將先進(jìn)的信息技術(shù)、數(shù)據(jù)通訊傳輸技術(shù)、電子傳感技術(shù)、電子控制技術(shù)及計(jì)算機(jī)處理技術(shù)等有效地集成運(yùn)用于整個(gè)地面交通管理系統(tǒng)而建立的一種在大范圍內(nèi)、全方位發(fā)揮作用的,實(shí)時(shí)、準(zhǔn)確、高效的綜合交通運(yùn)輸管理系統(tǒng)。its能有效地利用現(xiàn)有交通設(shè)施、減少交通負(fù)荷和環(huán)境污染、保證交通安全、提高運(yùn)輸效率、促進(jìn)社會(huì)經(jīng)濟(jì)發(fā)展、提高人民生活質(zhì)量,并以推動(dòng)社會(huì)信息化及形成新產(chǎn)業(yè)而受到各國的重視。目前已形成世界二十一世紀(jì)的發(fā)展方向。

交通仿真是智能交通領(lǐng)域的重要分支,它是利用最先進(jìn)的計(jì)算機(jī)技術(shù),通過仿真模擬的方法來分析交通問題,輔助交通管理人員做決策。傳統(tǒng)上,數(shù)學(xué)推導(dǎo)、科學(xué)實(shí)驗(yàn)是進(jìn)行科學(xué)研究、解決科學(xué)問題的主要方法。對(duì)于交通問題來說,由于參與交通的人很多,影響交通出行的因素也很多,人們很難、甚至無法對(duì)交通問題建立精確的數(shù)學(xué)模型。同時(shí),由于安全、法規(guī),以及開銷方面的原因,進(jìn)行現(xiàn)場交通實(shí)驗(yàn)通常也是不可行的。而交通仿真恰恰能夠有效地解決上述兩個(gè)方面的困難。

然而,傳統(tǒng)的交通仿真由于設(shè)計(jì)理念上的原因,并不能從根本上有效地解決交通問題。這是因?yàn)?,交通系統(tǒng)是一個(gè)龐大的復(fù)雜系統(tǒng),必須用對(duì)付復(fù)雜系統(tǒng)的方法來處理,也就是要用綜合的方法,而不是還原分解的方法來處理。

1)城市交通系統(tǒng)是由經(jīng)濟(jì)、環(huán)境、人口等因素綜合作用的結(jié)果,必須全面綜合地考慮城市交通和這些系統(tǒng)之間的關(guān)系。例如,不能為例城市交通問題的解決,而導(dǎo)致城市生態(tài)惡化,危害人居環(huán)境;不能為了城市交通的暢通,阻礙城市社會(huì)經(jīng)濟(jì)活動(dòng)的健康發(fā)展。我們必須在已有工作的基礎(chǔ)上,突破傳統(tǒng)思維,探索研究此類復(fù)雜系統(tǒng)的新途徑,而基于人工系統(tǒng)的研究方法正是這種有效途徑之一。

2)城市交通問題不存在“一勞永逸”的解決方案。城市交通系統(tǒng)涉及人與社會(huì)的動(dòng)態(tài)變化,本身也在不斷變化和發(fā)展之中,不可避免地需要一個(gè)不斷深化地認(rèn)識(shí)過程,這類系統(tǒng)實(shí)際上不存在精確完備的整體解析模型。因此,無法“一勞永逸”地解決城市交通問題,我們需要基于“不斷探索和改善”的'原則,研究建立有效可行的計(jì)算實(shí)驗(yàn)方法體系,為不斷地完善城市交通系統(tǒng)的綜合可持續(xù)發(fā)展方案提供科學(xué)依據(jù)。

3)城市交通問題不存在一般意義下的最優(yōu)解,更不存在唯一的最優(yōu)解。首先,基于解析模型的最優(yōu)解與假設(shè)條件直接相關(guān),具有條件敏感性,但對(duì)于城市交通這樣的問題,假設(shè)條件與實(shí)際情況往往存在很大差別。其次,解決這些問題一般不存在單一的優(yōu)化指標(biāo),而多層次多目標(biāo)優(yōu)化往往導(dǎo)致多個(gè)甚至無數(shù)個(gè)解決方案,就連采用近似模型的多目標(biāo)優(yōu)化也是如此。再者,對(duì)于這類復(fù)雜系統(tǒng),有時(shí)甚至連確定一個(gè)量化的綜合優(yōu)化指標(biāo)也有困難,特別是由于復(fù)雜系統(tǒng)長期行為的不可預(yù)測(cè)性,試圖求解其某一最優(yōu)化解決方案本身就是不可行的。因此,我們應(yīng)當(dāng)接受有效解決方案的概念,而且還要接受一般情況下存在多個(gè)有效解決方案的事實(shí)。在這種情況下,我們應(yīng)該利用平行系統(tǒng)方法,追求具有動(dòng)態(tài)適應(yīng)能力的有效解決方案。

基于以上分析,中國科學(xué)研自動(dòng)化所王飛躍研究員提出了人工交通系統(tǒng)的概念。其基本思想是利用人工社會(huì)的理論與方法,把交通仿真推向更高的層次、獲得更廣的視野。它利用基于代理的建模、面向?qū)ο蟮木幊毯筒⑿蟹植际接?jì)算等方法和技術(shù),“生長”和“培育”交通系統(tǒng),即“人工交通系統(tǒng)”。

利用人工交通系統(tǒng)解決問題的思路跟改革開放摸著石頭過河差不多,不斷探索和改善,使過程、方法更科學(xué)化、系統(tǒng)化、綜合化,不斷改善探索建立城市交通、物流、生態(tài)綜合發(fā)展的理論和方法體系。

三是平行管理運(yùn)行,虛擬交通系統(tǒng)與實(shí)際交通系統(tǒng)相結(jié)合,直接采集現(xiàn)實(shí)交通數(shù)據(jù),進(jìn)行超前運(yùn)算,以判斷可能發(fā)生的交通事件,提前采取預(yù)防措施,為交通的高效暢通提供保障。

1)在宏觀認(rèn)識(shí)上,人工交通系統(tǒng)不是單純的討論交通自身的問題。相反,人工交通系統(tǒng)將交通看作社會(huì)整體的一個(gè)子系統(tǒng),與經(jīng)濟(jì)、人口、環(huán)境、氣候等子系統(tǒng)具有平等的地位,并將各個(gè)子系統(tǒng)之間的相互銜接、相互聯(lián)系、相互作用和相互影響作為研究的重點(diǎn)之一。

2)在仿真方法上,人工交通系統(tǒng)屬于微觀仿真的范疇,但是不局限于研究局部的交通問題。人工交通系統(tǒng)面向大區(qū)域的仿真研究,采用復(fù)雜性科學(xué)中“涌現(xiàn)”的原理,在底層建立單個(gè)交通出行元素的代理模型,通過大交通區(qū)域內(nèi)單個(gè)代理模型之間的相互作用,“涌現(xiàn)”出宏觀的交通現(xiàn)象。

3)在實(shí)現(xiàn)手段上,人工交通系統(tǒng)不能在單一、孤立的計(jì)算機(jī)上進(jìn)行仿真,要使人工交通系統(tǒng)具備真實(shí)交通系統(tǒng)的分散性和社會(huì)性,必須采用先進(jìn)的分布式計(jì)算方法,如網(wǎng)格和p2p等,在互聯(lián)網(wǎng)上建立結(jié)構(gòu)化、分散化的虛擬交通路網(wǎng)系統(tǒng),并且通過終端界面將網(wǎng)絡(luò)中的真實(shí)人吸引到人工交通系統(tǒng)的運(yùn)行中來,以使每一個(gè)代理模型具有逼近現(xiàn)實(shí)的社會(huì)屬性。

4)在仿真目的上,人工交通系統(tǒng)不是一味的追求逼近現(xiàn)實(shí)交通環(huán)境和狀態(tài)。除此之外,人工交通系統(tǒng)可以通過調(diào)整參數(shù)、添加隨機(jī)事件等方法產(chǎn)生現(xiàn)實(shí)交通系統(tǒng)可能但尚未發(fā)生的交通現(xiàn)象,用以制定突發(fā)事故的緊急預(yù)案、交通控制方案的預(yù)評(píng)估以及交通參與人員的培訓(xùn)等等。

人工系統(tǒng)說起來有一點(diǎn)抽象,其實(shí)說穿了很簡單。第一是充分利用計(jì)算機(jī)技術(shù)的發(fā)展,第二是仿真與模擬的常態(tài)化。仿真不再是一個(gè)項(xiàng)目立項(xiàng)前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永遠(yuǎn)在。它是經(jīng)驗(yàn)與知識(shí)的數(shù)字化、動(dòng)態(tài)化和即時(shí)化,使人工影響現(xiàn)實(shí),虛擬影響實(shí)在。

人工交通系統(tǒng)完善之后,人們可以像玩網(wǎng)絡(luò)游戲一樣,作為一個(gè)行人或司機(jī)加入到系統(tǒng)中,不必出門即可體驗(yàn)交通;交警同志可以在人工交通系統(tǒng)中學(xué)習(xí)指揮交通,而不必?fù)?dān)心造成擁堵;交通分析人員可以利用人工交通系統(tǒng)研究各種突發(fā)事故對(duì)交通的影響,而不必?fù)?dān)心人民的生命財(cái)產(chǎn)受到威脅;交通管理和決策人員可以在人工交通系統(tǒng)試驗(yàn)交通政策和方案,而不必承擔(dān)決策失敗的風(fēng)險(xiǎn)。

人工智能論文參考文獻(xiàn)篇四

圖像識(shí)別技術(shù)是信息時(shí)代的一門重要的技術(shù),其產(chǎn)生目的是為了讓計(jì)算機(jī)代替人類去處理大量的物理信息。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人類對(duì)圖像識(shí)別技術(shù)的認(rèn)識(shí)越來越深刻。圖像識(shí)別技術(shù)的過程分為信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計(jì)和分類決策。文章簡單分析了圖像識(shí)別技術(shù)的引入、其技術(shù)原理以及模式識(shí)別等,之后介紹了神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別技術(shù)和非線性降維的圖像識(shí)別技術(shù)及圖像識(shí)別技術(shù)的應(yīng)用。從中可以總結(jié)出圖像處理技術(shù)的應(yīng)用廣泛,人類的生活將無法離開圖像識(shí)別技術(shù),研究圖像識(shí)別技術(shù)具有重大意義。

1圖像識(shí)別技術(shù)的引入

圖像識(shí)別是人工智能科技的一個(gè)重要領(lǐng)域。圖像識(shí)別的發(fā)展經(jīng)歷了三個(gè)階段:文字識(shí)別、數(shù)字圖像處理與識(shí)別、物體識(shí)別。圖像識(shí)別,顧名思義,就是對(duì)圖像做出各種處理、分析,最終識(shí)別我們所要研究的目標(biāo)。今天所指的圖像識(shí)別并不僅僅是用人類的肉眼,而是借助計(jì)算機(jī)技術(shù)進(jìn)行識(shí)別。雖然人類的識(shí)別能力很強(qiáng)大,但是對(duì)于高速發(fā)展的社會(huì),人類自身識(shí)別能力已經(jīng)滿足不了我們的需求,于是就產(chǎn)生了基于計(jì)算機(jī)的圖像識(shí)別技術(shù)。這就像人類研究生物細(xì)胞,完全靠肉眼觀察細(xì)胞是不現(xiàn)實(shí)的,這樣自然就產(chǎn)生了顯微鏡等用于精確觀測(cè)的儀器。通常一個(gè)領(lǐng)域有固有技術(shù)無法解決的需求時(shí),就會(huì)產(chǎn)生相應(yīng)的新技術(shù)。圖像識(shí)別技術(shù)也是如此,此技術(shù)的產(chǎn)生就是為了讓計(jì)算機(jī)代替人類去處理大量的物理信息,解決人類無法識(shí)別或者識(shí)別率特別低的信息。

1.1圖像識(shí)別技術(shù)原理

其實(shí),圖像識(shí)別技術(shù)背后的原理并不是很難,只是其要處理的信息比較繁瑣。計(jì)算機(jī)的任何處理技術(shù)都不是憑空產(chǎn)生的,它都是學(xué)者們從生活實(shí)踐中得到啟發(fā)而利用程序?qū)⑵淠M實(shí)現(xiàn)的。計(jì)算機(jī)的圖像識(shí)別技術(shù)和人類的圖像識(shí)別在原理上并沒有本質(zhì)的區(qū)別,只是機(jī)器缺少人類在感覺與視覺差上的影響罷了。人類的圖像識(shí)別也不單單是憑借整個(gè)圖像存儲(chǔ)在腦海中的記憶來識(shí)別的,我們識(shí)別圖像都是依靠圖像所具有的本身特征而先將這些圖像分了類,然后通過各個(gè)類別所具有的特征將圖像識(shí)別出來的,只是很多時(shí)候我們沒有意識(shí)到這一點(diǎn)。當(dāng)看到一張圖片時(shí),我們的大腦會(huì)迅速感應(yīng)到是否見過此圖片或與其相似的圖片。其實(shí)在“看到”與“感應(yīng)到”的中間經(jīng)歷了一個(gè)迅速識(shí)別過程,這個(gè)識(shí)別的過程和搜索有些類似。在這個(gè)過程中,我們的大腦會(huì)根據(jù)存儲(chǔ)記憶中已經(jīng)分好的類別進(jìn)行識(shí)別,查看是否有與該圖像具有相同或類似特征的存儲(chǔ)記憶,從而識(shí)別出是否見過該圖像。機(jī)器的圖像識(shí)別技術(shù)也是如此,通過分類并提取重要特征而排除多余的信息來識(shí)別圖像。機(jī)器所提取出的這些特征有時(shí)會(huì)非常明顯,有時(shí)又是很普通,這在很大的程度上影響了機(jī)器識(shí)別的速率。總之,在計(jì)算機(jī)的視覺識(shí)別中,圖像的內(nèi)容通常是用圖像特征進(jìn)行描述。

1.2模式識(shí)別

模式識(shí)別是人工智能和信息科學(xué)的重要組成部分。模式識(shí)別是指對(duì)表示事物或現(xiàn)象的不同形式的信息做分析和處理從而得到一個(gè)對(duì)事物或現(xiàn)象做出描述、辨認(rèn)和分類等的過程。

計(jì)算機(jī)的圖像識(shí)別技術(shù)就是模擬人類的圖像識(shí)別過程。在圖像識(shí)別的過程中進(jìn)行模式識(shí)別是必不可少的。模式識(shí)別原本是人類的一項(xiàng)基本智能。但隨著計(jì)算機(jī)的發(fā)展和人工智能的興起,人類本身的模式識(shí)別已經(jīng)滿足不了生活的需要,于是人類就希望用計(jì)算機(jī)來代替或擴(kuò)展人類的部分腦力勞動(dòng)。這樣計(jì)算機(jī)的模式識(shí)別就產(chǎn)生了。簡單地說,模式識(shí)別就是對(duì)數(shù)據(jù)進(jìn)行分類,它是一門與數(shù)學(xué)緊密結(jié)合的科學(xué),其中所用的思想大部分是概率與統(tǒng)計(jì)。模式識(shí)別主要分為三種:統(tǒng)計(jì)模式識(shí)別、句法模式識(shí)別、模糊模式識(shí)別。

2圖像識(shí)別技術(shù)的過程

既然計(jì)算機(jī)的圖像識(shí)別技術(shù)與人類的圖像識(shí)別原理相同,那它們的過程也是大同小異的。圖像識(shí)別技術(shù)的過程分以下幾步:信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計(jì)和分類決策。

信息的獲取是指通過傳感器,將光或聲音等信息轉(zhuǎn)化為電信息。也就是獲取研究對(duì)象的基本信息并通過某種方法將其轉(zhuǎn)變?yōu)闄C(jī)器能夠認(rèn)識(shí)的信息。

預(yù)處理主要是指圖像處理中的去噪、平滑、變換等的操作,從而加強(qiáng)圖像的重要特征。

特征抽取和選擇是指在模式識(shí)別中,需要進(jìn)行特征的抽取和選擇。簡單的理解就是我們所研究的圖像是各式各樣的,如果要利用某種方法將它們區(qū)分開,就要通過這些圖像所具有的本身特征來識(shí)別,而獲取這些特征的過程就是特征抽取。在特征抽取中所得到的特征也許對(duì)此次識(shí)別并不都是有用的,這個(gè)時(shí)候就要提取有用的特征,這就是特征的選擇。特征抽取和選擇在圖像識(shí)別過程中是非常關(guān)鍵的技術(shù)之一,所以對(duì)這一步的理解是圖像識(shí)別的重點(diǎn)。

分類器設(shè)計(jì)是指通過訓(xùn)練而得到一種識(shí)別規(guī)則,通過此識(shí)別規(guī)則可以得到一種特征分類,使圖像識(shí)別技術(shù)能夠得到高識(shí)別率。分類決策是指在特征空間中對(duì)被識(shí)別對(duì)象進(jìn)行分類,從而更好地識(shí)別所研究的對(duì)象具體屬于哪一類。

3圖像識(shí)別技術(shù)的分析

隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展和科技的不斷進(jìn)步,圖像識(shí)別技術(shù)已經(jīng)在眾多領(lǐng)域中得到了應(yīng)用。20xx年2月15日新浪科技發(fā)布一條新聞:“微軟最近公布了一篇關(guān)于圖像識(shí)別的研究論文,在一項(xiàng)圖像識(shí)別的基準(zhǔn)測(cè)試中,電腦系統(tǒng)識(shí)別能力已經(jīng)超越了人類。人類在歸類數(shù)據(jù)庫imagenet中的圖像識(shí)別錯(cuò)誤率為5.1%,而微軟研究小組的這個(gè)深度學(xué)習(xí)系統(tǒng)可以達(dá)到4.94%的錯(cuò)誤率?!睆倪@則新聞中我們可以看出圖像識(shí)別技術(shù)在圖像識(shí)別方面已經(jīng)有要超越人類的圖像識(shí)別能力的趨勢(shì)。這也說明未來圖像識(shí)別技術(shù)有更大的研究意義與潛力。而且,計(jì)算機(jī)在很多方面確實(shí)具有人類所無法超越的優(yōu)勢(shì),也正是因?yàn)檫@樣,圖像識(shí)別技術(shù)才能為人類社會(huì)帶來更多的應(yīng)用。

3.1神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別技術(shù)

神經(jīng)網(wǎng)絡(luò)圖像識(shí)別技術(shù)是一種比較新型的圖像識(shí)別技術(shù),是在傳統(tǒng)的圖像識(shí)別方法和基礎(chǔ)上融合神經(jīng)網(wǎng)絡(luò)算法的一種圖像識(shí)別方法。這里的神經(jīng)網(wǎng)絡(luò)是指人工神經(jīng)網(wǎng)絡(luò),也就是說這種神經(jīng)網(wǎng)絡(luò)并不是動(dòng)物本身所具有的真正的神經(jīng)網(wǎng)絡(luò),而是人類模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)后人工生成的。在神經(jīng)網(wǎng)絡(luò)圖像識(shí)別技術(shù)中,遺傳算法與bp網(wǎng)絡(luò)相融合的神經(jīng)網(wǎng)絡(luò)圖像識(shí)別模型是非常經(jīng)典的,在很多領(lǐng)域都有它的應(yīng)用。在圖像識(shí)別系統(tǒng)中利用神經(jīng)網(wǎng)絡(luò)系統(tǒng),一般會(huì)先提取圖像的特征,再利用圖像所具有的特征映射到神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像識(shí)別分類。以汽車拍照自動(dòng)識(shí)別技術(shù)為例,當(dāng)汽車通過的時(shí)候,汽車自身具有的檢測(cè)設(shè)備會(huì)有所感應(yīng)。此時(shí)檢測(cè)設(shè)備就會(huì)啟用圖像采集裝置來獲取汽車正反面的圖像。獲取了圖像后必須將圖像上傳到計(jì)算機(jī)進(jìn)行保存以便識(shí)別。最后車牌定位模塊就會(huì)提取車牌信息,對(duì)車牌上的字符進(jìn)行識(shí)別并顯示最終的結(jié)果。在對(duì)車牌上的字符進(jìn)行識(shí)別的過程中就用到了基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法。

3.2非線性降維的圖像識(shí)別技術(shù)

計(jì)算機(jī)的圖像識(shí)別技術(shù)是一個(gè)異常高維的識(shí)別技術(shù)。不管圖像本身的分辨率如何,其產(chǎn)生的數(shù)據(jù)經(jīng)常是多維性的,這給計(jì)算機(jī)的識(shí)別帶來了非常大的困難。想讓計(jì)算機(jī)具有高效地識(shí)別能力,最直接有效的方法就是降維。降維分為線性降維和非線性降維。例如主成分分析(pca)和線性奇異分析(lda)等就是常見的線性降維方法,它們的特點(diǎn)是簡單、易于理解。但是通過線性降維處理的是整體的數(shù)據(jù)集合,所求的是整個(gè)數(shù)據(jù)集合的最優(yōu)低維投影。經(jīng)過驗(yàn)證,這種線性的降維策略計(jì)算復(fù)雜度高而且占用相對(duì)較多的時(shí)間和空間,因此就產(chǎn)生了基于非線性降維的圖像識(shí)別技術(shù),它是一種極其有效的非線性特征提取方法。此技術(shù)可以發(fā)現(xiàn)圖像的非線性結(jié)構(gòu)而且可以在不破壞其本征結(jié)構(gòu)的基礎(chǔ)上對(duì)其進(jìn)行降維,使計(jì)算機(jī)的圖像識(shí)別在盡量低的維度上進(jìn)行,這樣就提高了識(shí)別速率。例如人臉圖像識(shí)別系統(tǒng)所需的維數(shù)通常很高,其復(fù)雜度之高對(duì)計(jì)算機(jī)來說無疑是巨大的“災(zāi)難”。由于在高維度空間中人臉圖像的不均勻分布,使得人類可以通過非線性降維技術(shù)來得到分布緊湊的人臉圖像,從而提高人臉識(shí)別技術(shù)的高效性。

3.3圖像識(shí)別技術(shù)的應(yīng)用及前景

計(jì)算機(jī)的圖像識(shí)別技術(shù)在公共安全、生物、工業(yè)、農(nóng)業(yè)、交通、醫(yī)療等很多領(lǐng)域都有應(yīng)用。例如交通方面的車牌識(shí)別系統(tǒng);公共安全方面的人臉識(shí)別技術(shù)、指紋識(shí)別技術(shù);農(nóng)業(yè)方面的種子識(shí)別技術(shù)、食品品質(zhì)檢測(cè)技術(shù);醫(yī)學(xué)方面的心電圖識(shí)別技術(shù)等。隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展,圖像識(shí)別技術(shù)也在不斷地優(yōu)化,其算法也在不斷地改進(jìn)。圖像是人類獲取和交換信息的主要來源,因此與圖像相關(guān)的圖像識(shí)別技術(shù)必定也是未來的研究重點(diǎn)。以后計(jì)算機(jī)的圖像識(shí)別技術(shù)很有可能在更多的領(lǐng)域嶄露頭角,它的應(yīng)用前景也是不可限量的,人類的生活也將更加離不開圖像識(shí)別技術(shù)。

4總結(jié)

圖像識(shí)別技術(shù)雖然是剛興起的技術(shù),但其應(yīng)用已是相當(dāng)廣泛。并且,圖像識(shí)別技術(shù)也在不斷地成長,隨著科技的不斷進(jìn)步,人類對(duì)圖像識(shí)別技術(shù)的認(rèn)識(shí)也會(huì)更加深刻。未來圖像識(shí)別技術(shù)將會(huì)更加強(qiáng)大,更加智能地出現(xiàn)在我們的生活中,為人類社會(huì)的更多領(lǐng)域帶來重大的應(yīng)用。在21世紀(jì)這個(gè)信息化的時(shí)代,我們無法想象離開了圖像識(shí)別技術(shù)以后我們的生活會(huì)變成什么樣。圖像識(shí)別技術(shù)是人類現(xiàn)在以及未來生活必不可少的一項(xiàng)技術(shù)。

人工智能論文參考文獻(xiàn)篇五

長久以來,人工智能對(duì)于普通人來說是那樣的可望而不可及,然而它卻吸引了無數(shù)研究人員為之奉獻(xiàn)才智,從美國的麻省理工學(xué)院(mit)、卡內(nèi)基-梅隆大學(xué)(cmu)到ibm公司,再到日本的本田公司、sony公司以及國內(nèi)的清華大學(xué)、中科院等科研院所,全世界的實(shí)驗(yàn)室都在進(jìn)行著ai技術(shù)的實(shí)驗(yàn)。不久前,著名導(dǎo)演斯蒂文·斯皮爾伯格還將這一主題搬上了銀幕,科幻片《人工智能》(a.i.)對(duì)許多人的頭腦又一次產(chǎn)生了震動(dòng),引起了一些人士了解并探索人工智能領(lǐng)域的興趣。

在本期技術(shù)專題中,中國科學(xué)院計(jì)算技術(shù)研究所智能信息處理開放實(shí)驗(yàn)室的幾位研究人員將引領(lǐng)我們走近人工智能這一充滿挑戰(zhàn)與機(jī)遇的領(lǐng)域。

"智能"源于拉丁語legere,字面意思是采集(特別是果實(shí))、收集、匯集,并由此進(jìn)行選擇,形成一個(gè)東西。intelegere是從中進(jìn)行選擇,進(jìn)而理解、領(lǐng)悟和認(rèn)識(shí)。正如帕梅拉·麥考達(dá)克在《機(jī)器思維》(machineswhothinks,1979)中所提出的:在復(fù)雜的機(jī)械裝置與智能之間存在長期的聯(lián)系。從幾個(gè)世紀(jì)前出現(xiàn)的神話般的巨鐘和機(jī)械自動(dòng)機(jī)開始,人們已對(duì)機(jī)器操作的復(fù)雜性與自身的某些智能活動(dòng)進(jìn)行直觀聯(lián)系。經(jīng)過幾個(gè)世紀(jì)之后,新技術(shù)已使我們所建立的機(jī)器的復(fù)雜性大為提高。1936年,24歲的英國數(shù)學(xué)家圖靈(turing)提出了"自動(dòng)機(jī)"理論,把研究會(huì)思維的機(jī)器和計(jì)算機(jī)的工作大大向前推進(jìn)了一步,他也因此被稱為"人工智能之父"。

人工智能領(lǐng)域的研究是從1956年正式開始的,這一年在達(dá)特茅斯大學(xué)召開的會(huì)議上正式使用了"人工智能"(artificialintelligence,ai)這個(gè)術(shù)語。隨后的幾十年中,人們從問題求解、邏輯推理與定理證明、自然語言理解、博弈、自動(dòng)程序設(shè)計(jì)、專家系統(tǒng)、學(xué)習(xí)以及機(jī)器人學(xué)等多個(gè)角度展開了研究,已經(jīng)建立了一些具有不同程度人工智能的計(jì)算機(jī)系統(tǒng),例如能夠求解微分方程、設(shè)計(jì)分析集成電路、合成人類自然語言,而進(jìn)行情報(bào)檢索,提供語音識(shí)別、手寫體識(shí)別的多模式接口,應(yīng)用于疾病診斷的專家系統(tǒng)以及控制太空飛行器和水下機(jī)器人更加貼近我們的生活。我們熟知的ibm的"深藍(lán)"在棋盤上擊敗了國際象棋大師卡斯帕羅夫就是比較突出的例子。

當(dāng)然,人工智能的發(fā)展也并不是一帆風(fēng)順的,也曾因計(jì)算機(jī)計(jì)算能力的限制無法模仿人腦的思考以及與實(shí)際需求的差距過遠(yuǎn)而走入低谷,但是隨著硬件和軟件的發(fā)展,計(jì)算機(jī)的運(yùn)算能力在以指數(shù)級(jí)增長,同時(shí)網(wǎng)絡(luò)技術(shù)蓬勃興起,確保計(jì)算機(jī)已經(jīng)具備了足夠的條件來運(yùn)行一些要求更高的ai軟件,而且現(xiàn)在的ai具備了更多的現(xiàn)實(shí)應(yīng)用的基礎(chǔ)。90年代以來,人工智能研究又出現(xiàn)了新的高潮。

我們有幸采訪了中國科學(xué)院計(jì)算技術(shù)研究所智能信息處理開放實(shí)驗(yàn)室史忠植研究員,請(qǐng)他和他的實(shí)驗(yàn)室成員引領(lǐng)我們走近人工智能這個(gè)讓普通人感到深?yuàn)W卻又具有無窮魅力的領(lǐng)域。

問:目前人工智能研究出現(xiàn)了新的高潮,那么現(xiàn)在有哪些新的研究熱點(diǎn)和實(shí)際應(yīng)用呢?

答:ai研究出現(xiàn)了新的高潮,這一方面是因?yàn)樵谌斯ぶ悄芾碚摲矫嬗辛诵碌倪M(jìn)展,另一方面也是因?yàn)橛?jì)算機(jī)硬件突飛猛進(jìn)的發(fā)展。隨著計(jì)算機(jī)速度的`不斷提高、存儲(chǔ)容量的不斷擴(kuò)大、價(jià)格的不斷降低以及網(wǎng)絡(luò)技術(shù)的不斷發(fā)展,許多原來無法完成的工作現(xiàn)在已經(jīng)能夠?qū)崿F(xiàn)。目前人工智能研究的3個(gè)熱點(diǎn)是:智能接口、數(shù)據(jù)挖掘、主體及多主體系統(tǒng)。

智能接口技術(shù)是研究如何使人們能夠方便自然地與計(jì)算機(jī)交流。為了實(shí)現(xiàn)這一目標(biāo),要求計(jì)算機(jī)能夠看懂文字、聽懂語言、說話表達(dá),甚至能夠進(jìn)行不同語言之間的翻譯,而這些功能的實(shí)現(xiàn)又依賴于知識(shí)表示方法的研究。因此,智能接口技術(shù)的研究既有巨大的應(yīng)用價(jià)值,又有基礎(chǔ)的理論意義。目前,智能接口技術(shù)已經(jīng)取得了顯著成果,文字識(shí)別、語音識(shí)別、語音合成、圖像識(shí)別、機(jī)器翻譯以及自然語言理解等技術(shù)已經(jīng)開始實(shí)用化。

數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機(jī)的實(shí)際應(yīng)用數(shù)據(jù)中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識(shí)的過程。數(shù)據(jù)挖掘和知識(shí)發(fā)現(xiàn)的研究目前已經(jīng)形成了三根強(qiáng)大的技術(shù)支柱:數(shù)據(jù)庫、人工智能和數(shù)理統(tǒng)計(jì)。主要研究內(nèi)容包括基礎(chǔ)理論、發(fā)現(xiàn)算法、數(shù)據(jù)倉庫、可視化技術(shù)、定性定量互換模型、知識(shí)表示方法、發(fā)現(xiàn)知識(shí)的維護(hù)和再利用、半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中的知識(shí)發(fā)現(xiàn)以及網(wǎng)上數(shù)據(jù)挖掘等。

主體是具有信念、愿望、意圖、能力、選擇、承諾等心智狀態(tài)的實(shí)體,比對(duì)象的粒度更大,智能性更高,而且具有一定自主性。主體試圖自治地、獨(dú)立地完成任務(wù),而且可以和環(huán)境交互,與其他主體通信,通過規(guī)劃達(dá)到目標(biāo)。多主體系統(tǒng)主要研究在邏輯上或物理上分離的多個(gè)主體之間進(jìn)行協(xié)調(diào)智能行為,最終實(shí)現(xiàn)問題求解。多主體系統(tǒng)試圖用主體來模擬人的理性行為,主要應(yīng)用在對(duì)現(xiàn)實(shí)世界和社會(huì)的模擬、機(jī)器人以及智能機(jī)械等領(lǐng)域。目前對(duì)主體和多主體系統(tǒng)的研究主要集中在主體和多主體理論、主體的體系結(jié)構(gòu)和組織、主體語言、主體之間的協(xié)作和協(xié)調(diào)、通信和交互技術(shù)、多主體學(xué)習(xí)以及多主體系統(tǒng)應(yīng)用等方面。

答:我國開始"863計(jì)劃"時(shí),正值全世界的人工智能熱潮。"863-306"主題的名稱是"智能計(jì)算機(jī)系統(tǒng)",其任務(wù)就是在充分發(fā)掘現(xiàn)有計(jì)算機(jī)潛力的基礎(chǔ)上,分析現(xiàn)有計(jì)算機(jī)在應(yīng)用中的缺陷和"瓶頸",用人工智能技術(shù)克服這些問題,建立起更為和諧的人-機(jī)環(huán)境。經(jīng)過十幾年來的努力,我們縮短了我國人工智能技術(shù)與世界先進(jìn)水平的差距,也為未來的發(fā)展奠定了技術(shù)和人才基礎(chǔ)。

但是也應(yīng)該看到目前我國人工智能研究中還存在一些問題,其特點(diǎn)是:課題比較分散,應(yīng)用項(xiàng)目偏多、基礎(chǔ)研究比例略少、理論研究與實(shí)際應(yīng)用需求結(jié)合不夠緊密。選題時(shí),容易跟著國外的選題走;立項(xiàng)論證時(shí),慣于考慮國外怎么做;落實(shí)項(xiàng)目時(shí),又往往顧及面面俱到,大而全;再加上受研究經(jīng)費(fèi)的限制,所以很多課題既沒有取得理論上的突破,也沒有太大的實(shí)際應(yīng)用價(jià)值。

今后,基礎(chǔ)研究的比例應(yīng)該適當(dāng)提高,同時(shí)人工智能研究一定要與應(yīng)用需求相結(jié)合??茖W(xué)研究講創(chuàng)新,而創(chuàng)新必須接受應(yīng)用和市場的檢驗(yàn)。因此,我們不僅要善于找到解決問題的答案,更重要的是要發(fā)現(xiàn)最迫切需要解決的問題和最迫切需要滿足的市場需求。

問:請(qǐng)您預(yù)測(cè)一下人工智能將來會(huì)向哪些方面發(fā)展?

答:技術(shù)的發(fā)展總是超乎人們的想象,要準(zhǔn)確地預(yù)測(cè)人工智能的未來是不可能的。但是,從目前的一些前瞻性研究可以看出未來人工智能可能會(huì)向以下幾個(gè)方面發(fā)展:模糊處理、并行化、神經(jīng)網(wǎng)絡(luò)和機(jī)器情感。

目前,人工智能的推理功能已獲突破,學(xué)習(xí)及聯(lián)想功能正在研究之中,下一步就是模仿人類右腦的模糊處理功能和整個(gè)大腦的并行化處理功能。人工神經(jīng)網(wǎng)絡(luò)是未來人工智能應(yīng)用的新領(lǐng)域,未來智能計(jì)算機(jī)的構(gòu)成,可能就是作為主機(jī)的馮·諾依曼型機(jī)與作為智能外圍的人工神經(jīng)網(wǎng)絡(luò)的結(jié)合。研究表明:情感是智能的一部分,而不是與智能相分離的,因此人工智能領(lǐng)域的下一個(gè)突破可能在于賦予計(jì)算機(jī)情感能力。情感能力對(duì)于計(jì)算機(jī)與人的自然交往至關(guān)重要。

人工智能一直處于計(jì)算機(jī)技術(shù)的前沿,人工智能研究的理論和發(fā)現(xiàn)在很大程度上將決定計(jì)算機(jī)技術(shù)的發(fā)展方向。今天,已經(jīng)有很多人工智能研究的成果進(jìn)入人們的日常生活。將來,人工智能技術(shù)的發(fā)展將會(huì)給人們的生活、工作和教育等帶來更大的影響。

人工智能也稱機(jī)器智能,它是計(jì)算機(jī)科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等多種學(xué)科互相滲透而發(fā)展起來的一門綜合性學(xué)科。從計(jì)算機(jī)應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造出人造的智能機(jī)器或智能系統(tǒng),來模擬人類智能活動(dòng)的能力,以延伸人們智能的科學(xué)。

在一年一度at&t實(shí)驗(yàn)室舉行的機(jī)器人足球賽中,每支球隊(duì)的"球員"都裝備上了ai軟件和許多感應(yīng)器,它們都很清楚自己該踢什么位置,同時(shí)也明白有些情況下不能死守崗位。盡管現(xiàn)在的ai技術(shù)只能使它們大部分時(shí)間處于個(gè)人盤帶的狀態(tài),但它們傳接配合的能力正在以很快的速度改進(jìn)。

這種ai機(jī)器人組隊(duì)打比賽看似無聊,但是有很強(qiáng)的現(xiàn)實(shí)意義。因?yàn)橥ㄟ^這類活動(dòng)可以加強(qiáng)機(jī)器之間的協(xié)作能力。我們知道,internet是由無數(shù)臺(tái)服務(wù)器和無數(shù)臺(tái)路由器組成的,路由器的作用就是為各自的數(shù)據(jù)選擇通道并加以傳送,如果利用一些智能化的路由器很好地協(xié)作,就能分析出傳輸數(shù)據(jù)的最佳路徑,從而可以大大減少網(wǎng)絡(luò)堵塞。

我國也已經(jīng)在大學(xué)中開展了機(jī)器人足球賽,有很多學(xué)校組隊(duì)參加,引起了大學(xué)生對(duì)人工智能研究的興趣。

安放于加州勞倫斯·利佛摩爾國家實(shí)驗(yàn)室的asciwhite電腦,是ibm制造的世界最快的超級(jí)電腦,但其智力能力也僅為人腦的千分之一?,F(xiàn)在,ibm正在開發(fā)能力更為強(qiáng)大的新超級(jí)電腦--"藍(lán)色牛仔"(bluejean)。據(jù)其研究主任保羅·霍恩稱,預(yù)計(jì)于4年后誕生的"藍(lán)色牛仔"的智力水平將大致與人腦相當(dāng)。

麻省理工學(xué)院的ai實(shí)驗(yàn)室進(jìn)行一個(gè)的代號(hào)為cog的項(xiàng)目。cog計(jì)劃意圖賦予機(jī)器人以人類的行為。該實(shí)驗(yàn)的一個(gè)項(xiàng)目是讓機(jī)器人捕捉眼睛的移動(dòng)和面部表情,另一個(gè)項(xiàng)目是讓機(jī)器人抓住從它眼前經(jīng)過的東西,還有一個(gè)項(xiàng)目則是讓機(jī)器人學(xué)會(huì)聆聽音樂的節(jié)奏并將其在鼓上演奏出來。

人工智能論文參考文獻(xiàn)篇六

人工智能(artificialintelligence),英文縮寫為ai,也稱機(jī)器智能。“人工智能”一詞最初是在1956年的dartmouth學(xué)會(huì)上提出的。它是計(jì)算機(jī)科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等多種學(xué)科互相滲透而發(fā)展起來的一門綜合性學(xué)科。從計(jì)算機(jī)應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造智能機(jī)器或智能系統(tǒng)來模擬人類智能活動(dòng)的能力,以延伸人們智能的科學(xué)。

人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它企圖了解智能的實(shí)質(zhì),并生產(chǎn)出一種新的能與人類智能相似的方式做出反應(yīng)的智能機(jī)器。人工智能的發(fā)展史是和計(jì)算機(jī)科學(xué)與技術(shù)的發(fā)展史聯(lián)系在一起的,目前能夠用來研究人工智能的主要物質(zhì)手段以及能夠?qū)崿F(xiàn)人工智能技術(shù)的機(jī)器就是計(jì)算機(jī),人工智能在21世紀(jì)必將為發(fā)展國民經(jīng)濟(jì)和改善人類生活做出更大的貢獻(xiàn)。

事物的發(fā)展都是曲折的,人工智能的發(fā)展也是如此。人工智能的發(fā)展歷程大致可以劃分為以下五個(gè)階段:

第一階段:20世紀(jì)50年代,人工智能的興起和冷落。人工智能概念在1956年首次提出后,相繼出現(xiàn)了一批顯著的成果,如機(jī)器定理證明、跳棋程序、通用問題s求解程序、lisp表處理語言等。但是由于消解法推理能力有限以及機(jī)器翻譯等的失敗,使人工智能走入了低谷。這一階段的特點(diǎn)是重視問題求解的方法,而忽視了知識(shí)的重要性。

第二階段:60年代末到70年代,專家系統(tǒng)出現(xiàn),使人工智能研究出現(xiàn)新高潮。dendral化學(xué)質(zhì)譜分析系統(tǒng)、mycin疾病診斷和治療系統(tǒng)、prospectior探礦系統(tǒng)、hearsay—ii語音理解系統(tǒng)等專家系統(tǒng)的研究和開發(fā),將人工智能引向了實(shí)用化。并且,1969年成立了國際人工智能聯(lián)合會(huì)議(internationaljointconferencesonartificialintelligence即ijcai)。

第三階段:80年代,隨著第五代計(jì)算機(jī)的研制,人工智能得到了飛速的發(fā)展。日本在1982年開始了“第五代計(jì)算機(jī)研制計(jì)劃”,即“知識(shí)信息處理計(jì)算機(jī)系統(tǒng)kips”,其目的是使邏輯推理達(dá)到數(shù)值運(yùn)算那么快。雖然此計(jì)劃最終失敗,但它的開展形成了一股研究人工智能的熱潮。

第四階段:80年代末,神經(jīng)網(wǎng)絡(luò)飛速發(fā)展,。1987年,美國召開第一次神經(jīng)網(wǎng)絡(luò)國際會(huì)議,宣告了這一新學(xué)科的誕生。此后,各國在神經(jīng)網(wǎng)絡(luò)方面的投資逐漸增加,神經(jīng)網(wǎng)絡(luò)迅速發(fā)展起來。

第五階段:90年代,人工智能出現(xiàn)新的研究高潮。由于網(wǎng)絡(luò)技術(shù)特別是國際互連網(wǎng)技術(shù)的發(fā)展,人工智能開始由單個(gè)智能主體研究轉(zhuǎn)向基于網(wǎng)絡(luò)環(huán)境下的分布式人工智能研究。不僅研究基于同一目標(biāo)的分布式問題求解,而且研究多個(gè)智能主體的多目標(biāo)問題求解,將人工智能更面向?qū)嵱谩A硗?,由于hopfield多層神經(jīng)網(wǎng)絡(luò)模型的提出,使人工神經(jīng)網(wǎng)絡(luò)研究與應(yīng)用出現(xiàn)了欣欣向榮的景象。

1、人工智能在管理系統(tǒng)中的應(yīng)用

人工智能應(yīng)用于企業(yè)管理的意義主要不在于提高效率,而是用計(jì)算機(jī)實(shí)現(xiàn)人們非常需要做,但工業(yè)工程信息技術(shù)是靠人工卻做不了或是很難做到的事情。把人工智能應(yīng)用于企業(yè)管理中,以數(shù)據(jù)管理和處理為中心,圍繞企業(yè)的核心業(yè)務(wù)和主導(dǎo)流程建立若干個(gè)主題數(shù)據(jù)庫,而所有的應(yīng)用系統(tǒng)應(yīng)該圍繞主題數(shù)據(jù)庫來建立和運(yùn)行。也就是說,將企業(yè)各部門的數(shù)據(jù)進(jìn)行統(tǒng)一集成管理,搭建人工智能的應(yīng)用平臺(tái),使之成為企業(yè)管理與決策中的關(guān)鍵因子,這些正體現(xiàn)了人工智能在企業(yè)管理中的巨大價(jià)值。

2、人工智能在工程領(lǐng)域中的應(yīng)用

人工智能在地質(zhì)勘探、石油化工等工程領(lǐng)域也發(fā)揮著非常重要的作用。早在1978年,美國斯坦福國際研究所就研發(fā)制成礦藏勘探和評(píng)價(jià)專家系統(tǒng)“prospector”,該系統(tǒng)用于勘探評(píng)價(jià)、區(qū)域資源估值和鉆井井位選擇等,是工程領(lǐng)域的首個(gè)人工智能專家系統(tǒng),其發(fā)現(xiàn)了一個(gè)鉬礦沉積,價(jià)值超過1億美元。

3、人工智能在技術(shù)研究中的應(yīng)用

人工智能在電子技術(shù)領(lǐng)域的應(yīng)用可謂由來已久。隨著網(wǎng)絡(luò)的迅速發(fā)展,網(wǎng)絡(luò)技術(shù)的安全已經(jīng)成了人們關(guān)心的重點(diǎn),因此必須在傳統(tǒng)技術(shù)的基礎(chǔ)上進(jìn)行網(wǎng)絡(luò)安全技術(shù)的`改進(jìn)和變更,大力發(fā)展數(shù)據(jù)挖掘技術(shù)、人工免疫技術(shù)等高效的ai技術(shù),開發(fā)更高級(jí)的ai通用與專用語言和應(yīng)用環(huán)境以及開發(fā)專用機(jī)器,而人工智能技術(shù)則為其提供了一定的可能。

人工智能的近期研究目標(biāo)在于建造智能計(jì)算機(jī),用以代替人類去從事各種復(fù)雜的腦力勞動(dòng)。正是根據(jù)這一近期研究目標(biāo),人們才把人工智能理解為計(jì)算機(jī)科學(xué)的一個(gè)分支。當(dāng)然,人工智能還有它的遠(yuǎn)期研究目標(biāo),即探究人類智能和機(jī)器智能的基本原理,研究用自動(dòng)機(jī)(automata)模擬人類的思維過程和智能行為。這個(gè)長期目標(biāo)遠(yuǎn)遠(yuǎn)超出計(jì)算機(jī)科學(xué)的范疇,幾乎涉及自然科學(xué)和社會(huì)科學(xué)的所有學(xué)科。如今,人工智能已經(jīng)進(jìn)入了21世紀(jì),其必將為發(fā)展國民經(jīng)濟(jì)和改善人類生活做出更大的貢獻(xiàn)。但是,從人工智能目前的發(fā)展現(xiàn)狀來看,其研究也存在一定的問題,這些主要表現(xiàn)在以下三個(gè)方面:

1、宏觀與微觀隔離

一方面是哲學(xué)、認(rèn)知科學(xué)、思維科學(xué)和心理學(xué)等學(xué)科所研究的智能層次太高、太抽象;另一方面是人工智能邏輯符號(hào)、神經(jīng)網(wǎng)絡(luò)和行為主義所研究的智能層次太低。這兩方面之間相距太遠(yuǎn),中間還有許多層次尚待研究,目前還無法把宏觀與微觀有機(jī)地結(jié)合起來和相互滲透。

2、全局與局部割裂

人工智能是腦系統(tǒng)的整體效應(yīng),有著豐富的層次和多個(gè)側(cè)面。但是,符號(hào)主義只抓住人腦的抽象思維特性;連接主義只模仿人的形象思維特性;行為主義則著眼于人類智能行為特性及其進(jìn)化過程。這就導(dǎo)致了三者之間存在著明顯的局限性。因此,必須從多層次、多因素、多維和全局觀點(diǎn)來研究人工智能,才能克服上述局限。

3、理論與實(shí)際脫節(jié)

大腦的實(shí)際工作,在宏觀上已知道不少;但是智能的千姿百態(tài),變幻莫測(cè),復(fù)雜的難以理出頭緒。在微觀上,我們對(duì)大腦的工作機(jī)制知之甚少,似是而非,這也使我們難以找出規(guī)律。在這種背景下提出的各種人工智能理論,只是部分人的主觀猜想,能在某些方面表現(xiàn)出“智能”就已經(jīng)算是相當(dāng)?shù)某晒Α?/p>

人工智能一直處于計(jì)算機(jī)技術(shù)的前沿,其研究的理論和發(fā)現(xiàn)在很大程度上將決定計(jì)算機(jī)技術(shù)的發(fā)展方向。人工智能研究與應(yīng)用雖取得了不少成果,但離全面推廣應(yīng)用還有很大的距離,還有許多問題有待解決,且需要多學(xué)科的研究專家共同合作。因此,要想從根本上了解人腦的結(jié)構(gòu)和功能,完成人工智能的研究任務(wù),就必須去尋找和建立更新的人工智能框架和理論體系,進(jìn)而為人工智能的進(jìn)一步發(fā)展奠定堅(jiān)實(shí)的理論基礎(chǔ)。我們堅(jiān)信在不久的將來,人工智能技術(shù)的應(yīng)用與發(fā)展必將會(huì)給人們的生活、工作和教育等帶來更大的影響。

人工智能論文參考文獻(xiàn)篇七

【】隨著科學(xué)技術(shù)的不斷發(fā)展,人工智能被廣泛的應(yīng)用于各個(gè)行業(yè),計(jì)算機(jī)領(lǐng)域就是其中之一。目前,計(jì)算機(jī)的功能已經(jīng)從數(shù)值計(jì)算發(fā)展到問題的求解和知識(shí)處理等方面,計(jì)算機(jī)功能的轉(zhuǎn)變依靠的核心技術(shù)就是人工智能。本文對(duì)人工智能的基本概念進(jìn)行了介紹,并分析了人工智能在計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)中的應(yīng)用。

【】人工智能;網(wǎng)絡(luò)技術(shù);安全管理

人工智能技術(shù)是通過運(yùn)用語言學(xué)、生理學(xué)和心理學(xué)等多種學(xué)科來模仿人類智能的技術(shù),其最終目的是超越人類智能。在人工智能技術(shù)中,通過多種學(xué)科技術(shù)的應(yīng)用,可以使機(jī)器模擬人的視聽說以及思維,從而使機(jī)器具有人的思維方式和能力。利用人工智能可以幫助人們解決工作和生活中遇到的問題,使人們的工作效率得到大幅度的提高。人工智能技術(shù)的發(fā)展和計(jì)算機(jī)技術(shù)是密不可分的,二者是相輔相成的關(guān)系。人工智能技術(shù)在計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)中的應(yīng)用可以大幅度的提升計(jì)算機(jī)的功能。通過人工智能技術(shù)可以提升計(jì)算機(jī)處理信息的能力,更加準(zhǔn)確的掌握系統(tǒng)資源,并且對(duì)系統(tǒng)資源的變化做出迅速的反應(yīng),從而更好的處理信息和進(jìn)行信息的防護(hù)。同時(shí),人工智能技術(shù)在資源整合方面也具有巨大的優(yōu)勢(shì),能夠更好的實(shí)現(xiàn)用戶之間的信息共享。人工智能還能夠提高網(wǎng)絡(luò)管理的效率,其具有的`學(xué)習(xí)能力和推理能力使其在網(wǎng)絡(luò)護(hù)理中具有重要的作用。通過利用人工智能技術(shù)可以使計(jì)算機(jī)處理信息的準(zhǔn)確性和效率得到提升,與此同時(shí)還能夠利用人工智能的記憶功能提升計(jì)算機(jī)的信息存儲(chǔ)能力和效率。綜上所述,人工智能的應(yīng)用可以全面的提升計(jì)算機(jī)網(wǎng)絡(luò)的管理水平。

2.1人工智能在計(jì)算機(jī)網(wǎng)絡(luò)安全管理上的應(yīng)用

人工智能在計(jì)算機(jī)網(wǎng)絡(luò)安全管理方面具有重要的作用,利用人工智能可以使人們更加方便快捷的進(jìn)行計(jì)算機(jī)網(wǎng)絡(luò)的安全管理工作。目前,人工智能在智能防火墻、入侵檢測(cè)系統(tǒng)以及智能反垃圾郵件等計(jì)算機(jī)網(wǎng)絡(luò)安全管理技術(shù)方面有著重要的應(yīng)用,在保護(hù)計(jì)算機(jī)網(wǎng)絡(luò)安全方面發(fā)揮了重要的作用。智能防火墻技術(shù)相較于傳統(tǒng)的防火墻,能夠大幅度的提升安全監(jiān)測(cè)的效率,更好的進(jìn)行安全服務(wù)。通過智能防火墻中應(yīng)用的智能識(shí)別技術(shù)可以高效的進(jìn)行數(shù)據(jù)的識(shí)別和處理工作,能夠迅速的發(fā)現(xiàn)網(wǎng)絡(luò)中存在的風(fēng)險(xiǎn)并及時(shí)的進(jìn)行處理。智能防護(hù)墻技還能夠有效的抵御病毒的入侵以及其他一些計(jì)算機(jī)的安全威脅。入侵檢測(cè)系統(tǒng)是保護(hù)計(jì)算機(jī)網(wǎng)絡(luò)安全的一種重要方式,對(duì)保證計(jì)算機(jī)網(wǎng)絡(luò)安全具有十分重要的作用。通過入侵檢測(cè)系統(tǒng),能夠有效的保護(hù)計(jì)算機(jī)中的數(shù)據(jù)資源,保證數(shù)據(jù)的保密性、完整性、安全性。入侵檢測(cè)系統(tǒng)通過進(jìn)行數(shù)據(jù)的采集、篩選和分類,及時(shí)的向用戶反映計(jì)算機(jī)網(wǎng)絡(luò)的安全狀態(tài),從而使用戶可以對(duì)自己計(jì)算機(jī)的安全狀態(tài)有著充分的了解。目前人工智能在入侵檢測(cè)系統(tǒng)應(yīng)用主要在模糊識(shí)別、專家及人工神經(jīng)網(wǎng)絡(luò)等方面。將人工智能應(yīng)用到反垃圾郵件中,能夠在不影響用戶使用的前提下對(duì)用戶的郵件進(jìn)行掃描、檢測(cè)和及時(shí)的標(biāo)記,使用戶能夠及時(shí)的處理掉存在安全風(fēng)險(xiǎn)的郵件,保護(hù)計(jì)算機(jī)的安全。

2.2人工智能agent技術(shù)推動(dòng)計(jì)算機(jī)網(wǎng)絡(luò)信息服務(wù)水平的提高

將人工智能應(yīng)用到計(jì)算機(jī)網(wǎng)絡(luò)系統(tǒng)中能夠提高計(jì)算機(jī)網(wǎng)絡(luò)信息服務(wù)水平,改善計(jì)算機(jī)的使用方式。人工智能代理(artificalintelligenceagent)技術(shù),也就是人們常說的人工智能agent技術(shù)是一種實(shí)體軟件,其主要包括知識(shí)域庫、解釋推理器、數(shù)據(jù)庫、各個(gè)agent之間的通訊等部分,其主要功能是為用戶提供人性化、個(gè)性化的服務(wù)。利用這種技術(shù),能夠幫助用戶過濾、整理信息,并且快速的發(fā)現(xiàn)需要的信息,從而幫助用戶提高效率,節(jié)約時(shí)間。除此之外,人工智能agent還能夠?qū)崿F(xiàn)信息的有效集成為知識(shí)域庫,從而使信息的檢索和管理變得更加簡捷、便利,人工智能agent還能夠?qū)崿F(xiàn)知識(shí)的挖掘以及提供導(dǎo)航服務(wù)。通過人工智能agent可以幫助人們進(jìn)行日程安排、網(wǎng)上購物以及郵件處理等工作,為人們提供更優(yōu)質(zhì)的服務(wù),給人們的生活帶來便利。

2.3人工智能在網(wǎng)絡(luò)管理和系統(tǒng)評(píng)價(jià)中的應(yīng)用

應(yīng)用人工智能可以實(shí)現(xiàn)計(jì)算機(jī)網(wǎng)絡(luò)的綜合管理,通過利用人工智能中的專家知識(shí)庫可以解決遇到的問題。由于計(jì)算機(jī)網(wǎng)絡(luò)具有動(dòng)態(tài)性和瞬變性,因此進(jìn)行計(jì)算機(jī)網(wǎng)絡(luò)的管理非常困難,而基于人工智能技術(shù)發(fā)展起來的專家級(jí)決策和支持方法可以有效的進(jìn)行計(jì)算機(jī)網(wǎng)絡(luò)系統(tǒng)的管理。通過將各領(lǐng)域的專家的知識(shí)經(jīng)驗(yàn)進(jìn)行總結(jié),并將其錄入到系統(tǒng)之中可以使領(lǐng)域內(nèi)專家的經(jīng)驗(yàn)匯集,在出現(xiàn)問題時(shí)可以通過專家的經(jīng)驗(yàn)進(jìn)行快速的解決。在計(jì)算機(jī)網(wǎng)絡(luò)管理和評(píng)價(jià)中應(yīng)用專家系統(tǒng),可以提高網(wǎng)絡(luò)管理和系統(tǒng)評(píng)價(jià)水平。

作者:張春柏 單位:北京聯(lián)合大學(xué)生物化學(xué)工程學(xué)院

人工智能論文參考文獻(xiàn)篇八

在科學(xué)技術(shù)日新月異的今天,知識(shí)呈爆炸性增長,全世界每天發(fā)表的論文都有數(shù)以萬計(jì),關(guān)鍵詞能鮮明而直觀地表述文獻(xiàn)論述或表達(dá)的主題,使讀者在未看學(xué)術(shù)論文的文摘和正文之前便能一目了然地知道論文論述的主題,從而作出是否要花費(fèi)時(shí)間閱讀正文的判斷[1]。不僅如此,關(guān)鍵詞揭示的是學(xué)術(shù)論文最核心的內(nèi)容,是文章最基本的學(xué)術(shù)思想、技術(shù)方法的提煉和概括[2],因此學(xué)術(shù)界已約定利用主題概念詞去檢索最新發(fā)表的論文??梢?,關(guān)鍵詞早已成為學(xué)術(shù)論文的文獻(xiàn)檢索標(biāo)識(shí),它并不是可有可無的論文裝飾品,更不是“形式主義”和“八股文”。關(guān)鍵詞標(biāo)引得是否恰當(dāng),關(guān)系到該文被檢索的概率和該成果的利用率。

二、關(guān)鍵詞標(biāo)引的原則

(一)專指性規(guī)則

一個(gè)詞只能表達(dá)一個(gè)主題概念,即為專指性。只要能在敘詞表中找到與該文主題概念直接對(duì)應(yīng)的專指性敘詞,就不允許用詞表中的上位詞(s項(xiàng))或下位詞(f項(xiàng));若找不到與主題概念直接對(duì)應(yīng)的敘詞,而上位詞確實(shí)與主題概念相符,即可選用。限制不加組配的泛指詞的使用,以免出現(xiàn)概念含糊。

(二)組配規(guī)則

1。交叉組配。系指2個(gè)或2個(gè)以上具有概念交叉關(guān)系的敘詞所進(jìn)行的組配,其結(jié)果表達(dá)一個(gè)專指概念。例如:“噴氣式垂直起落飛機(jī)”,可用“噴氣式飛機(jī)”和“垂直起落飛機(jī)”這兩個(gè)泛指概念的詞確切地表達(dá)敘詞表中沒有的專指概念。

2。方面組配。系指一個(gè)表示事物的敘詞和另一個(gè)表示事物某個(gè)屬性或某個(gè)方面的敘詞所進(jìn)行的組配,其結(jié)果表達(dá)一個(gè)專指概念。例如:“信號(hào)模擬穩(wěn)定器”可用“信號(hào)模擬器”與“穩(wěn)定器”組配,即用事物及其性質(zhì)來表達(dá)專指概念。

在組配標(biāo)引時(shí),優(yōu)先考慮交叉組配,然后考慮方面組配;參與組配的敘詞必須是與文獻(xiàn)主題關(guān)系最密切、最臨近的敘詞,以避免越級(jí)組配;組配結(jié)果要求所表達(dá)的概念清楚、確切,只能表達(dá)一個(gè)單一的概念;如果無法用組配方法表達(dá)主題概念時(shí),可選用最直接的上位詞或相關(guān)敘詞標(biāo)引。

(三)采用自由詞標(biāo)引

關(guān)鍵詞允許采用自由詞標(biāo)引,下列幾種情況可采用自由詞標(biāo)引:

1。主題詞表中明顯漏選的制圖概念詞;

2。表達(dá)新學(xué)科、新理論、新技術(shù)、新材料等新出現(xiàn)的概念;

3。詞表中未收錄的地區(qū)、人物、文獻(xiàn)、產(chǎn)品等名稱及重要數(shù)據(jù)名稱;

4。某些概念采用組配,其結(jié)果出現(xiàn)多義時(shí),被標(biāo)引概念也可用自由詞標(biāo)引。

自由詞盡可能選自其他詞表或較權(quán)威的參考書和工具書,選用的自由詞必須達(dá)到詞形簡練、概念明確、實(shí)用性強(qiáng)。采用自由詞標(biāo)引后,應(yīng)有記錄,并及時(shí)向敘詞表管理部門反映。

(四)標(biāo)引程序

首先對(duì)文獻(xiàn)進(jìn)行主題分析,弄清該文的主題概念和中心內(nèi)容;盡可能從題名、摘要、層次標(biāo)題和正文的重要段落中抽出與主題概念一致的詞和詞組;對(duì)所選出的詞進(jìn)行排序,對(duì)照敘述詞表中找出哪些詞可以直接作為敘詞標(biāo)引,哪些詞可以通過規(guī)范詞化變?yōu)閿⒃~,哪些敘詞可以組配成專指主題概念詞的詞組;還有相當(dāng)數(shù)量無法規(guī)范為敘詞的詞,只要是表達(dá)主題概念所必需的,都可以作為自由詞標(biāo)引并列入關(guān)鍵詞。

三、關(guān)鍵詞標(biāo)引常出現(xiàn)的問題

(一)用詞不規(guī)范

關(guān)鍵詞雖然不像主題詞那么嚴(yán)謹(jǐn)規(guī)范,但絕不能隨意選取。因?yàn)殛P(guān)鍵詞標(biāo)引的正確與否直接影響到計(jì)算機(jī)檢索工作,所以無檢索意義的詞語不能作關(guān)鍵詞。一般規(guī)定關(guān)鍵詞必須是實(shí)詞,即必須是一些具有實(shí)質(zhì)意義的詞語。用詞不規(guī)范主要表現(xiàn)在有些選用的詞語不是實(shí)詞,或不能揭示主題內(nèi)容。

例5:網(wǎng)絡(luò)經(jīng)濟(jì)時(shí)代圖書館信息服務(wù)的創(chuàng)新/傅先華//現(xiàn)代圖書情報(bào)技術(shù)。20xx。3

關(guān)鍵詞:網(wǎng)絡(luò)經(jīng)濟(jì);圖書館;信息服務(wù);創(chuàng)新;策略

此論文中的關(guān)鍵詞“圖書館”,用詞太寬泛,作為關(guān)鍵詞輸入電腦檢索,會(huì)跳出大量有關(guān)“圖書館”方面的文獻(xiàn),使其在提示該論文主題內(nèi)容的專指性方面的作用大大降低,失去該關(guān)鍵詞應(yīng)起的作用。

例6:電子商務(wù)在數(shù)字圖書館中的應(yīng)用/謝春枝//現(xiàn)代圖書情報(bào)技術(shù)。20xx。2

關(guān)鍵詞:電子商務(wù);數(shù)字圖書館;應(yīng)用

該論文中的關(guān)鍵詞“應(yīng)用”沒有檢索意義,不能作關(guān)鍵詞。

(二)關(guān)鍵詞的外延過于寬泛

關(guān)鍵詞是學(xué)術(shù)論文的文獻(xiàn)檢索標(biāo)識(shí),是表達(dá)文獻(xiàn)主題概念的自然語言詞匯。它是從論文的題名、摘要、層次標(biāo)題和正文中選出來的,能反映論文主題概念的詞或詞組。因此,應(yīng)從題名、摘要、層次標(biāo)題和正文中選取最恰當(dāng)、最能反映論文所屬學(xué)科的專用的、義項(xiàng)比較單一的詞作為關(guān)鍵詞,切忌選用概念外延過于寬泛的詞。

例3:一篇題名為《論高校自然科學(xué)學(xué)報(bào)發(fā)展的新理念》的論文[3],把“新理念”選作關(guān)鍵詞就不妥當(dāng)。因?yàn)椤靶吕砟睢钡耐庋犹?,任何一門學(xué)科都存在新理念,從正文的3個(gè)層次標(biāo)題中選取“科技理論”、“人文理論”、“編輯理論”作為關(guān)鍵詞要恰當(dāng)?shù)枚唷?/p>

(三)關(guān)鍵詞漏標(biāo)

例6:一篇題名為《話說退稿》的論文[4]的關(guān)鍵詞為:“稿件;期刊;作者;編輯”。這篇論文就明顯地漏標(biāo)了“退稿”這個(gè)關(guān)鍵詞,而沒有這個(gè)關(guān)鍵詞,全文就主題不明。

例7:一篇題名為《文化傳播與外語教學(xué)》的論文[5],關(guān)鍵詞是:“語言;文化;目的語文化”,顯然也漏標(biāo)了“外語教學(xué)”這個(gè)關(guān)鍵詞。由上可見,關(guān)鍵詞漏標(biāo)現(xiàn)象在許多學(xué)術(shù)期刊中也是屢見不鮮的毛病。

(四)英文關(guān)鍵詞不規(guī)范

中、英文關(guān)鍵詞不一一對(duì)應(yīng),有的中文關(guān)鍵詞為6個(gè),英文關(guān)鍵詞則為5個(gè),或中、英文關(guān)鍵詞的順序不一致。英文關(guān)鍵詞拼寫錯(cuò)誤多,有的用詞不正規(guī),不是專用名詞術(shù)語,而是由普通英文名詞羅列而成。

隨著計(jì)算機(jī)硬件設(shè)備的改進(jìn)和軟件技術(shù)的提高,以關(guān)鍵詞做主題索引而設(shè)計(jì)和建立的計(jì)算機(jī)數(shù)據(jù)庫檢索系統(tǒng)越來越多。關(guān)鍵詞作為一種便于文獻(xiàn)信息在計(jì)算機(jī)中進(jìn)行文獻(xiàn)標(biāo)引的最佳形式,具有較高的標(biāo)引效率,特別適合于網(wǎng)上繁雜、無序的海量文獻(xiàn)信息處理,因而成為當(dāng)前互聯(lián)網(wǎng)主要的檢索語言,為國內(nèi)外各種學(xué)術(shù)期刊和文獻(xiàn)檢索工具普遍采用,并得到迅速發(fā)展,這足以說明其對(duì)揭示論文主題和檢索科研成果的重要作用。因此,必須加強(qiáng)對(duì)學(xué)術(shù)論文中關(guān)鍵詞的規(guī)范化建設(shè),重視對(duì)學(xué)術(shù)論文關(guān)鍵詞的學(xué)習(xí)與研究。

人工智能論文參考文獻(xiàn)篇九

摘要:崔政博士的新著《科學(xué)技術(shù)知識(shí)的政治經(jīng)濟(jì)學(xué)研究》以馬克思的“勞動(dòng)”概念為中心,提供了一個(gè)劃定人工智能替代人類勞動(dòng)的邊界框架。該書區(qū)分了重復(fù)性勞動(dòng)與創(chuàng)造性勞動(dòng),提出創(chuàng)造性勞動(dòng)是人類勞動(dòng)的本質(zhì)也是人工智能不可替代的。但需要進(jìn)一步指出的是,機(jī)器學(xué)習(xí)已經(jīng)在認(rèn)識(shí)實(shí)踐中表現(xiàn)出對(duì)人類認(rèn)知?jiǎng)趧?dòng)的極大輔助作用,包括:人工智能能夠提升科學(xué)知識(shí)生產(chǎn)效率;人工智能擅于提取和傳遞默會(huì)知識(shí);人工智能可以產(chǎn)生某種機(jī)器知識(shí)。以上原因使得我們?cè)趧?chuàng)造性勞動(dòng)中很難將人工智能排除在外,未來可能的創(chuàng)造性勞動(dòng)方式應(yīng)當(dāng)是某種人機(jī)協(xié)作或人機(jī)融合。

關(guān)鍵詞:人工智能;創(chuàng)造性勞動(dòng);科學(xué)知識(shí);默會(huì)知識(shí);機(jī)器知識(shí)

產(chǎn)業(yè)科學(xué)出現(xiàn)以來,科技創(chuàng)新對(duì)經(jīng)濟(jì)增長的驅(qū)動(dòng)作用已經(jīng)成為全球性的共識(shí)。崔政博士的新著——《科學(xué)技術(shù)知識(shí)的政治經(jīng)濟(jì)學(xué)研究》,試圖以“勞動(dòng)”概念的歷史分析為切入點(diǎn),討論科學(xué)技術(shù)在當(dāng)代資本主義經(jīng)濟(jì)中所扮演的角色,進(jìn)而以一種動(dòng)態(tài)的勞動(dòng)價(jià)值論表明當(dāng)代社會(huì)經(jīng)濟(jì)運(yùn)行的內(nèi)在動(dòng)因[1]2。該書以馬克思的“勞動(dòng)”概念為核心構(gòu)建了一個(gè)哲學(xué)空間,將科學(xué)知識(shí)、技術(shù)創(chuàng)新、資本運(yùn)行納入其中,完整地闡述了科學(xué)技術(shù)對(duì)經(jīng)濟(jì)社會(huì)的塑造作用。該書的敘事方式表達(dá)了兩個(gè)理論取向:第一,對(duì)科技創(chuàng)新的分析不同于傳統(tǒng)技術(shù)創(chuàng)新理論僅關(guān)注經(jīng)濟(jì)“增長”,而是從更為基礎(chǔ)的社會(huì)分工出發(fā)關(guān)注經(jīng)濟(jì)“發(fā)展”;第二,將科學(xué)知識(shí)的生產(chǎn)還原到馬克思的“科學(xué)勞動(dòng)”概念,實(shí)際上已經(jīng)使用了一種擴(kuò)展了的“科學(xué)”概念,蘊(yùn)含著當(dāng)代科學(xué)知識(shí)生產(chǎn)所具有的實(shí)踐性、情境化、多主體等特征。

該書更為重要的貢獻(xiàn)在于討論了人工智能技術(shù)對(duì)于社會(huì)生產(chǎn)方式的挑戰(zhàn)和變革作用。書中提出:“人工智能的替代效應(yīng)是建立在對(duì)人類勞動(dòng)數(shù)據(jù)化和邏輯化的基礎(chǔ)上的,探索自在自然的創(chuàng)造性勞動(dòng)是不可數(shù)據(jù)化和邏輯化的。因此,人工智能只能圍繞既有的對(duì)象進(jìn)行重復(fù)性生產(chǎn),替代重復(fù)性勞動(dòng);而人類則能夠探索自在自然,從而摸索新技術(shù)、建構(gòu)新對(duì)象,進(jìn)行創(chuàng)造性勞動(dòng)。也就是說,機(jī)器所不能替代的人類勞動(dòng)的‘硬核’是探索自在自然的勞動(dòng),是創(chuàng)造對(duì)象和掌握技術(shù)的‘創(chuàng)造性勞動(dòng)’?!盵1]25作者將馬克思的“勞動(dòng)”概念區(qū)分為“重復(fù)性勞動(dòng)”和“創(chuàng)造性勞動(dòng)”,進(jìn)而指出人工智能是對(duì)機(jī)器大工業(yè)的否定,它將替代人類勞動(dòng)中可以重復(fù)、可以數(shù)據(jù)化的部分,但創(chuàng)造性勞動(dòng)是人類勞動(dòng)的本質(zhì),是人工智能所不能替代的。

作者提出:“人工智能可以在將重復(fù)性勞動(dòng)數(shù)據(jù)化的基礎(chǔ)上,對(duì)人類勞動(dòng)進(jìn)行模仿,從而取代任何形式的重復(fù)性勞動(dòng)。但人工智能卻不能取代人類的創(chuàng)造性勞動(dòng),創(chuàng)造性勞動(dòng)是通過探索自在自然,經(jīng)過反復(fù)的摸索與實(shí)驗(yàn)、征服反常和偶然、掌握技術(shù)、創(chuàng)造對(duì)象、實(shí)現(xiàn)對(duì)象從無到有的過程的勞動(dòng),這是一種原生性的勞動(dòng)。”[1]27作者認(rèn)為,創(chuàng)造性勞動(dòng)是對(duì)馬克思的“自在自然”的探索,“自在自然”是在人類的現(xiàn)有認(rèn)知能力之外,卻以反常和失敗等形式向人類顯現(xiàn)其自身。然而,在認(rèn)知實(shí)踐當(dāng)中,機(jī)器學(xué)習(xí)已經(jīng)可以幫助人類探索認(rèn)知能力之外的“自然”,當(dāng)然這種“自然”并不以反常或失敗的形式存在。作者也指出:“尤其是在大數(shù)據(jù)和云計(jì)算的背景之下,機(jī)器學(xué)習(xí)的速度遠(yuǎn)超人類的認(rèn)知極限,甚至可能在數(shù)據(jù)中找到人尚未發(fā)現(xiàn)的方法和規(guī)則?!盵1]35因此,在認(rèn)知?jiǎng)趧?dòng)方面,我們可以在作者的概念框架下進(jìn)一步區(qū)分出人工智能對(duì)人類“創(chuàng)造性勞動(dòng)”的輔助作用,具體表現(xiàn)為三個(gè)方面:人工智能提高科學(xué)知識(shí)生產(chǎn)效率;人工智能擅于提取和傳遞默會(huì)知識(shí);人工智能可以產(chǎn)生某種機(jī)器知識(shí)。

機(jī)器學(xué)習(xí)的廣泛使用可以提升科學(xué)知識(shí)生產(chǎn)的效率,主要表現(xiàn)在文獻(xiàn)研究和實(shí)驗(yàn)室研究兩個(gè)方面。人工智能系統(tǒng)可以通過自然語言理解獲取、閱讀和總結(jié)所有相關(guān)文獻(xiàn)。例如,一個(gè)叫做iris的人工智能系統(tǒng)的運(yùn)行方式是:從某個(gè)研究主題的演講切入,先使用自然語言處理算法分析演講的腳本,挖掘從開放渠道獲取的研究文獻(xiàn),然后將相關(guān)研究文獻(xiàn)分組并進(jìn)行可視化,再通過人工標(biāo)注文獻(xiàn)使機(jī)器匹配精度增加,當(dāng)機(jī)器能夠理解文獻(xiàn)的內(nèi)容和結(jié)構(gòu)時(shí),可以幫助科研人員總結(jié)出該研究主題下的所有研究問題、假設(shè)、實(shí)驗(yàn)結(jié)果等,從而將前人工作完整呈現(xiàn)。此外,機(jī)器學(xué)習(xí)的使用還能夠加快實(shí)驗(yàn)研究的進(jìn)程。例如,2016年5月,澳大利亞國立大學(xué)的研究團(tuán)隊(duì)使用機(jī)器學(xué)習(xí)重復(fù)了物質(zhì)的玻色—愛因斯坦凝聚態(tài)的實(shí)驗(yàn)室發(fā)現(xiàn)過程,從反復(fù)設(shè)置調(diào)整實(shí)驗(yàn)設(shè)備的各種參數(shù)到產(chǎn)生凝聚態(tài)物質(zhì),機(jī)器學(xué)習(xí)只用了一個(gè)小時(shí),而憑借這一發(fā)現(xiàn)獲得諾貝爾獎(jiǎng)的三位科學(xué)家是在直覺的基礎(chǔ)上經(jīng)過多年實(shí)驗(yàn)才制造出了物質(zhì)的凝聚態(tài)。由此可見,作為技術(shù)的人工智能的進(jìn)步已經(jīng)開始反向促進(jìn)作為基礎(chǔ)研究的科學(xué)知識(shí)的生產(chǎn)。

在當(dāng)前人類社會(huì)所有已經(jīng)產(chǎn)生的信息中,文字只占極少的比例,大量的信息以圖片和視頻方式呈現(xiàn),其中蘊(yùn)含了大量需要通過親身體驗(yàn)才能獲取的默會(huì)知識(shí)。如果有辦法將事物狀態(tài)用圖片或視頻記錄下來,就有可能使用機(jī)器學(xué)習(xí)從中萃取出知識(shí)。很多電影公司已經(jīng)使用人工智能系統(tǒng)觀看大量人類歷史上的影視作品,從而歸納提取出經(jīng)典橋段,創(chuàng)作出新的配樂、臺(tái)詞和預(yù)告片以供人類借鑒。更為重要的是,由人工智能系統(tǒng)獲取的默會(huì)知識(shí)是以神經(jīng)網(wǎng)絡(luò)參數(shù)集的形式存在的,這對(duì)人類而言仍然不可描述,也難以在人類之間傳遞,但卻非常易于在人工智能系統(tǒng)間傳播。例如,一臺(tái)掌握駕駛技能的自動(dòng)駕駛汽車只要將參數(shù)集分享出來就可以快速讓所有汽車學(xué)會(huì)這項(xiàng)技能,而且可以實(shí)現(xiàn)機(jī)器間的協(xié)同行動(dòng)。

機(jī)器知識(shí)與科學(xué)知識(shí)或默會(huì)知識(shí)的核心差別在于:機(jī)器知識(shí)依賴數(shù)據(jù),科學(xué)知識(shí)或默會(huì)知識(shí)依賴信息。信息是事物可觀察的表征,或者說信息是事物的外在表現(xiàn)。任何一個(gè)物體的信息量都非常大,要精確描述一個(gè)物體,就需要將其中所有基本粒子的形態(tài)以及它們之間的關(guān)系都描述出來,同時(shí)還要將該物體與周圍環(huán)境的關(guān)系都描述出來。而數(shù)據(jù)是已經(jīng)描述出來的部分信息,關(guān)于一個(gè)物體的數(shù)據(jù)通常要比信息少得多,例如只包含它的形狀、重量、顏色和種屬關(guān)系等。只有當(dāng)信息經(jīng)過適當(dāng)?shù)奶幚恚?dāng)它被用來進(jìn)行比較、得出結(jié)論和建立聯(lián)系時(shí),它才會(huì)轉(zhuǎn)化為知識(shí)。而知識(shí)可以理解為伴隨著經(jīng)驗(yàn)、判斷、直覺和價(jià)值的信息,作為認(rèn)知主體的人在其中扮演了關(guān)鍵角色。

相較之下,機(jī)器知識(shí)可以被刻畫為數(shù)據(jù)在時(shí)空中的關(guān)系,這些關(guān)系表現(xiàn)為某種模式,對(duì)模式的識(shí)別就是認(rèn)知,識(shí)別出來的模式就是知識(shí),用模式去預(yù)測(cè)就是知識(shí)的應(yīng)用。這些數(shù)據(jù)在時(shí)空中的關(guān)系只在少數(shù)情況下才能用數(shù)學(xué)工具進(jìn)行表達(dá),而多數(shù)情況下知識(shí)表現(xiàn)為數(shù)據(jù)間的相關(guān)性的集合,這些相關(guān)性只有一小部分可以被人類感知和理解。這源于人類感受能力的局限性:人類只能感受部分外界信息,人類的感官經(jīng)驗(yàn)局限在三維的物理空間和一維的時(shí)間。因此,當(dāng)數(shù)據(jù)無法被感知,它們之間的關(guān)系又無法用數(shù)學(xué)工具表達(dá)時(shí),這些數(shù)據(jù)間的關(guān)系就超出了人類的理解能力之外而屬于機(jī)器知識(shí)。當(dāng)前機(jī)器學(xué)習(xí)的主流形式——人工神經(jīng)網(wǎng)絡(luò)的最大特點(diǎn)就是發(fā)現(xiàn)并記憶數(shù)據(jù)中的相關(guān)性,例如在看了很多汽車圖片后會(huì)發(fā)現(xiàn)汽車都有四個(gè)輪胎,人類對(duì)圖片這類直觀的數(shù)據(jù)間的相關(guān)性也能發(fā)現(xiàn)并記憶一部分,這就是默會(huì)知識(shí)。但當(dāng)數(shù)據(jù)量很大且不直觀時(shí),例如股票市場的數(shù)據(jù)或者核電站的內(nèi)部數(shù)據(jù),人類就無法應(yīng)對(duì)了。而隨著人工神經(jīng)網(wǎng)絡(luò)層級(jí)和數(shù)量的增加,人工智能系統(tǒng)能夠處理大規(guī)模的復(fù)雜數(shù)據(jù),這就是機(jī)器知識(shí)。機(jī)器知識(shí)當(dāng)前的主要表現(xiàn)形式類似于alphagozero中的神經(jīng)網(wǎng)絡(luò)的全部參數(shù)。

概言之,科學(xué)知識(shí)和默會(huì)知識(shí)多是基于信息的因果性知識(shí),而機(jī)器知識(shí)多是基于數(shù)據(jù)的相關(guān)性知識(shí)。此外,科學(xué)知識(shí)是易于記錄、易于陳述、易于傳遞的;默會(huì)知識(shí)是難以記錄、難以陳述、可傳遞的;機(jī)器知識(shí)則是可記錄、不可陳述、易于在機(jī)器間傳遞的。

當(dāng)然,基于人工神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)仍有兩個(gè)核心的局限性導(dǎo)致人工智能系統(tǒng)還不足以承擔(dān)創(chuàng)造性勞動(dòng)。第一個(gè)局限是,人工神經(jīng)網(wǎng)絡(luò)需要依賴特定領(lǐng)域的先驗(yàn)知識(shí),也就是需要特定場景下的訓(xùn)練,這是因?yàn)槿斯ど窠?jīng)網(wǎng)絡(luò)的學(xué)習(xí)本質(zhì)上是對(duì)相關(guān)性的記憶,人工神經(jīng)網(wǎng)絡(luò)將訓(xùn)練數(shù)據(jù)中相關(guān)性最高的因素作為判斷標(biāo)準(zhǔn)。這個(gè)問題在自動(dòng)駕駛汽車中表現(xiàn)的非常突出,鑒于道路交通情境的復(fù)雜性和交通標(biāo)示的多樣性,自動(dòng)駕駛系統(tǒng)難以避免很多交通事故。第二個(gè)局限是,人工神經(jīng)網(wǎng)絡(luò)無法解釋產(chǎn)生某個(gè)結(jié)果的原因,這種不可解釋性在許多涉及安全和公共政策的領(lǐng)域顯現(xiàn)的比較突出,例如在智能醫(yī)療中,人工神經(jīng)網(wǎng)絡(luò)在影像識(shí)別和輔助診斷中都對(duì)其結(jié)果缺乏醫(yī)學(xué)上的解釋性,都需要專業(yè)醫(yī)生的復(fù)核。

基于人工神經(jīng)網(wǎng)絡(luò)的人工智能系統(tǒng)在記憶和識(shí)別這兩個(gè)基礎(chǔ)智能方面超越了人類,但在推理、想象等高級(jí)智能方面還相差較遠(yuǎn)。與人類相比,人工智能無法承擔(dān)創(chuàng)造性勞動(dòng)的原因還不止于以上的局限性,還包括:人工智能沒有常識(shí)和物理世界的模型;人工智能沒有自主和自發(fā)的通用語言能力;人工智能沒有想象力,需要大量常識(shí)、反事實(shí)假設(shè)和推理能力;最重要的是人工智能沒有自我意識(shí)。自我意識(shí)的缺乏導(dǎo)致能夠產(chǎn)生機(jī)器知識(shí)的人工智能系統(tǒng)仍然無法被視為認(rèn)知主體,其知識(shí)的“創(chuàng)造性勞動(dòng)”是一種無意識(shí)認(rèn)識(shí)活動(dòng)。

人工智能系統(tǒng)在提升科學(xué)知識(shí)生產(chǎn)效率、處理默會(huì)知識(shí)以及產(chǎn)生機(jī)器知識(shí)方面的優(yōu)勢(shì),使得我們?cè)趧?chuàng)造性勞動(dòng)中很難將其排除在外,未來可能的創(chuàng)造性勞動(dòng)方式應(yīng)當(dāng)是某種人機(jī)協(xié)作或人機(jī)融合。腦機(jī)接口(brain-computerinterface)是當(dāng)前一個(gè)重要的人機(jī)協(xié)作研究方向,而其中最激進(jìn)的方式是馬斯克提出的neuralink,即通過柔性電極對(duì)接在人腦的神經(jīng)網(wǎng)絡(luò)上,neuralink要解決的是人類的信號(hào)輸入與輸出,但其問題在于人類的高級(jí)思維(如邏輯推理或描述場景)必須依賴語言,而目前基于人工神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)能力主要是對(duì)環(huán)境的識(shí)別能力,還遠(yuǎn)沒有達(dá)到語言和邏輯推理,但人類智能通過語言進(jìn)行溝通。這背后就隱含了人類的科學(xué)知識(shí)與人工智能系統(tǒng)的機(jī)器知識(shí)之間的不可通約,以上例子也表明基于人機(jī)協(xié)作的創(chuàng)造性勞動(dòng)還有很大的技術(shù)障礙需要克服。

參考文獻(xiàn):

[1]崔政.科學(xué)技術(shù)知識(shí)的政治經(jīng)濟(jì)學(xué)研究[m].石家莊:河北人民出版社,2019.

[2]郁振華.當(dāng)代英美認(rèn)識(shí)論的困境及出路——基于默會(huì)知識(shí)維度[j].中國社會(huì)科學(xué),2018(7).

[3]eepistemologyandbigdata[a].inmcintyre,lee,andalexrosenberg,tledgecompaniontophilosophyofsocialscience[c].taylor&francis,2016.

[4]董春雨,薛永紅.機(jī)器認(rèn)識(shí)論何以可能?[j].自然辯證法研究,2019(8).

人工智能論文參考文獻(xiàn)篇十

是的,正如霍金預(yù)言:“全面化人工智能可能意味著人類的終結(jié)?!彪S著人工智能日益滲透我們的生活,人類社會(huì)面臨著生存競爭、倫理逆境等方方面面的嚴(yán)峻挑戰(zhàn),然而,冷靜想一想,ai其實(shí)本質(zhì)上與互聯(lián)網(wǎng)、智能手機(jī)等科技相差無幾,其終極目標(biāo)都是為了讓我們的生活更快捷便利,我們?yōu)楹我獙?duì)ai的到來感到恐慌?私以為,面對(duì)人工智能全面化的大勢(shì)之趨,我們理應(yīng)勇立潮頭,迎戰(zhàn)ai洪流。

毋庸置疑,人工智能無可比較的學(xué)習(xí)速度,不知疲乏的高能運(yùn)作,面面俱到的'系統(tǒng)分析,以及浩大繁雜的數(shù)據(jù)體系,勢(shì)必會(huì)占據(jù)了人類相當(dāng)比重的生存空間,機(jī)器人種種優(yōu)勢(shì)人類也難以企及,但是,ai的誕生不是為了毀滅、戰(zhàn)勝人類,而是要讓人類不斷突破自我,查找新的可能。在幾十年前,我們誰能想到如今的互聯(lián)網(wǎng)科技能徹底轉(zhuǎn)變我們的生活?同樣地,我們也無法否認(rèn)將來在ai時(shí)代我們的生活會(huì)再次被*。拒絕ai更是對(duì)更美妙將來的拒絕,唯有與ai同行,讓簡單的世界更簡潔,我們才能迎來更好的時(shí)代。

是的,無論是哪個(gè)時(shí)代,“被替代”的隱患始終存在,但也恰恰是這些隱患與挑戰(zhàn),篩選著、鞭策著人們。成也挑戰(zhàn),敗也挑戰(zhàn),關(guān)鍵在于當(dāng)洪流襲來,你是否有勇立潮頭,發(fā)覺機(jī)遇的士氣。正如王鼎鈞所言,“時(shí)代像篩子,篩得多數(shù)人流離失所,篩得少數(shù)人出類拔萃。”我信任,那些自甘墮落,向人工智能俯首稱臣的人只會(huì)在社會(huì)中漸漸淡去,唯有那勇立潮頭的少數(shù)人才能提升自我,在ai洪流中暗藏的機(jī)遇中大放異彩。

人工智能之大勢(shì)已成定局,然人類將來之命運(yùn)猶未可知。面對(duì)ai洪流,是消沉,還是迎戰(zhàn)?由君定奪。

【本文地址:http://mlvmservice.com/zuowen/3790243.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔