曲線和方程的數(shù)學教案設計(優(yōu)質14篇)

格式:DOC 上傳日期:2023-11-27 21:39:06
曲線和方程的數(shù)學教案設計(優(yōu)質14篇)
時間:2023-11-27 21:39:06     小編:雁落霞

教案的編寫需要根據(jù)不同教學內(nèi)容和學生特點來靈活調(diào)整。教案的教學方法應多樣化和靈活性,能夠充分調(diào)動學生的學習積極性和主動性。通過學習這些教案范例,能提高我們的教學設計水平。

曲線和方程的數(shù)學教案設計篇一

這節(jié)課的內(nèi)容是一元一次方程第一課時。課后,我對本節(jié)課從四方面進行了如下反思:

一:對選擇引例的反思。

在小學學生已接觸過方程,但沒有過多的研究。而本節(jié)課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節(jié)課既要讓學生認識到方程是更方便、更有力的數(shù)學工具,又要讓學生體驗到從算術方法到代數(shù)方法是數(shù)學的進步,這些目標的實現(xiàn)談何容易!課本上的例題雖然能很好的體現(xiàn)方程的優(yōu)越性,但難度較高。學生很少有利用方程解應用題的經(jīng)歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個題既簡單又能明顯地承載著從算術到方程的進步呢?幾乎翻閱了所有的有關資料,無獨有偶,在新課標教案126頁的一道數(shù)學名題“啊哈,它的全部,它的一半,其和等于19。”讓我眼前一亮,我為自己好不容易找到一個例題而興奮不已,立刻拿去和我們數(shù)學組經(jīng)驗豐富的老教師交流一下我的想法,他們覺得這個例子倒挺好的,可是也提出了一個讓我深思的問題,這個題不是能夠很好地體現(xiàn)出從算術到方程的進步,因為題很簡單,方程的優(yōu)越性體現(xiàn)的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點醒了我,如果實在找不到合適的例題,不妨就用這個題,通過這個題從語言和方法上突破它,可以先讓學生感知方程的優(yōu)越性,后面學習中再不斷地滲透方程的優(yōu)越性。聽完陳老師的一席見解,我頓時豁然開朗,增加了以這個題作為引例的信心。事實證明,這個引例既富有創(chuàng)新又能激發(fā)學生的興趣,既符合學生的已有經(jīng)驗和知識水平,又符合學生的認知規(guī)律。

二:對選題的反思。

我在備課中【活動3】最初選用的題是:

修改后的題是:

判斷下列各式是方程的有:

(1)(2)(3)(4)(5)。

考慮到學生初對方程概念的研究,不在數(shù)字上人為的設置障礙,因為是否是方程與數(shù)字的大小根本無關,于是把數(shù)字全部統(tǒng)一成了6、2、8三個數(shù),利于學生從未知數(shù)和等號的角度進一步理解方程的概念。最初選用的題數(shù)字太多,顯得題很多且條理性不強,容易分散學生對概念本質的把握。改進后的題目更利于學生觀察方程的特征,從而更深刻地掌握概念的本質。需要特別說明的是,如果說前5個小題是為了讓學生抓住方程的兩個要點,那么后3個小題則是對概念本質的提升,即:是否是方程與未知數(shù)所在的位置、未知數(shù)的個數(shù)、未知數(shù)的次數(shù)等均無關。

三:對課堂實踐的反思。

本節(jié)課的設計思路:首先以“名題欣賞”導入,引入概念,通過四組練習讓學生深刻理解方程和一元一次方程的概念,最后由學生自己歸納小結。

當環(huán)節(jié)進行到【活動3】時,我讓學生寫出一個或幾個方程,在給學生判斷點評時,我發(fā)現(xiàn)學生在黑板上寫的全部都是未知數(shù)在等號左邊的方程,這時我突然意識到學生在模仿我前面呈現(xiàn)的方程,不禁暗自責怪自己考慮不周,怎么沒出一個等號兩邊都含有未知數(shù)的方程呢?它給我敲響了一個警鐘。正當我想寫一個等號兩邊都含有未知數(shù)的方程來彌補設計上的不足時,我忽然發(fā)現(xiàn)最后一排的一位男生已經(jīng)高高地舉起了手,他提出問題:“老師:等號兩邊都含有未知數(shù)的式子是不是方程,例如:2y-1=3y”?我為有學生能提出這樣的問題而感到慶幸,一是因為它及時彌補了我備課中的不足;二是由學生提出問題要比我提出問題更有價值。這可以反映出該生善于思考,同時也反映出了學生真實的疑惑。為了提高學生的探究能力,我并沒有急于解釋,而是把問題拋給學生,讓學生來解決。我立刻提出:“誰能解決這位同學提出的`問題呢?”這時我看到后面幾位學生已經(jīng)高高地舉起了手。我隨機點了一名學生,這位同學回答到:“判斷一個式子是不是方程只要看是否含有未知數(shù)和等號就ok了,與未知數(shù)的位置無關!”他精彩的回答引起聽課教師一陣喝彩!我也頓時驚喜萬分,他說的太好了,不管是語言表達還是準確性上都無可挑剔。我為敢于給學生這樣一個機會又一次感到慶幸;通過這個同學精彩的回答,我深深地感受到:“教師給學生一個機會,學生就會還你一個驚喜?!?/p>

四:教后整體反思。

成功之處:

1.引例、練習題的選擇都很恰當。

2.思路清晰,重點突出,注意到了學生的自主探索,節(jié)奏把握較好。

3.數(shù)學文化的滲透比較自然。

4.“寫一個或幾個一元一次方程”此環(huán)節(jié)的設計體現(xiàn)了從理論到實踐的過程,使學生的能力得到提升,學習效果得到落實。

5.語言簡練,教態(tài)大方,師生互動比較熱烈,充分調(diào)動了學生的積極性。

6.板書設計較為合理。本節(jié)課的主要內(nèi)容都以提煉的方式呈現(xiàn)出來。

不足之處:

1.在處理三道實際背景題時留給學生的思考時間偏少,顯得倉促。

2.在后面兩組題環(huán)節(jié)之間的過渡語言不是很自然。

3.授課語言仍需加強錘煉。

這節(jié)課的準備和每個環(huán)節(jié)的設計我頗費了一些心思,上完課之后總的感覺是達到了我預期的目標。非常感謝評委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學中,我將揚長避短,力爭做的更好!

曲線和方程的數(shù)學教案設計篇二

教學內(nèi)容:

教科書第1頁的例1、例2和試一試,完成練一練和練習一的第1~2題。

教學目標:

理解方程的含義,初步體會等式與方程的聯(lián)系與區(qū)別,體會方程就是一類特殊的等式。

教學重點:

教學難點:

會列方程表示數(shù)量關系。

教學過程:

一、教學例1。

1.出示例1的天平圖,讓學生觀察。

提問:圖中畫的是什么?從圖中能知道些什么?想到什么?

2.引導。

(1)讓不熟悉天平不認識天平的學生認識天平,了解天平的作用。

(2)如果學生能主動列出等式,告訴學生:像“50+50=100”這樣的式子是等式,并讓學生說說這個等式表示的意思;如果學生不能列出等式,則可提出“你會用等式表示天平兩邊物體的質量關系嗎?”

二、教學例2。

1.出示例2的天平圖,引導學生分別用式子表示天平兩邊物體的質量關系。

2.引導:告訴學生這些式子中的“x”都是未知數(shù);觀察這些式子,說一說寫出的式子中哪些是等式,這些等式都有什么共同的特點。

3.討論和交流:寫出的式子中,有幾個是等式,有幾個不是,而寫出的等式都含有未知數(shù),在此基礎上,揭示方程的概念。

三、完成練一練。

1.下面的式子哪些是等式?哪些是方程?

2.將每個算式中用圖形表示的未知數(shù)改寫成字母。

四、鞏固練習。

1.完成練習一第1題。

先仔細觀察題中的式子,在小組里說說哪些是等式,哪些是方程,再全班交流。要告訴學生,方程中的未知數(shù)可以用x表示,也可以用y表示,還可以用其他字母表示,以免學生誤以為方程是含有未知數(shù)x的等式。

2.完成練習一第2題。

五、小結。

六、作業(yè)。

完成補充習題。

板書設計:

x+50=100。

x+x=100。

像x+50=150、2x=200這樣含有未知數(shù)的等式叫做方程。

曲線和方程的數(shù)學教案設計篇三

教材的地位和作用。

“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關系,為“作形判數(shù)”與“就數(shù)論形”的相互轉化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節(jié)“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!

根據(jù)以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

二、教學目標。

根據(jù)教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:

知識目標:

1、了解曲線上的點與方程的解之間的一一對應關系;

2、初步領會“曲線的方程”與“方程的曲線”的概念;

3、學會根據(jù)已有的情景資料找規(guī)律,進而分析、判斷、歸納結論;

4、強化“形”與“數(shù)”一致并相互轉化的思想方法。

能力目標:

1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;

3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發(fā)展應用意識。

情感目標:

1、通過概念的引入,讓學生感受從特殊到一般的認知規(guī)律;

2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創(chuàng)新的科學精神。

三、重難點突破。

“曲線的方程”與“方程的曲線”的概念是本節(jié)的重點,這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規(guī)定兩個關系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經(jīng)具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。

怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點。因為學生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點,本節(jié)課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的.方程。通過這些例題讓學生再一次體會“二者”缺一不可。

四、學情分析。

此前,學生已知,在建立了直角坐標系后平面內(nèi)的點和有序實數(shù)對之間建立了一一對應關系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認識(特別是二元一次方程表示直線),現(xiàn)在要進一步研究平面內(nèi)的曲線和含有兩個變數(shù)的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產(chǎn)生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節(jié)課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區(qū)別。

曲線和方程的數(shù)學教案設計篇四

1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。

2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。

3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結合起來,形成實事求是的態(tài)度以及進行質疑和獨立思考的習慣。

重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。

(一)導入新課。

生:老師,這是雷鋒叔叔。

生:是的老師。

生:想。

師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。

(二)新課教學。

師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。

(下去巡視)。

(三)小結作業(yè)。

師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。

xx。

xx。

曲線和方程的數(shù)學教案設計篇五

3.使學生初步養(yǎng)成正確思考問題的良好習慣。

和難點。

課堂設計。

一、從學生原有的認知結構提出問題。

為了回答上述這幾個問題,我們來看下面這個例題。

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。

(首先,用算術方法解,由學生回答,教師板書)。

解法1:(4+2)÷(3-1)=3.

答:某數(shù)為3.

(其次,用代數(shù)方法來解,教師引導,學生口述完成)。

解法2:設某數(shù)為x,則有3x-2=x+4.

解之,得x=3.

答:某數(shù)為3.

縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數(shù),列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們運用一元一次方程解應用題的目的之一。

我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關系。因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。

本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。

二、師生共同分析、研究一元一次方程解簡單應用題的方法和步驟。

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)。

上述分析過程可列表如下:

x-15%x=42500,

所以x=50000.

答:原來有50000千克面粉。

(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)。

(2)例2的解方程過程較為簡捷,同學應注意模仿。

依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結的情況,教師總結如下:

(2)根據(jù)題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵一步);

(4)求出所列方程的解;

(5)檢驗后明確地、完整地寫出答案。這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義。

(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥。解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤。并嚴格規(guī)范書寫格式)。

解:設第一小組有x個學生,依題意,得。

3x+9=5x-(5-4),

解這個方程:2x=10,

所以x=5.

其蘋果數(shù)為3×5+9=24.

答:第一小組有5名同學,共摘蘋果24個。

學生板演后,引導學生探討此題是否可有其他解法,并列出方程。

(設第一小組共摘了x個蘋果,則依題意,得)。

三、課堂練習。

2.我國城鄉(xiāng)居民1988年末的儲蓄存款達到3802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。

3.某工廠女工人占全廠總人數(shù)的35%,男工比女工多252人,求全廠總人數(shù)。

四、師生共同小結。

首先,讓學生回答如下問題:

1.本節(jié)課了哪些內(nèi)容?

3.在運用上述方法和步驟時應注意什么?

依據(jù)學生的回答情況,教師總結如下:

(2)以上步驟同學應在理解的基礎上記憶。

五、作業(yè)。

1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?

2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?

曲線和方程的數(shù)學教案設計篇六

活動3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程應注意的事項;歸納一元一次方程解法的一般步驟·活動4小結總結本節(jié)收獲活動1、創(chuàng)設問題情境:引言:這件珍貴的文物是紙莎草文書,是古代埃及人用象形文字寫在一種特殊的草上的著作,至今已有3700多年的歷史了·在文書中記載了許多有關數(shù)學的問題·問題一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。(1)能不能用方程解決這個問題?(2)能嘗試解這個方程嗎?(3)不同的解法有什么各自的特點?設計意圖:1、利用列方程、解方程解決實際問題,再一次讓學生感受方程的優(yōu)越性,提高學生主動使用方程的意識·2、經(jīng)過對同一方程不同解法到去分母能夠使解方程的過程更加便捷,明白為什么要去分母,這是"去分母"這一步驟的必要性;同時,讓學生認同"去分母"是科學的、可行的,明確為什么能去分母·這樣,學生就會自覺參與探索去分母的一般做法的活動,從而發(fā)現(xiàn)"方程兩邊同時乘以所有分母的最小公倍數(shù)"這一方法·也首次由學生自行突破了難點。3、通過交流,讓學生用自己的語言清楚地表達解決問題的過程,提高學生的語言表達能力·活動2下面方程可以怎樣求解?觀察方程,回答教師提出的問題并對學生的回答進行總結:先去分母·怎樣去分母?解去掉分母后的這個方程歸納總結去分母的方法:在方程兩邊同時乘以所有分母的最小公倍數(shù);依據(jù)是等式的性質2,即"等式兩邊同時乘同一個數(shù),結果仍相等·"呈現(xiàn)不同學生的解題過程,選取學生在去分母過程中出現(xiàn)的典型錯誤,引導全體學生共同分析錯誤的原因,發(fā)現(xiàn)去分母的易錯點·鞏固了學生對解方程的透徹理解。這樣做的目的不僅培養(yǎng)了學生的學習自主性和團體協(xié)作精神,還對與重、難點知識的突破起到了一定的促進作用。通過對錯例的辨析,加深學生對"去分母"的認識,避免解方程時出現(xiàn)類似錯誤·去掉分母后,方程即轉化為熟悉的形式,新舊知識自然銜接,使學生體會到,只要把新問題想辦法合理轉化為熟悉的知識,問題就能得以解決通過在解方程過程中"去分母"這一步驟體會轉化思想·活動3解方程設計意圖:用實踐來加深對"去分母"的方法解一元一次方程的認識·結合本題思考,能總結解這種方程的一般操作過程嗎?鞏固所學的一元一次方程的解法,同時說明解方程的步驟是程序化的,但不能生搬硬套,每個步驟要不要使用、何時使用都應視方程的特征而定·了解對方程的每一次變形都是為了將方程最終化歸為的形式·解題時應根據(jù)題目特點,合理選擇解題步驟·小結活動4總結(1)學生能否總結本節(jié)的知識,是否理解去分母的作用、依據(jù),是否掌握去分母的具體做法;(2)學生是否掌握了一元一次方程解法的一般步驟;(3)學生是否能準確表達自己的觀點·最后復習、鞏固本節(jié)的知識,學會總結反思·四。評價分析數(shù)學教學是數(shù)學活動的教學,是師生之間、學生之間交往互動與共同參與發(fā)展的過程。本節(jié)課的評價要讓學生體會到參與學習、與人合作的重要性,獲得成績的喜悅,從而激發(fā)性的學習動力。在這節(jié)的數(shù)學課,如要獲得最直接、真實的反饋,就要盡量讓學生多說、多思考,對于學生提出的問題和解決問題的方法,教師都要給予鼓勵和引導,并隨時觀察解決,評價應充分考慮到每個學生的差異,這節(jié)課通過現(xiàn)代化的技術的運用,節(jié)省出盡可能多的時間,提出挑戰(zhàn)性的問題,讓學生通過開放式的數(shù)學討論提高學生學習的興趣,在交流中獲益。通過隨堂練習和作業(yè)來激勵其學習。同時做練習時,將評價及時反饋給學生,樹立學習數(shù)學的自信心,促進學生的進一步發(fā)展。并在課后作成長記錄,使學生比較全面了解自己的學習過程,特別感受自己的不斷成長和進步,為下一步教學提供重要依據(jù)。

曲線和方程的數(shù)學教案設計篇七

1.教材背景。

作為曲線內(nèi)容學習的開始,“曲線與方程”這一小節(jié)思想性較強,約需三課時,第一課時介紹曲線與方程的概念;第二課時講曲線方程的求法;第三課時側重對所求方程的檢驗.

本課為第二課時。

主要內(nèi)容有:解析幾何與坐標法;求曲線方程的方法(直譯法)、步驟及例題探求.

2.本課地位和作用。

承前啟后,數(shù)形結合。

曲線和方程,既是直線與方程的自然延伸,又是圓錐曲線學習的必備,是后面平面曲線學習的理論基礎,是解幾中承上啟下的關鍵章節(jié).

“曲線”與“方程”是點的軌跡的兩種表現(xiàn)形式.“曲線”是軌跡的幾何形式,“方程”是軌跡的代數(shù)形式;求曲線方程是用方程研究曲線的先導,是解析幾何所要解決的兩大類問題的首要問題.體現(xiàn)了坐標法的本質——代數(shù)化處理幾何問題,是數(shù)形結合的典范.

后繼性、可探究性。

求曲線方程實質上就是求曲線上任意一點(x,y)橫縱坐標間的等量關系,但曲線軌跡常無法事先預知類型,通過多媒體演示可以生動展現(xiàn)運動變化特點,但如何獲得曲線的方程呢?通過創(chuàng)設情景,激發(fā)學生興趣,充分發(fā)揮其主體地位的作用,學習過程具有較強的探究性.

同時,本課內(nèi)容又為后面的軌跡探求提供方法的準備,并且以后還會繼續(xù)完善軌跡方程的求解方法.

數(shù)學建模與示范性作用。

曲線的方程是解析幾何的核心.求曲線方程的過程類似于數(shù)學建模的過程,它貫穿于解析幾何的始終,通過本課例題與變式,要總結規(guī)律,掌握方法,為后面圓錐曲線等的軌跡探求提供示范.

數(shù)學的文化價值。

解析幾何的發(fā)明是變量數(shù)學的第一個里程碑,也是近代數(shù)學崛起的兩大標志之一,是較為完整和典型的重大數(shù)學創(chuàng)新史例.解析幾何創(chuàng)始人特別是笛卡兒的事跡和精神——對科學真理和方法的追求、質疑的科學精神等都是富有啟發(fā)性和激勵性的教育材料.可以根據(jù)學生實際情況,條件允許時指導學生課后收集相關資料,通過分析、整理,寫出研究報告.

3.學情分析。

我所授課班級的學生數(shù)學基礎比較好,思維活躍,在剛剛學習了“曲線的方程和方程的曲線”后,學生對這種必須同時具備純粹性和完備性的概念有了初步的認識,對用代數(shù)方法研究幾何問題的科學性、準確性和優(yōu)越性等已有了初步了解,對具體(平面)圖形與方程間能否對應、怎樣對應的學習已經(jīng)有了自然的求知欲望.

二、目標分析。

1.教學目標。

知識技能目標。

理解坐標法的作用及意義.

掌握求曲線方程的一般方法和步驟,能根據(jù)所給條件,選擇適當坐標系求曲線方程.

過程性目標。

通過學生積極參與,親身經(jīng)歷曲線方程的獲得過程,體驗坐標法在處理幾何問題中的優(yōu)越性,滲透數(shù)形結合的數(shù)學思想.

通過自主探索、合作交流,學生歷經(jīng)從“特殊——一般——特殊”的認知模式,完善認知結構.

通過層層深入,培養(yǎng)學生發(fā)散思維的能力,深化對求曲線方程本質的理解.

情感、態(tài)度與價值觀目標。

通過合作學習,學生間、師生間的相互交流,感受探索的樂趣與成功的'喜悅,體會數(shù)學的理性與嚴謹,逐步養(yǎng)成質疑的科學精神.

展現(xiàn)人文數(shù)學精神,體現(xiàn)數(shù)學文化價值及其在在社會進步、人類文明發(fā)展中的重要作用.

2.教學重點和難點。

難點:幾何條件的代數(shù)化。

依據(jù):求曲線方程是解幾研究的兩大類問題之一,既是重點也是難點,是高考解答題取材的源泉.主要包括兩種類型求曲線的方程:一是已知曲線形狀時常用待定系數(shù)法;二是動點軌跡方程探求,本課的重點主要是探索動點的曲線方程.

曲線與方程是貫穿平面解幾的知識,是解析幾何的核心.求曲線方程是幾何問題得以代數(shù)研究的先決,求曲線方程的過程類似數(shù)學建模的過程,是課堂上必須突破的難點.

三、教學方法及教材處理。

1.教學方法:探究發(fā)現(xiàn)教學法.

遵循以學生為主體,教師為主導,發(fā)展為主旨的現(xiàn)代教育原則,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,通過學生主動探索、積極參與、共同交流與協(xié)作,在教師的引導和合作下,學生“跳一跳”就能摘得果實,于問題的分析和解決中實現(xiàn)知識的建構和發(fā)展,通過不斷探究、發(fā)現(xiàn),讓學習過程成為心靈愉悅的主動認知過程,使師生的生命活力在課堂上得到充分的發(fā)揮.

2.學法指導。

學生學法:互相討論、探索發(fā)現(xiàn)。

由于學生在嘗試問題解決的過程中常會在新舊知識聯(lián)系、策略選擇、思想方法運用等方面遇到一定的困難,需要教師指導.作為學生活動的組織者、引導者、參與者,教師要幫助學生重溫與問題解決有關的舊知,給予學生思考的時間和表達的機會,共同對(解題)過程進行反思等,在師生(生生)互動中,給予學生啟發(fā)和鼓勵,在心理上、認知上予以幫助.

這樣,在學法上確立的教法,能幫助學生更好地獲得完整的認知結構,使學生思維、能力等得到和諧發(fā)展.

曲線和方程的數(shù)學教案設計篇八

教學目標:

1、借助天平明白等式的含義,并在分類的基礎上充分感受、認識什么是方程。

2、會用方程表示數(shù)量關系。

3、培養(yǎng)學生觀察、描述、分類、抽象、概括、應用等能力。

4、感受方程與現(xiàn)實生活的密切聯(lián)系,體驗數(shù)學活動的探索性。

重點:理解方程是含有未知數(shù)的等式;

難點:方程的意義抽象的過程。

課前談話:滲透平衡和等量(談體驗)。

教學過程:

一、激情導入。

出示天平,(見過天平嗎?在那里見過?有什么作用?。浚└鶕?jù)天平的狀態(tài)列出不同的式子,(不平衡讓學生想辦法得出讓天平兩邊平衡)。

二、探究新知。

1.對不同的式子進行分類(不要有任何要求)。

讓學生先獨立思考,然后小組合作交流自己的想法。

2.小組匯報分類的想法。小組之間在傾聽的過程中逐漸完善自己本組的想法。

讓小組的代表說說自己組是怎樣分類的?為什么這樣分類?

3.教師根據(jù)各小組的分類進行小結:像這樣的用等號連接左右兩邊的叫做等式。像這樣的這一類叫方程。板書課題。(在學生分類的基礎上)。

4.小組探究“什么是方程?”(先觀察式子,獨立思考,后小組交流)。

5.小組匯報各組的想法。在各組傾聽的基礎上逐漸完善自己的想法。

6.教師在學生小組匯報的基礎上進行小結:像這樣,含有未知數(shù)的等式叫方程。

7.生舉例。

8、師舉例,讓學生說哪些是方程哪些不是方程,并說明理由。

9、通過剛才的幾道算式,讓學生說說對方程又有了哪些新的認識?

10、判斷兩句話:所有的方程都是等式,所有的等式都是方程。

11、畫圖表示方程與等式之間的關系。

三、應用練習。

1.判斷下列式子是不是方程。

2.看圖列方程。

3.根據(jù)題意列方程。

四、拓展延伸。

1、談談自己在知識和情感上的收獲。

2、送給同學們一個方程:天才+x=成功。

曲線和方程的數(shù)學教案設計篇九

1、這堂課從簡單問題入手,由淺至深,比較符合初一學生的認知性,學生了解了概念后馬上讓他們開啟自己的智慧大門,并讓學生自己找到符合概念的條件,加深印象。穿插式的練習,讓學生能夠趁熱打鐵,更加熟練的掌握和理解一元一次方程的一些概念。在上課的過程中更重視的是學生的探索學習,以及數(shù)學“建?!蹦芰Φ呐囵B(yǎng)。為后面學習打下基礎。

3、在課堂的第二個環(huán)節(jié)中,通過實際問題的'引入,讓學生動起腦來,階梯型問題的設置使得一些后進生也投入到課堂中來,體現(xiàn)了差異性的教學。在學生慢慢列出方程的同時其實也培養(yǎng)了他們的邏輯思維能力,也體會到了列方程它與算式相比較之下的優(yōu)點,合作式的學生活動增進了學生的合作交流能力,我并通過一些激勵性的話語激發(fā)學生參與數(shù)學的興趣,在列完方程的最后讓學生歸納出列方程解應用題的基本步驟。使學生加深對知識的掌握也培養(yǎng)了他們的語言組織能力以及學會標準的數(shù)學用語。

二、從教學方法反思。

本節(jié)課本著“尊重差異”為基礎,先“引導發(fā)現(xiàn)”,后“講評點撥”,所以再講解前面概念的時候,我稍稍放慢速度讓后進生聽的明白,因為方程是解應用題的基礎,抓住基礎知識再去發(fā)展他們的邏輯思維能力對后進生是十分重要的。

三、從學生反饋反思。

這堂課學生能積極思考,認真學習,課后作業(yè)都能及時完成。作業(yè)質量較好,但是對于稍難點的實際問題得列式還是有一些問題。在應用題的列式方面是所有學生學習的一個難點,這是我后面課堂要注意的地方:如何去教會學生找到數(shù)量關系去列方程。

曲線和方程的數(shù)學教案設計篇十

在小學數(shù)學教學中,列方程解應用題是難點。這一部分內(nèi)容融入了等式的性質,利用四則運算各部分的關系,有助于對所學的算術知識進行鞏固和加深理解,初步滲透代數(shù)的思想,然而在這一部分教學中存在一定的難點。

一、審清題意:

審題,理解題意。即全面分析題目中的已知量、未知量及二者之間的關系。特別要把牽涉到的一些概念術語弄清,如同向,相向,增加到,增加了等。

二、確立未知數(shù):

三、尋找等量關系:

“含有未知數(shù)的等式稱為方程”因而是“等式”是列方程比不可少的條件。所以尋找等量關系是解題的關鍵。常見的等量關系有以下幾種:

1、總量相等;2、成倍數(shù)相等;3、按公式相等;

小學常用數(shù)量關系總結:

曲線和方程的數(shù)學教案設計篇十一

只列方程不求解:

4.兄弟兩人的年齡之和是59,弟弟比哥哥小5歲,兄弟各幾歲?

(1)長方形游泳池占地600平方米,長30米,游泳池寬多少米?

(2)面積為15平方厘米的三角形紙片的底邊長6厘米,這條底邊上的高是多少厘米?

(3)一塊梯形草坪的面積是30平方米,量得上底長4米,高6米,它的下底長多少米?

三、提高練習。

曲線和方程的數(shù)學教案設計篇十二

列方程解應用題是在第七冊學習列出含有未知數(shù)的等式解一步計算應用題的基礎上進行教學的。共分四個層次,首先教學比較容易的兩步計算的應用題,其次教學兩、三步計算的應用題,本課內(nèi)容是第三個層次,第四是用方程和算術方法解應用題的比較。列方程解含有兩個未知數(shù)的應用題,是第一次出現(xiàn)在全國統(tǒng)編教材上。例6的內(nèi)容,在算術中稱為和倍和差倍問題,由于是逆向思考題,解法特殊,不易掌握,現(xiàn)在用方程來解,不僅思路較簡單,而且這兩類問題的思路統(tǒng)一,解法一致,既可減輕學生負擔又提高了解應用題的能力,是今后小學學習分數(shù)等應用題的基礎,也是今后到中學繼續(xù)學習代數(shù)方程解應用題所必須具備的知識,必須重視這部分內(nèi)容的教學。

本節(jié)課的重點是正確設未知數(shù)和列出方程,關鍵要找出等量關系,列方程也是教學的難點。

二、對教學方法的選擇。

列簡易方程解應用題是中學列代數(shù)方程解應用題的基礎,選擇教學方法時,要注意中小學教學的銜接。

本節(jié)課首先要考慮正確運用遷移原理,這對中、小學的學習都將具有積極作用。在準備階段的練習題中,不論是數(shù)量關系和解題的方法對學習例6都具有遷移的作用,利用這一原理可引導學生直接去做例6后的想一想,這既能培養(yǎng)遷移推理能力,也能促使學生養(yǎng)成獨立思考的習慣。

其次,由于小學生仍處在從形象思維向抽象思維過渡的關鍵時刻,所以要考慮怎樣做好這個過渡,在教學中采用畫線段圖幫助分析數(shù)量關系。線段圖能使數(shù)量關系明顯地呈現(xiàn)出來,有助于幫助學生設未知數(shù),找等量關系和列出方程。

第三還要考慮學法指導。本課要教會學生閱讀、分析應用題的方法、驗算的方法,從不同角度思考問題的方法。在教學檢驗方法時,采用閱讀的方式,讓學生邊讀邊想并說出兩個檢驗式子的含義與作用,從中悟出檢驗的方法。教完例6后引導學生想不同的解題思路,列出不同的方程,就是教學生如何從不同角度思考問題的方法。這些方法對今后繼續(xù)學習數(shù)學是十分必要的。

三、對教學環(huán)節(jié)的安排。

曲線和方程的數(shù)學教案設計篇十三

學生在解方程的基礎上進一步學習用方程解決實際問題,通過我的教學實踐和教學反思,我覺得“重視關鍵句分析訓練,讓學生感悟方程的思想?!?/p>

解決實際問題首先要引導學生分析題目的條件和問題,找出題目中的關鍵句,根據(jù)關鍵句找出題目中的直接的相等關系,這樣可以便于學生列出方程,解答問題。由于我知道我們現(xiàn)在的.數(shù)學課堂教學對等量關系式的訓練不夠重視,于是我課前談話中用了很多時間對等量關系式的寫法進行了訓練。先從倍數(shù)關系,再到相差關系,然后兩種關系合并,要求學生分別寫出等量關系式,為本節(jié)課的教學打下良好的基礎。為了突出根據(jù)關鍵句寫等量關系式,我出示例題后,直接問:“三句話中你覺得哪一句最重要,為什么?”讓學生根據(jù)“的東北虎只數(shù)比的3倍還多100只,寫出三種等量關系,有三種關系式就對應著三種解法,哪一種關系式最容易想到。讓學生感受到要提高正確率,我們可以從最容易的入手,學生已經(jīng)掌握了“求一個數(shù)比另一個數(shù)的幾倍多幾(或少幾)”的實際問題,我們就要引導學生,充分利用已有的知識經(jīng)驗解決新的問題。學生是學習的主體,出示問題后讓學生嘗試解決問題,教師通過巡視,充分了解學生的困難以及想法,然后才能很好的組織交流。為了使學生認識到方程的思想,我故意讓學生先交流用倒推策略解決問題,當交流完列式后讓學生說出每一步所表示的意識時,學生感到困難,再次問學生用倒推策略解決時,還可能出現(xiàn)什么錯誤,這樣從兩個方面讓學生認識到用倒推策略解決的不足,才能更好的讓學生主動愿意來學習用方程來解。方法的優(yōu)劣是比較出來的,當然也是因人而異的。方程為什么要寫設語,方程是怎樣列出來的,把未知轉化為已知條件,才能更好的利用我們最容易想到的等量關系式列出方程才能大大提高正確率。解完例題再次比較總結,列方程是怎樣想的,而倒推策略是怎樣想的。然后再總結列方程解決問題的一般步驟,只有讓學生充分感受到方程的作用和價值,學生才會自愿用列方程來解決新的問題。

曲線和方程的數(shù)學教案設計篇十四

一、用含有字母的式子表示:

(1)桃樹的棵數(shù)是梨樹的2倍,如果設梨樹的棵數(shù)為x棵,則桃樹的棵數(shù)為。

(2)桃樹的.棵數(shù)是梨樹的1.5倍,如果設梨樹的棵數(shù)為x棵,則桃樹的棵數(shù)為()。

(3)桃樹的棵比梨多8棵,如果設梨樹為x棵,則桃樹為()。

(4)桃樹的棵比梨少8棵,如果設梨樹為x棵,則桃樹為()。

(5)桃樹是梨樹的2倍多8棵,如果設梨樹為x棵,則桃樹為()。

(6)桃樹是梨樹的1.5倍少8棵,如果設梨樹為x棵,則桃樹為()。

二、只列方程不求解:

(1)有一個長方形的面積是3600㎡,寬是40m,長應是多少米?

(2)已知長方形的周長是26厘米,它的長是8厘米,它的寬應是多少厘米?

(3)已知正方形的周長是100厘米,它的邊長是多少厘米?

(4)果園里有梨樹和桃樹共120棵,桃樹的棵數(shù)是梨樹的2倍,兩種樹各多少棵?

(5)果園的桃樹比梨樹多40棵,桃樹是梨樹的2倍,兩種樹各有多少棵?

三、找等量關系列方程解應用題:

四、綜合練習。

【本文地址:http://mlvmservice.com/zuowen/15793904.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔