高中數(shù)學(xué)必修教案 全套(4篇)

格式:DOC 上傳日期:2022-12-09 14:41:55
高中數(shù)學(xué)必修教案 全套(4篇)
時(shí)間:2022-12-09 14:41:55     小編:zdfb

作為一位不辭辛勞的人民教師,常常要根據(jù)教學(xué)需要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。寫教案的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下面是小編帶來的優(yōu)秀教案范文,希望大家能夠喜歡!

高中數(shù)學(xué)必修教案 全套篇一

教學(xué)目標(biāo)

進(jìn)一步熟悉正、余弦定理內(nèi)容,能熟練運(yùn)用余弦定理、正弦定理解答有關(guān)問題,如判斷三角形的形狀,證明三角形中的三角恒等式。

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):熟練運(yùn)用定理。

教學(xué)難點(diǎn):應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化。

教學(xué)過程

一、復(fù)習(xí)準(zhǔn)備:

1、 寫出正弦定理、余弦定理及推論等公式。

2、 討論各公式所求解的三角形類型。

二、講授新課:

1、 教學(xué)三角形的解的討論:

① 出示例1:在△abc中,已知下列條件,解三角形。

分兩組練習(xí)→ 討論:解的個(gè)數(shù)情況為何會發(fā)生變化?

②用如下圖示分析解的情況。 (a為銳角時(shí))

② 練習(xí):在△abc中,已知下列條件,判斷三角形的解的情況。

2、 教學(xué)正弦定理與余弦定理的活用:

① 出示例2:在△abc中,已知sina∶sinb∶sinc=6∶5∶4,求最大角的余弦。

分析:已知條件可以如何轉(zhuǎn)化?→ 引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角。

② 出示例3:在δabc中,已知a=7,b=10,c=6,判斷三角形的類型。

分析:由三角形的什么知識可以判別? → 求最大角余弦,由符號進(jìn)行判斷

③ 出示例4:已知△abc中,,試判斷△abc的形狀。

分析:如何將邊角關(guān)系中的邊化為角? →再思考:又如何將角化為邊?

3、 小結(jié):三角形解的情況的討論;判斷三角形類型;邊角關(guān)系如何互化。

三、鞏固練習(xí):

3、 作業(yè):教材p11 b組1、2題。

高中數(shù)學(xué)必修教案 全套篇二

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

解三角形及應(yīng)用舉例

教學(xué)重難點(diǎn)

解三角形及應(yīng)用舉例

教學(xué)過程

一。 基礎(chǔ)知識精講

掌握三角形有關(guān)的定理

利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);

利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題。

二。問題討論

思維點(diǎn)撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論。

思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理。在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì)。

例6:在某海濱城市附近海面有一臺風(fēng),據(jù)檢測,當(dāng)前臺

風(fēng)中心位于城市o(如圖)的東偏南方向

300 km的海面p處,并以20 km / h的速度向西偏北的

方向移動(dòng),臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km ,

并以10 km / h的速度不斷增加,問幾小時(shí)后該城市開始受到

臺風(fēng)的侵襲。

一。 小結(jié):

1、利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類問題:

(1) 已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3、邊角互化是解三角形問題常用的手段。

三。作業(yè):p80闖關(guān)訓(xùn)練

高中數(shù)學(xué)必修教案 全套篇三

【學(xué)習(xí)目標(biāo)】

知識與技能:理解兩角差的余弦公式的推導(dǎo)過程及其結(jié)構(gòu)特征并能靈活運(yùn)用。

過程與方法:應(yīng)用已學(xué)知識和方法思考問題,分析問題,解決問題的能力。

情感態(tài)度價(jià)值觀: 通過公式推導(dǎo)引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,培養(yǎng)學(xué)生的創(chuàng)新意識和學(xué)習(xí)數(shù)學(xué)的興趣。

?!局攸c(diǎn)】通過探索得到兩角差的余弦公式以及公式的靈活運(yùn)用

【難點(diǎn)】兩角差余弦公式的推導(dǎo)過程

預(yù)習(xí)自學(xué)案

一、知識鏈接

1、 寫出 的三角函數(shù)線 :

2、 向量 , 的數(shù)量積,

①定義:

②坐標(biāo)運(yùn)算法則:

3、 , ,那么 是否等于 呢?

下面我們就探討兩角差的余弦公式

二、教材導(dǎo)讀

1、、兩角差的余弦公式的推導(dǎo)思路

如圖,建立單位圓o

(1)利用單位圓上的三角函數(shù)線

設(shè)

又om=ob+bm

=ob+cp

=oa_____ +ap_____

=

從而得到兩角差的余弦公式:

____________________________________

(2)利用兩點(diǎn)間距離公式

如圖,角 的終邊與單位圓交于a( )

角 的終邊與單位圓交于b( )

角 的終邊與單位圓交于p( )

點(diǎn)t( )

ab與pt關(guān)系如何?

從而得到兩角差的余弦公式:

____________________________________

(3) 利用平面向量的知識

用 表示向量 ,

=( , ) =( , )

則 。 =

設(shè) 與 的夾角為

①當(dāng) 時(shí):

=

從而得出

②當(dāng) 時(shí)顯然此時(shí) 已經(jīng)不是向量 的夾角,在 范圍內(nèi),是向量夾角的補(bǔ)角。我們設(shè)夾角為 ,則 + =

此時(shí) =

從而得出

2、兩角差的余弦公式

____________________________

三、預(yù)習(xí)檢測

1、 利用余弦公式計(jì)算 的值。

2、 怎樣求 的值

你的疑惑是什么?

________________________________________________________

______________________________________________________

探究案

例1. 利用差角余弦公式求 的值。

例2.已知 , 是第三象限角,求 的值。

訓(xùn)練案

一、 基礎(chǔ)訓(xùn)練題

1、

2、 ???????????

3、

二、綜合題

--------------------------------------------------

高中數(shù)學(xué)必修教案 全套篇四

一、教材分析

1、教材的地位和作用:

數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

2、教學(xué)目標(biāo)

根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運(yùn)用。

b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

3、教學(xué)重點(diǎn)和難點(diǎn)

根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點(diǎn)為:

①等差數(shù)列的概念。

②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。

由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項(xiàng)公式是這節(jié)課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對“數(shù)學(xué)建?!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學(xué)思想解決實(shí)際問題是本節(jié)課的另一個(gè)難點(diǎn)。

二、學(xué)情分析對于三中的高一學(xué)生,知識經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

二、教法分析

針對高中生這一思維特點(diǎn)和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

三、學(xué)法指導(dǎo)在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

四、教學(xué)程序

本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。

(一)復(fù)習(xí)引入:

1、從函數(shù)觀點(diǎn)看,數(shù)列可看作是定義域?yàn)開_________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的______ 。(n﹡;解析式)

通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。

2、 小明目前會100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①

3、 小芳只會5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②

通過練習(xí)2和3 引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

(二) 新課探究

1、由引入自然的給出等差數(shù)列的概念:

如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):

① “從第二項(xiàng)起”滿足條件;

②公差d一定是由后項(xiàng)減前項(xiàng)所得;

③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );

在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

an+1-an=d (n≥1)

同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

1、 9 ,8,7,6,5,4,……;√ d=-1

2、 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3、 0,0,0,0,0,0,……。; √ d=0

4、 1,2,3,2,3,4,……;×

5、 1,0,1,0,1,……×

其中第一個(gè)數(shù)列公差<0, 第二個(gè)數(shù)列公差>0,第三個(gè)數(shù)列公差=0

由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

【本文地址:http://mlvmservice.com/zuowen/354138.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔