2023年數(shù)學旋轉體的概念 高數(shù)求旋轉體體積的兩種方法匯總

格式:DOC 上傳日期:2023-04-27 20:41:53
2023年數(shù)學旋轉體的概念 高數(shù)求旋轉體體積的兩種方法匯總
時間:2023-04-27 20:41:53     小編:zdfb

人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。相信許多人會覺得范文很難寫?以下是我為大家搜集的優(yōu)質范文,僅供參考,一起來看看吧

數(shù)學旋轉體的概念 高數(shù)求旋轉體體積的兩種方法篇一

高二數(shù)學知識點總結

推薦度:

初中數(shù)學知識點總結

推薦度:

高二數(shù)學教學反思

推薦度:

數(shù)學廣角植樹問題知識點總結

推薦度:

高二數(shù)學教學計劃

推薦度:

相關推薦

這樣定義直觀形象,便于理解,而且對它們的性質也易推導。

對于球的定義中,要注意區(qū)分球和球面的概念,球是實心的。

等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來定義的,在實踐中運用較廣,要注意與一般圓柱、圓錐的區(qū)分。

(1)圓柱的性質,要強調兩點:一是連心線垂直圓柱的底面;二是三個截面的性質——平行于底面的截面是與底面全等的圓;軸截面是一個以上、下底面圓的直徑和母線所組成的矩形;平行于軸線的截面是一個以上、下底的圓的弦和母線組成的矩形。

(2)圓錐的性質,要強調三點

①平行于底面的截面圓的性質:

截面圓面積和底面圓面積的比等于從頂點到截面和從頂點到底面距離的平方比。

②過圓錐的頂點,且與其底面相交的截面是一個由兩條母線和底面圓的弦組成的等腰三角形,其面積為:

易知,截面三角形的頂角不大于軸截面的頂角(如圖10-20),事實上,由bc≥ab,vc=vb=va可得∠avb≤bvc.

由于截面三角形的頂角不大于軸截面的頂角。

所以,當軸截面的頂角θ≤90°,有0°<α≤θ≤90°,即有

當軸截面的頂角θ>90°時,軸截面的面積卻不是最大的,這是因為,若90°≤α<θ<180°時,1≥sinα>sinθ>0.

③圓錐的母線l,高h和底面圓的半徑組成一個直徑三角形,圓錐的有關計算問題,一般都要歸結為解這個直角三角形,特別是關系式

l2=h2+r2

(3)圓臺的性質,都是從“圓臺為截頭圓錐”這個事實推得的,但仍要強調下面幾點:

①圓臺的母線共點,所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

②平行于底面的截面若將圓臺的高分成距上、下兩底為兩段的截面面積為s,則

其中s1和s2分別為上、下底面面積。

的截面性質的推廣。

③圓臺的母線l,高h和上、下兩底圓的半徑r、r,組成一個直角梯形,且有

l2=h2+(r-r)2

圓臺的有關計算問題,常歸結為解這個直角梯形。

(4)球的性質,著重掌握其截面的.性質。

①用任意平面截球所得的截面是一個圓面,球心和截面圓圓心的連線與這個截面垂直。

②如果用r和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則

r2=r2+d2

即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個直角三角形,有關球的計算問題,常歸結為解這個直角三角形。

(1)圓柱、圓錐、圓臺和多面體一樣都是可以平面展開的。

①圓柱、圓錐、圓臺的側面展開圖,是求其側面積的基本依據。

圓柱的側面展開圖,是由底面圖的周長和母線長組成的一個矩形。

②圓錐和側面展開圖是一個由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為

③圓臺的側面展開圖是一個由兩條母線長和上、下底面周長組成的扇環(huán),其扇環(huán)的圓心角為

這個公式有利于空間幾何體和其側面展開圖的互化

顯然,當r=0時,這個公式就是圓錐側面展開圖扇形的圓心角公式,所以,圓錐側面展開圖扇形的圓心角公式是圓臺相關角的特例。

(2)圓柱、圓錐和圓臺的側面公式為

s側=π(r+r)l

當r=r時,s側=2πrl,即圓柱的側面積公式。

當r=0時,s側=rrl,即圓錐的面積公式。

要重視,側面積間的這種關系。

(3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、臺的方法完全不同。

推導出來,要用“微積分”等高等數(shù)學的知識,課本上不能算是一種證明。

求不規(guī)則圓形的度量屬性的常用方法是“細分——求和——取極限”,這種方法,在學完“微積分”的相關內容后,不證自明,這里從略。

(1)正等測畫直觀圖的要求:

①畫正等測的x、y、z三個軸時,z軸畫成鉛直方向,x軸和y軸各與z軸成120°。

②在投影圖上取線段長度的方法是:在三軸上或平行于三軸的線段都取實長。

這里與斜二測畫直觀圖的方法不同,要注意它們的區(qū)別。

(2)正等測圓柱、圓錐、圓臺的直觀圖的區(qū)別主要是水平放置的平面圖形。

用正等測畫水平放置的平面圓形時,將x軸畫成水平位置,y軸畫成與x軸成120°,在投影圖上,x軸和y軸上,或與x軸、y軸平行的線段都取實長,在z軸上或與z軸平行的線段的畫法與斜二測相同,也都取實長。

柱、錐、臺的表面都可以平面展開,這些幾何體表面內兩點間最短距離,就是其平面內展開圖內兩點間的線段長。

由于球面不能平面展開,所以求球面內兩點間的球面距離是一個全新的方法,這個最短距離是過這兩點大圓的劣弧長。

s("content_relate");

【高二數(shù)學旋轉體知識點】相關文章:

高二數(shù)學旋轉體的知識點

11-23

高二數(shù)學知識點:旋轉體

03-08

數(shù)學專項旋轉體的知識點

12-25

數(shù)學專項輔導旋轉體的知識點

11-15

高二數(shù)學的知識點

12-09

高二數(shù)學統(tǒng)計知識點

12-11

高二數(shù)學的重要知識點

11-11

高二數(shù)學排列的知識點

01-10

高二數(shù)學復習知識點

08-05

【本文地址:http://mlvmservice.com/zuowen/2735043.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔