高三數(shù)學(xué)考前必看知識點 高三數(shù)學(xué)知識點3篇(優(yōu)秀)

格式:DOC 上傳日期:2023-04-10 06:37:53
高三數(shù)學(xué)考前必看知識點 高三數(shù)學(xué)知識點3篇(優(yōu)秀)
時間:2023-04-10 06:37:53     小編:zdfb

范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。

高三數(shù)學(xué)考前必看知識點 高三數(shù)學(xué)知識點篇一

用符號〉,=,〈號連接的式子叫不等式。

2.性質(zhì):

①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。

③不等式的兩邊都乘以或除以同一個負(fù)數(shù),不等號方向相反。

3.分類:

①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

②一元一次不等式組:

a.關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

4.考點:

①解一元一次不等式(組)

②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實際問題

③用數(shù)軸表示一元一次不等式(組)的解集

高三數(shù)學(xué)考前必看知識點 高三數(shù)學(xué)知識點篇二

1、三類角的求法:

①找出或作出有關(guān)的角。

②證明其符合定義,并指出所求作的角。

③計算大小(解直角三角形,或用余弦定理)。

2、正棱柱——底面為正多邊形的直棱柱

正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

3、怎樣判斷直線l與圓c的位置關(guān)系?

圓心到直線的距離與圓的半徑比較。

直線與圓相交時,注意利用圓的“垂徑定理”。

4、對線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法

培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

(1)欣賞數(shù)學(xué)的美感

比如幾何圖形中的對稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。

(2)注意到數(shù)學(xué)在實際生活中的應(yīng)用。

例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解.

學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊.

(3)采用靈活的教學(xué)手段,與時俱進(jìn)。

利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學(xué)生也更容易接受,理解更深。

(4)適當(dāng)看一些科普類的書籍和文章。

比如:學(xué)圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。

高三數(shù)學(xué)考前必看知識點 高三數(shù)學(xué)知識點篇三

1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

2.判定兩個平面平行的方法:

(1)根據(jù)定義--證明兩平面沒有公共點;

(2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;

(3)證明兩平面同垂直于一條直線。

3.兩個平面平行的主要性質(zhì):

(1)由定義知:“兩平行平面沒有公共點”;

(2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;

(3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;

(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;

(5)夾在兩個平行平面間的平行線段相等;

(6)經(jīng)過平面外一點只有一個平面和已知平面平行。

【本文地址:http://mlvmservice.com/zuowen/2542190.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔