最新高一數(shù)學(xué)120個常考必考題型五篇(通用)

格式:DOC 上傳日期:2023-04-05 06:02:29
最新高一數(shù)學(xué)120個??急乜碱}型五篇(通用)
時間:2023-04-05 06:02:29     小編:zdfb

范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。那么我們該如何寫一篇較為完美的范文呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

高一數(shù)學(xué)120個??急乜碱}型篇一

函數(shù)的概念:設(shè)a、b是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合a中的任意一個數(shù)x,在集合b中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:a---b為從集合a到集合b的一個函數(shù).記作:y=f(x),x∈a.

(1)其中,x叫做自變量,x的取值范圍a叫做函數(shù)的定義域;

(2)與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈a}叫做函數(shù)的值域.

函數(shù)的三要素:定義域、值域、對應(yīng)法則

函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域

(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。

(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。

4、函數(shù)圖象知識歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈a)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(x,y)的集合c,叫做函數(shù)y=f(x),(x∈a)的圖象.c上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在c上.

(2)畫法

a、描點(diǎn)法:b、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。

(3)函數(shù)圖像平移變換的特點(diǎn):

1)加左減右——————只對x

2)上減下加——————只對y

3)函數(shù)y=f(x)關(guān)于x軸對稱得函數(shù)y=-f(x)

4)函數(shù)y=f(x)關(guān)于y軸對稱得函數(shù)y=f(-x)

5)函數(shù)y=f(x)關(guān)于原點(diǎn)對稱得函數(shù)y=-f(-x)

6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得

函數(shù)y=|f(x)|

7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對稱的圖像得函數(shù)f(|x|)

高一數(shù)學(xué)120個??急乜碱}型篇二

集合與元素

一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

例如:你所在的班級是一個集合,是由幾十個和你同齡的同學(xué)組成的集合,你相對于這個班級集合來說,是它的一個元素;

而整個學(xué)校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。

.解集合問題的關(guān)鍵

解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;

比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。

高一數(shù)學(xué)120個??急乜碱}型篇三

冪函數(shù)定義:

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

性質(zhì):

對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實(shí)數(shù);

排除了為0這種可能,即對于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:

如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

在x大于0時,函數(shù)的值域總是大于0的實(shí)數(shù)。

在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點(diǎn)。

(2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。

(4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

(6)顯然冪函數(shù)。

高一數(shù)學(xué)120個??急乜碱}型篇四

定義:

從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點(diǎn)。常用直線向上方向與x軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于x軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

表達(dá)式:

斜截式:y=kx+b

兩點(diǎn)式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)

點(diǎn)斜式:y-y1=k(x-x1)

截距式:(x/a)+(y/b)=0

補(bǔ)充一下:最基本的標(biāo)準(zhǔn)方程不要忘了,ax+by+c=0,

因?yàn)?上面的四種直線方程不包含斜率k不存在的情況,如x=3,這條直線就不能用上面的四種形式表示,解題過程中尤其要注意,k不存在的情況。

高一數(shù)學(xué)120個??急乜碱}型篇五

圓錐曲線性質(zhì):

一、圓錐曲線的定義

1.橢圓:到兩個定點(diǎn)的距離之和等于定長(定長大于兩個定點(diǎn)間的距離)的動點(diǎn)的軌跡叫做橢圓.

2.雙曲線:到兩個定點(diǎn)的距離的差的絕對值為定值(定值小于兩個定點(diǎn)的距離)的動點(diǎn)軌跡叫做雙曲線.即.

3.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線.當(dāng)01時為雙曲線.

二、圓錐曲線的方程

1.橢圓:+ =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)

2.雙曲線:- =1(a>0,b>0)或 - =1(a>0,b>0)(其中,c2=a2+b2)

3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

三、圓錐曲線的性質(zhì)

1.橢圓:+ =1(a>b>0)

(1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e= ∈(0,1)(5)準(zhǔn)線:x=±

2.雙曲線:- =1(a>0,b>0)(1)范圍:|x|≥a,y∈r(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e= ∈(1,+∞)(5)準(zhǔn)線:x=± (6)漸近線:y=± x

3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈r(2)頂點(diǎn):(0,0)(3)焦點(diǎn):( ,0)(4)離心率:e=1(5)準(zhǔn)線:x=-

【本文地址:http://mlvmservice.com/zuowen/2286575.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔