最新中考數(shù)學必考點100講 中考數(shù)學必會知識點3篇(優(yōu)質)

格式:DOC 上傳日期:2023-04-04 06:50:15
最新中考數(shù)學必考點100講 中考數(shù)學必會知識點3篇(優(yōu)質)
時間:2023-04-04 06:50:15     小編:zdfb

在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。大家想知道怎么樣才能寫一篇比較優(yōu)質的范文嗎?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。

中考數(shù)學必考點100講 中考數(shù)學必會知識點篇一

中考的解答題一般是分兩到三部分的。第一部分基本上都是一些簡單題或者中檔題,目的在于考察基礎。第二部分往往就是開始拉分的中難題了。 對這些題輕松掌握的意義不僅僅在于獲得分數(shù),更重要的是對于整個做題過程中士氣,軍心的影響。線段與角的計算和證明,一般來說難度不會很大,只要找到關鍵“題眼”,后面的路子自己就“通”了。

2.圖形位置關系

中學數(shù)學當中,圖形位置關系主要包括點、線、三角形、矩形/正方形以及圓這么幾類圖形之間的關系。在中考中會包含在函數(shù),坐標系以及幾何問題當中,但主要還是通過圓與其他圖形的關系來考察,這其中最重要的就是圓與三角形的各種問題。

3.動態(tài)幾何

從歷年中考來看,動態(tài)問題經(jīng)常作為壓軸題目出現(xiàn),得分率也是最低的。動態(tài)問題一般分兩類,一類是代數(shù)綜合方面,在坐標系中有動點,動直線,一般是利用多種函數(shù)交叉求解。另一類就是幾何綜合題,在梯形,矩形,三角形中設立動點、線以及整體平移翻轉,對考生的綜合分析能力進行考察。所以說,動態(tài)問題是中考數(shù)學當中的重中之重,只有完全掌握,才有機會拼高分。

4.一元二次方程與二次函數(shù)

在這一類問題當中,尤以涉及的動態(tài)幾何問題最為艱難。幾何問題的難點在于想象,構造,往往有時候一條輔助線沒有想到,整個一道題就卡殼了。相比幾何綜合題來說,代數(shù)綜合題倒不需要太多巧妙的方法,但是對考生的計算能力以及代數(shù)功底有了比較高的要求。中考數(shù)學當中,代數(shù)問題往往是以一元二次方程與二次函數(shù)為主體,多種其他知識點輔助的形式出現(xiàn)的。一元二次方程與二次函數(shù)問題當中,純粹的一元二次方程解法通常會以簡單解答題的方式考察。但是在后面的中難檔大題當中,通常會和根的判別式,整數(shù)根和拋物線等知識點結合

5.多種函數(shù)交叉綜合問題

初中數(shù)學所涉及的函數(shù)就一次函數(shù),反比例函數(shù)以及二次函數(shù)。這類題目本身并不會太難,很少作為壓軸題出現(xiàn),一般都是作為一道中檔次題目來考察考生對于一次函數(shù)以及反比例函數(shù)的掌握。所以在中考中面對這類問題,一定要做到避免失分。

6.列方程(組)解應用題

在中考中,有一類題目說難不難,說不難又難,有的時候三兩下就有了思路,有的時候苦思冥想很久也沒有想法,這就是列方程或方程組解應用題。方程可以說是初中數(shù)學當中最重要的部分,所以也是中考中必考內(nèi)容。從近年來的中考來看,結合時事熱點考的比較多,所以還需要考生有一些生活經(jīng)驗。實際考試中,這類題目幾乎要么得全分,要么一分不得,但是也就那么幾種題型,所以考生只需多練多掌握各個題類,總結出一些定式,就可以從容應對了。

7.動態(tài)幾何與函數(shù)問題

整體說來,代幾綜合題大概有兩個側重,第一個是側重幾何方面,利用幾何圖形的性質結合代數(shù)知識來考察。而另一個則是側重代數(shù)方面,幾何性質只是一個引入點,更多的考察了考生的計算功夫。但是這兩種側重也沒有很嚴格的分野,很多題型都很類似。其中通過圖中已給幾何圖形構建函數(shù)是重點考察對象。做這類題時一定要有“減少復雜性”“增大靈活性”的主體思想。

8.幾何圖形的歸納、猜想問題

中考加大了對考生歸納,總結,猜想這方面能力的考察,但是由于數(shù)列的系統(tǒng)知識要到高中才會正式考察,所以大多放在填空壓軸題來出。對于這類歸納總結問題來說,思考的方法是比較重要的。

9.閱讀理解問題

如今中考題型越來越活,閱讀理解題出現(xiàn)在數(shù)學當中就是一個亮點。閱讀理解往往是先給一個材料,或介紹一個超綱的知識,或給出針對某一種題目的解法,然后再給條件出題。對于這種題來說,如果考生為求快速而完全無視閱讀材料而直接去做題的話,往往浪費大量時間也沒有思路,得不償失。所以如何讀懂題以及如何利用題就成為了關鍵。

</span

中考數(shù)學必考點100講 中考數(shù)學必會知識點篇二

一、計算題:

科學計數(shù)法、倒數(shù)相反數(shù)絕對值、簡單概率運算、三視圖求原圖面積、三角形(相似、全等、內(nèi)角外交關系)、統(tǒng)計(眾數(shù)、中位數(shù)、平均數(shù))、二次函數(shù)(頂點、對稱軸、表達式)、函數(shù)圖像關系

二、填空題:

因式分解、二次函數(shù)解析式求解、三角形(相似、周長面積計算)、坐標(坐標點運動規(guī)律)、直線和反比例函數(shù)圖像問題

三、解答題:

次方、開方、三角函數(shù)、次冪(0次、-1次)計算;

求解不等式組;

分式、多項式化簡(整體代入方法求值);

方程組求解;

幾何圖形中證明三角形邊相等;

一次函數(shù)與二次函數(shù);

四、解答題

四邊形邊長、周長、面積求解;

圓相關問題(切割線、圓周角、圓心角);

統(tǒng)計圖;

在數(shù)軸中求三角形面積;

五、解答題

二次函數(shù)(解析式、直線方程);

圓與直線關系;

三角形角度相關計算。

<p

中考數(shù)學必考點100講 中考數(shù)學必會知識點篇三

1.有理數(shù)的加法運算:

同號相加一邊倒;異號相加“大”減“小”,

符號跟著大的跑;絕對值相等“零”正好.

2.合并同類項:

合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣.

3.去、添括號法則:

去括號、添括號,關鍵看符號,

括號前面是正號,去、添括號不變號,

括號前面是負號,去、添括號都變號.

4.一元一次方程:

已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒.

5.平方差公式:

平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆.

5.1完全平方公式:

完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;

首±尾括號帶平方,尾項符號隨中央.

5.2因式分解:

一提(公因式)二套(公式)三分組,細看幾項不離譜,

兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,

四項仔細看清楚,若有三個平方數(shù)(項),

就用一三來分組,否則二二去分組,

五項、六項更多項,二三、三三試分組,

以上若都行不通,拆項、添項看清楚.

5.3單項式運算:

加、減、乘、除、乘(開)方,三級運算分得清,

系數(shù)進行同級(運)算,指數(shù)運算降級(進)行.

5.4一元一次不等式解提的一般步驟:

去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,

兩邊除(以)負數(shù)時,不等號改向別忘了.

5.5一元一次不等式組的解集:

大大取較大,小小取較小,小大、大小取中間,大小、小大無處找.

一元二次不等式、一元一次絕對值不等式的解集:

大(魚)于(吃)取兩邊,小(魚)于(吃)取中間.

6.1分式混合運算法則:

分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

變號必須兩處,結果要求最簡.

6.2分式方程的解法步驟:

同乘最簡公分母,化成整式寫清楚,

求得解后須驗根,原(根)留、增(根)舍,別含糊.

6.3最簡根式的條件:

最簡根式三條件,號內(nèi)不把分母含,

冪指數(shù)(根指數(shù))要互質、冪指比根指小一點.

6.4特殊點的坐標特征:

坐標平面點(x,y),橫在前來縱在后;

(+,+),(-,+),(-,-)和(+,-),四個象限分前后;

x軸上y為0,x為0在y軸.

象限角的平分線:

象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱卻相反.

平行某軸的直線:

平行某軸的直線,點的坐標有講究,

直線平行x軸,縱坐標相等橫不同;

直線平行于y軸,點的橫坐標仍照舊.

6.5對稱點的坐標:

對稱點坐標要記牢,相反數(shù)位置莫混淆,

x軸對稱y相反,y軸對稱x相反;

原點對稱記,橫縱坐標全變號.

7.1自變量的取值范圍:

分式分母不為零,偶次根下負不行;

零次冪底數(shù)不為零,整式、奇次根全能行.

7.2函數(shù)圖象的移動規(guī)律:

若把一次函數(shù)的解析式寫成y=k(x+0)+b,

二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,

則可用下面的口訣

“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”.

7.3一次函數(shù)的圖象與性質的口訣:

一次函數(shù)是直線,圖象經(jīng)過三象限;

正比例函數(shù)更簡單,經(jīng)過原點一直線;

兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,

k為正來右上斜,x增減y增減;

k為負來左下展,變化規(guī)律正相反;

k的絕對值越大,線離橫軸就越遠.

7.4二次函數(shù)的圖象與性質的口訣:

二次函數(shù)拋物線,圖象對稱是關鍵;

開口、頂點和交點,它們確定圖象現(xiàn);

開口、大小由a斷,c與y軸來相見;

b的符號較特別,符號與a相關聯(lián);

頂點位置先找見,y軸作為參考線;

左同右異中為0,牢記心中莫混亂;

頂點坐標最重要,一般式配方它就現(xiàn);

橫標即為對稱軸,縱標函數(shù)最值見.

若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換.

7.5反比例函數(shù)的圖象與性質的口訣:

反比例函數(shù)有特點,雙曲線相背離得遠;

k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;

圖在一、三函數(shù)減,兩個分支分別減.

圖在二、四正相反,兩個分支分別增;

線越長越近軸,永遠與軸不沾邊.

<p

【本文地址:http://mlvmservice.com/zuowen/2225435.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔