最新三角形的基本概念 三角形概念及性質(zhì)(優(yōu)質(zhì)六篇)

格式:DOC 上傳日期:2023-04-03 19:32:42
最新三角形的基本概念 三角形概念及性質(zhì)(優(yōu)質(zhì)六篇)
時間:2023-04-03 19:32:42     小編:zdfb

人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。

三角形的基本概念 三角形概念及性質(zhì)篇一

(1)使學(xué)生理解三角形、三角形的邊、頂點、內(nèi)角的概念;

(2)正確理解三角形的角平分線、中線、高這三個概念的含義、聯(lián)系及區(qū)別;

(3)能正確地畫出一個三角形的角平分線、中線和高;

(4)能用符號規(guī)范地表示一個三角形及六個元素;

(5)通過對三角形有關(guān)概念的,提高學(xué)生對概念的辨析能力和畫圖能力;

(6)讓學(xué)生結(jié)合具體形象敘述定義,訓(xùn)練他們的語言表達(dá)能力,激發(fā)學(xué)生學(xué)習(xí)幾何的興趣。.

重點:明確組成三角形的六個元素,正確理解三角形的“高”、“角平分線”和“中線”這三個概念的含義、聯(lián)系和區(qū)別。

難點:三角形高的畫法

用具:三角板、投影、微機(jī)

方法:啟發(fā)探究法

過程:

1、溫故知新,揭示課題

引言之后,先讓學(xué)生:

(1)試說出三角形以及三角形的邊、頂點、角的概念

(2)如圖1:試畫出 的平分線、bc邊上的中線、bc邊上的高

然后,在此基礎(chǔ)上,揭示課題,提出思考題:三角形是由三條線段組成的,這里要強(qiáng)調(diào)“首尾順次相接”為什么要加上這個條件?具備什么條件的線段才是三角形的角平分線、三角形的中線、三角形的高。

2、運用反例,揭示內(nèi)涵

由上面分析,讓學(xué)生判斷辨別下列圖2中哪一個是正確的?(對第三個圖)直角三角形只有一條高對嗎?

3、討論歸納,深化定義

引導(dǎo)啟發(fā)學(xué)生,歸納討論探索得到的結(jié)果:

定義1 三角形的角平分線:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段。

強(qiáng)調(diào):三角形的角平分線是一條線段,而角的平分線是一條射線。

定義2 三角形的中線:在三角形中,連結(jié)一個頂點和它的對邊中點的線段。

強(qiáng)調(diào):三角形中線是一條線段。

定義3 三角形的高:從三角形的一個頂點向它對邊畫垂線,頂點和垂足間的線段。

強(qiáng)調(diào):三角形的高是線段,而垂線是直線。

這一環(huán)節(jié)運用電教手段,利用<幾何畫板>動畫的功能,增加直觀性有利于學(xué)生理解掌握定義

4、符號表示,加深理解

通過符號的表述,使學(xué)生對三角形的角平分線、中線、高的理解得到加深和強(qiáng)化,在記憶上也趨于簡化。

5、初步運用,反復(fù)辨析

練習(xí)的設(shè)計遵循由由淺入深、循序漸進(jìn)的原則,三個題目,三個層次:

題1 三角形的一條高是( )

a.直線 b.射線 c.垂線 .d.垂線段

題2 畫鈍角三角形 的高ae。

題3

先讓學(xué)生思考練習(xí),然后師生一起分析糾正,最后點撥小結(jié)。這環(huán)節(jié)運用電教手段,以增大容量和直觀性,提高效率。

6、歸納總結(jié),強(qiáng)化思想

這節(jié)課著重講了三角形的角平分線、中線和高,在集會理解上述定義時,必須注意到兩點:一是三條都是線段;二是鈍角三角形與直角三角形的高的畫法。

揭示了文字語言、圖形語言、符號語言在幾何中的作用,要求在學(xué)習(xí)時熟練三種語言的相互轉(zhuǎn)化。

7、布置作業(yè)?,題目是:

(1)書面作業(yè)?p30#2,3 p41#5(做在書上)

(2)交本作業(yè)?p41#4

(3)思考題1:

思考題2:

1、以3根火柴為邊,可以組成一個三角形,用6根火柴為邊最多可以組成幾個三角形?9根火柴最多能組成幾個三角形?

2、從三角形一個頂角引出的三角形角平分線、一條中線能否重合?此時這個三角形的形狀如何?

答案:1.4、7;

2.能.三角形為等腰三角形.

三角形的基本概念 三角形概念及性質(zhì)篇二

(1)使學(xué)生理解三角形、三角形的邊、頂點、內(nèi)角的概念;

(2)正確理解三角形的角平分線、中線、高這三個概念的含義、聯(lián)系及區(qū)別;

(3)能正確地畫出一個三角形的角平分線、中線和高;

(4)能用符號規(guī)范地表示一個三角形及六個元素;

(5)通過對三角形有關(guān)概念的教學(xué),提高學(xué)生對概念的辨析能力和畫圖能力;

(6)讓學(xué)生結(jié)合具體形象敘述定義,訓(xùn)練他們的語言表達(dá)能力,激發(fā)學(xué)生幾何的興趣。.

:明確組成三角形的六個元素,正確理解三角形的“高”、“角平分線”和“中線”這三個概念的含義、聯(lián)系和區(qū)別。

:三角形高的畫法

:三角板、投影、微機(jī)

:啟發(fā)探究法

1、溫故知新,揭示課題

引言之后,先讓學(xué)生:

(1)試說出三角形以及三角形的邊、頂點、角的概念

(2)如圖1:試畫出 的平分線、bc邊上的中線、bc邊上的高

然后,在此基礎(chǔ)上,揭示課題,提出思考題:三角形是由三條線段組成的,這里要強(qiáng)調(diào)“首尾順次相接”為什么要加上這個條件?具備什么條件的線段才是三角形的角平分線、三角形的中線、三角形的高。

2、運用反例,揭示內(nèi)涵

由上面分析,讓學(xué)生判斷辨別下列圖2中哪一個是正確的?(對第三個圖)直角三角形只有一條高對嗎?

3、討論歸納,深化定義

引導(dǎo)啟發(fā)學(xué)生,歸納討論探索得到的結(jié)果:

定義1 三角形的角平分線:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段。

強(qiáng)調(diào):三角形的角平分線是一條線段,而角的平分線是一條射線。

定義2 三角形的中線:在三角形中,連結(jié)一個頂點和它的對邊中點的線段。

強(qiáng)調(diào):三角形中線是一條線段。

定義3 三角形的高:從三角形的一個頂點向它對邊畫垂線,頂點和垂足間的線段。

強(qiáng)調(diào):三角形的高是線段,而垂線是直線。

這一環(huán)節(jié)運用電教手段,利用<幾何畫板>動畫的功能,增加直觀性有利于學(xué)生理解掌握定義

4、符號表示,加深理解

通過符號的表述,使學(xué)生對三角形的角平分線、中線、高的理解得到加深和強(qiáng)化,在記憶上也趨于簡化。

5、初步運用,反復(fù)辨析

練習(xí)的設(shè)計遵循由由淺入深、循序漸進(jìn)的原則,三個題目,三個層次:

題1 三角形的一條高是( )

a.直線 b.射線 c.垂線 .d.垂線段

題2 畫鈍角三角形 的高ae。

題3

先讓學(xué)生思考練習(xí),然后師生一起分析糾正,最后教師點撥小結(jié)。這環(huán)節(jié)運用電教手段,以增大教學(xué)容量和直觀性,提高效率。

6、歸納總結(jié),強(qiáng)化思想

這節(jié)課著重講了三角形的角平分線、中線和高,在集會理解上述定義時,必須注意到兩點:一是三條都是線段;二是鈍角三角形與直角三角形的高的畫法。

揭示了文字語言、圖形語言、符號語言在幾何中的作用,要求在時熟練三種語言的相互轉(zhuǎn)化。

7、布置作業(yè)?,題目是:

(1)書面作業(yè)?p30#2,3 p41#5(做在書上)

(2)交本作業(yè)?p41#4

(3)思考題1:

思考題2:

1、以3根火柴為邊,可以組成一個三角形,用6根火柴為邊最多可以組成幾個三角形?9根火柴最多能組成幾個三角形?

2、從三角形一個頂角引出的三角形角平分線、一條中線能否重合?此時這個三角形的形狀如何?

答案:1.4、7;

2.能.三角形為等腰三角形.

三角形的基本概念 三角形概念及性質(zhì)篇三

目標(biāo):

(1)使學(xué)生理解三角形、三角形的邊、頂點、內(nèi)角的概念;

(2)正確理解三角形的角平分線、中線、高這三個概念的含義、聯(lián)系及區(qū)別;

(3)能正確地畫出一個三角形的角平分線、中線和高;

(4)能用符號規(guī)范地表示一個三角形及六個元素;

(5)通過對三角形有關(guān)概念的,提高學(xué)生對概念的辨析能力和畫圖能力;

(6)讓學(xué)生結(jié)合具體形象敘述定義,訓(xùn)練他們的語言表達(dá)能力,激發(fā)學(xué)生學(xué)習(xí)幾何的興趣。.

重點:明確組成三角形的六個元素,正確理解三角形的“高”、“角平分線”和“中線”這三個概念的含義、聯(lián)系和區(qū)別。

難點:三角形高的畫法

用具:三角板、投影、微機(jī)

方法:啟發(fā)探究法

過程:

1、溫故知新,揭示課題

引言之后,先讓學(xué)生:

(1)試說出三角形以及三角形的邊、頂點、角的概念

(2)如圖1:試畫出 的平分線、bc邊上的中線、bc邊上的高

然后,在此基礎(chǔ)上,揭示課題,提出思考題:三角形是由三條線段組成的,這里要強(qiáng)調(diào)“首尾順次相接”為什么要加上這個條件?具備什么條件的線段才是三角形的角平分線、三角形的中線、三角形的高。

2、運用反例,揭示內(nèi)涵

由上面分析,讓學(xué)生判斷辨別下列圖2中哪一個是正確的?(對第三個圖)直角三角形只有一條高對嗎?

3、討論歸納,深化定義

引導(dǎo)啟發(fā)學(xué)生,歸納討論探索得到的結(jié)果:

定義1 三角形的角平分線:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段。

強(qiáng)調(diào):三角形的角平分線是一條線段,而角的平分線是一條射線。

定義2 三角形的中線:在三角形中,連結(jié)一個頂點和它的對邊中點的線段。

強(qiáng)調(diào):三角形中線是一條線段。

定義3 三角形的高:從三角形的一個頂點向它對邊畫垂線,頂點和垂足間的線段。

強(qiáng)調(diào):三角形的高是線段,而垂線是直線。

這一環(huán)節(jié)運用電教手段,利用<幾何畫板>動畫的功能,增加直觀性有利于學(xué)生理解掌握定義

4、符號表示,加深理解

通過符號的表述,使學(xué)生對三角形的角平分線、中線、高的理解得到加深和強(qiáng)化,在記憶上也趨于簡化。

5、初步運用,反復(fù)辨析

練習(xí)的設(shè)計遵循由由淺入深、循序漸進(jìn)的原則,三個題目,三個層次:

題1 三角形的一條高是( )

a.直線 b.射線 c.垂線 .d.垂線段

題2 畫鈍角三角形 的高ae。

題3

先讓學(xué)生思考練習(xí),然后師生一起分析糾正,最后點撥小結(jié)。這環(huán)節(jié)運用電教手段,以增大容量和直觀性,提高效率。

6、歸納總結(jié),強(qiáng)化思想

這節(jié)課著重講了三角形的角平分線、中線和高,在集會理解上述定義時,必須注意到兩點:一是三條都是線段;二是鈍角三角形與直角三角形的高的畫法。

揭示了文字語言、圖形語言、符號語言在幾何中的作用,要求在學(xué)習(xí)時熟練三種語言的相互轉(zhuǎn)化。

7、布置作業(yè)?,題目是:

(1)書面作業(yè)?p30#2,3 p41#5(做在書上)

(2)交本作業(yè)?p41#4

(3)思考題1:

思考題2:

1、以3根火柴為邊,可以組成一個三角形,用6根火柴為邊最多可以組成幾個三角形?9根火柴最多能組成幾個三角形?

2、從三角形一個頂角引出的三角形角平分線、一條中線能否重合?此時這個三角形的形狀如何?

答案:1.4、7;

2.能.三角形為等腰三角形.

三角形的基本概念 三角形概念及性質(zhì)篇四

(1)使學(xué)生理解三角形、三角形的邊、頂點、內(nèi)角的概念;

(2)正確理解三角形的角平分線、中線、高這三個概念的含義、聯(lián)系及區(qū)別;

(3)能正確地畫出一個三角形的角平分線、中線和高;

(4)能用符號規(guī)范地表示一個三角形及六個元素;

(5)通過對三角形有關(guān)概念的教學(xué),提高學(xué)生對概念的辨析能力和畫圖能力;

(6)讓學(xué)生結(jié)合具體形象敘述定義,訓(xùn)練他們的語言表達(dá)能力,激發(fā)學(xué)生幾何的興趣。.

:明確組成三角形的六個元素,正確理解三角形的“高”、“角平分線”和“中線”這三個概念的含義、聯(lián)系和區(qū)別。

:三角形高的畫法

:三角板、投影、微機(jī)

:啟發(fā)探究法

1、溫故知新,揭示課題

引言之后,先讓學(xué)生:

(1)試說出三角形以及三角形的邊、頂點、角的概念

(2)如圖1:試畫出 的平分線、bc邊上的中線、bc邊上的高

然后,在此基礎(chǔ)上,揭示課題,提出思考題:三角形是由三條線段組成的,這里要強(qiáng)調(diào)“首尾順次相接”為什么要加上這個條件?具備什么條件的線段才是三角形的角平分線、三角形的中線、三角形的高。

2、運用反例,揭示內(nèi)涵

由上面分析,讓學(xué)生判斷辨別下列圖2中哪一個是正確的?(對第三個圖)直角三角形只有一條高對嗎?

3、討論歸納,深化定義

引導(dǎo)啟發(fā)學(xué)生,歸納討論探索得到的結(jié)果:

定義1 三角形的角平分線:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段。

強(qiáng)調(diào):三角形的角平分線是一條線段,而角的平分線是一條射線。

定義2 三角形的中線:在三角形中,連結(jié)一個頂點和它的對邊中點的線段。

強(qiáng)調(diào):三角形中線是一條線段。

定義3 三角形的高:從三角形的一個頂點向它對邊畫垂線,頂點和垂足間的線段。

強(qiáng)調(diào):三角形的高是線段,而垂線是直線。

這一環(huán)節(jié)運用電教手段,利用<幾何畫板>動畫的功能,增加直觀性有利于學(xué)生理解掌握定義

4、符號表示,加深理解

通過符號的表述,使學(xué)生對三角形的角平分線、中線、高的理解得到加深和強(qiáng)化,在記憶上也趨于簡化。

5、初步運用,反復(fù)辨析

練習(xí)的設(shè)計遵循由由淺入深、循序漸進(jìn)的原則,三個題目,三個層次:

題1 三角形的一條高是( )

a.直線 b.射線 c.垂線 .d.垂線段

題2 畫鈍角三角形 的高ae。

題3

先讓學(xué)生思考練習(xí),然后師生一起分析糾正,最后教師點撥小結(jié)。這環(huán)節(jié)運用電教手段,以增大教學(xué)容量和直觀性,提高效率。

6、歸納總結(jié),強(qiáng)化思想

這節(jié)課著重講了三角形的角平分線、中線和高,在集會理解上述定義時,必須注意到兩點:一是三條都是線段;二是鈍角三角形與直角三角形的高的畫法。

揭示了文字語言、圖形語言、符號語言在幾何中的作用,要求在時熟練三種語言的相互轉(zhuǎn)化。

7、布置作業(yè)?,題目是:

(1)書面作業(yè)?p30#2,3 p41#5(做在書上)

(2)交本作業(yè)?p41#4

(3)思考題1:

思考題2:

1、以3根火柴為邊,可以組成一個三角形,用6根火柴為邊最多可以組成幾個三角形?9根火柴最多能組成幾個三角形?

2、從三角形一個頂角引出的三角形角平分線、一條中線能否重合?此時這個三角形的形狀如何?

答案:1.4、7;

2.能.三角形為等腰三角形.

三角形的基本概念 三角形概念及性質(zhì)篇五

(1)使學(xué)生理解三角形、三角形的邊、頂點、內(nèi)角的概念;

(2)正確理解三角形的角平分線、中線、高這三個概念的含義、聯(lián)系及區(qū)別;

(3)能正確地畫出一個三角形的角平分線、中線和高;

(4)能用符號規(guī)范地表示一個三角形及六個元素;

(5)通過對三角形有關(guān)概念的教學(xué),提高學(xué)生對概念的辨析能力和畫圖能力;

(6)讓學(xué)生結(jié)合具體形象敘述定義,訓(xùn)練他們的語言表達(dá)能力,激發(fā)學(xué)生幾何的興趣。.

:明確組成三角形的六個元素,正確理解三角形的“高”、“角平分線”和“中線”這三個概念的含義、聯(lián)系和區(qū)別。

:三角形高的畫法

:三角板、投影、微機(jī)

:啟發(fā)探究法

1、溫故知新,揭示課題

引言之后,先讓學(xué)生:

(1)試說出三角形以及三角形的邊、頂點、角的概念

(2)如圖1:試畫出 的平分線、bc邊上的中線、bc邊上的高

然后,在此基礎(chǔ)上,揭示課題,提出思考題:三角形是由三條線段組成的,這里要強(qiáng)調(diào)“首尾順次相接”為什么要加上這個條件?具備什么條件的線段才是三角形的角平分線、三角形的中線、三角形的高。

2、運用反例,揭示內(nèi)涵

由上面分析,讓學(xué)生判斷辨別下列圖2中哪一個是正確的?(對第三個圖)直角三角形只有一條高對嗎?

3、討論歸納,深化定義

引導(dǎo)啟發(fā)學(xué)生,歸納討論探索得到的結(jié)果:

定義1 三角形的角平分線:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段。

強(qiáng)調(diào):三角形的角平分線是一條線段,而角的平分線是一條射線。

定義2 三角形的中線:在三角形中,連結(jié)一個頂點和它的對邊中點的線段。

強(qiáng)調(diào):三角形中線是一條線段。

定義3 三角形的高:從三角形的一個頂點向它對邊畫垂線,頂點和垂足間的線段。

強(qiáng)調(diào):三角形的高是線段,而垂線是直線。

這一環(huán)節(jié)運用電教手段,利用<幾何畫板>動畫的功能,增加直觀性有利于學(xué)生理解掌握定義

4、符號表示,加深理解

通過符號的表述,使學(xué)生對三角形的角平分線、中線、高的理解得到加深和強(qiáng)化,在記憶上也趨于簡化。

5、初步運用,反復(fù)辨析

練習(xí)的設(shè)計遵循由由淺入深、循序漸進(jìn)的原則,三個題目,三個層次:

題1 三角形的一條高是( )

a.直線 b.射線 c.垂線 .d.垂線段

題2 畫鈍角三角形 的高ae。

題3

先讓學(xué)生思考練習(xí),然后師生一起分析糾正,最后教師點撥小結(jié)。這環(huán)節(jié)運用電教手段,以增大教學(xué)容量和直觀性,提高效率。

6、歸納總結(jié),強(qiáng)化思想

這節(jié)課著重講了三角形的角平分線、中線和高,在集會理解上述定義時,必須注意到兩點:一是三條都是線段;二是鈍角三角形與直角三角形的高的畫法。

揭示了文字語言、圖形語言、符號語言在幾何中的作用,要求在時熟練三種語言的相互轉(zhuǎn)化。

7、布置作業(yè)?,題目是:

(1)書面作業(yè)?p30#2,3 p41#5(做在書上)

(2)交本作業(yè)?p41#4

(3)思考題1:

思考題2:

1、以3根火柴為邊,可以組成一個三角形,用6根火柴為邊最多可以組成幾個三角形?9根火柴最多能組成幾個三角形?

2、從三角形一個頂角引出的三角形角平分線、一條中線能否重合?此時這個三角形的形狀如何?

答案:1.4、7;

2.能.三角形為等腰三角形.

三角形的基本概念 三角形概念及性質(zhì)篇六

(1)使學(xué)生理解三角形、三角形的邊、頂點、內(nèi)角的概念;

(2)正確理解三角形的角平分線、中線、高這三個概念的含義、聯(lián)系及區(qū)別;

(3)能正確地畫出一個三角形的角平分線、中線和高;

(4)能用符號規(guī)范地表示一個三角形及六個元素;

(5)通過對三角形有關(guān)概念的教學(xué),提高學(xué)生對概念的辨析能力和畫圖能力;

(6)讓學(xué)生結(jié)合具體形象敘述定義,訓(xùn)練他們的語言表達(dá)能力,激發(fā)學(xué)生幾何的興趣。.

:明確組成三角形的六個元素,正確理解三角形的“高”、“角平分線”和“中線”這三個概念的含義、聯(lián)系和區(qū)別。

:三角形高的畫法

:三角板、投影、微機(jī)

:啟發(fā)探究法

1、溫故知新,揭示課題

引言之后,先讓學(xué)生:

(1)試說出三角形以及三角形的邊、頂點、角的概念

(2)如圖1:試畫出 的平分線、bc邊上的中線、bc邊上的高

然后,在此基礎(chǔ)上,揭示課題,提出思考題:三角形是由三條線段組成的,這里要強(qiáng)調(diào)“首尾順次相接”為什么要加上這個條件?具備什么條件的線段才是三角形的角平分線、三角形的中線、三角形的高。

2、運用反例,揭示內(nèi)涵

由上面分析,讓學(xué)生判斷辨別下列圖2中哪一個是正確的?(對第三個圖)直角三角形只有一條高對嗎?

3、討論歸納,深化定義

引導(dǎo)啟發(fā)學(xué)生,歸納討論探索得到的結(jié)果:

定義1 三角形的角平分線:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段。

強(qiáng)調(diào):三角形的角平分線是一條線段,而角的平分線是一條射線。

定義2 三角形的中線:在三角形中,連結(jié)一個頂點和它的對邊中點的線段。

強(qiáng)調(diào):三角形中線是一條線段。

定義3 三角形的高:從三角形的一個頂點向它對邊畫垂線,頂點和垂足間的線段。

強(qiáng)調(diào):三角形的高是線段,而垂線是直線。

這一環(huán)節(jié)運用電教手段,利用<幾何畫板>動畫的功能,增加直觀性有利于學(xué)生理解掌握定義

4、符號表示,加深理解

通過符號的表述,使學(xué)生對三角形的角平分線、中線、高的理解得到加深和強(qiáng)化,在記憶上也趨于簡化。

5、初步運用,反復(fù)辨析

練習(xí)的設(shè)計遵循由由淺入深、循序漸進(jìn)的原則,三個題目,三個層次:

題1 三角形的一條高是( )

a.直線 b.射線 c.垂線 .d.垂線段

題2 畫鈍角三角形 的高ae。

題3

先讓學(xué)生思考練習(xí),然后師生一起分析糾正,最后教師點撥小結(jié)。這環(huán)節(jié)運用電教手段,以增大教學(xué)容量和直觀性,提高效率。

6、歸納總結(jié),強(qiáng)化思想

這節(jié)課著重講了三角形的角平分線、中線和高,在集會理解上述定義時,必須注意到兩點:一是三條都是線段;二是鈍角三角形與直角三角形的高的畫法。

揭示了文字語言、圖形語言、符號語言在幾何中的作用,要求在時熟練三種語言的相互轉(zhuǎn)化。

7、布置作業(yè)?,題目是:

(1)書面作業(yè)?p30#2,3 p41#5(做在書上)

(2)交本作業(yè)?p41#4

(3)思考題1:

思考題2:

1、以3根火柴為邊,可以組成一個三角形,用6根火柴為邊最多可以組成幾個三角形?9根火柴最多能組成幾個三角形?

2、從三角形一個頂角引出的三角形角平分線、一條中線能否重合?此時這個三角形的形狀如何?

答案:1.4、7;

2.能.三角形為等腰三角形.

【本文地址:http://mlvmservice.com/zuowen/2210389.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔