2023年初二數學教學案例 初二數學教案5篇(大全)

格式:DOC 上傳日期:2023-03-31 21:16:58
2023年初二數學教學案例 初二數學教案5篇(大全)
時間:2023-03-31 21:16:58     小編:zdfb

作為一名老師,常常要根據教學需要編寫教案,教案是教學活動的依據,有著重要的地位。那么教案應該怎么制定才合適呢?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對大家有所幫助。

初二數學教學案例 初二數學教案篇一

1.使學生會用完全平方公式分解因式.

2.使學生學習多步驟,多方法的分解因式

二、重點難點:

重點: 讓學生掌握多步驟、多方法分解因式方法

難點: 讓學生學會觀察多項式特點,恰當安排步驟,恰當地選用不同方法分解因式

三、合作學習

創(chuàng)設問題情境,引入新課

完全平方公式(a±b)2=a2±2ab+b2

講授新課

1.推導用完全平方公式分解因式的公式以及公式的特點.

將完全平方公式倒寫:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具備這些特點的三項式,就是一個二項式的完全平方,將它寫成平方形式,便實現了因式分解

用語言敘述為:兩個數的平方和,加上(或減去)這兩數的積的2倍,等于這兩個數的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

由分解因式與整式乘法的關系可以看出,如果把乘法公式反過來,那么就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法.

練一練.下列各式是不是完全平方式?

(1)a2-4a+4; (2)x2+4x+4y2;

(3)4a2+2ab+ b2; (4)a2-ab+b2;

四、精講精練

例1、把下列完全平方式分解因式:

(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.

例2、把下列各式分解因式:

(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.

課堂練習: 教科書練習

補充練習:把下列各式分解因式:

(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;

五、小結:兩個數的平方和,加上(或減去)這兩數的積的2倍,等于這兩個數的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

六、作業(yè):1、

2、分解因式:

x2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2

45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4

初二數學教學案例 初二數學教案篇二

一、教材分析

1、 特點與地位: 重點中的重點。本課是教材求兩結點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通 訊網絡等方面具有一定的實用意義。

2、 重點與難點:結合學生現有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題 的自身特點,確立本課的重點和難點如下:

(1)重點:如何將現實問題抽象成求解最短路徑問題,以及該問題的解決方案。 (2)難點:求解最短路徑算法的程序實現。 3、 教學安排: 最短路徑問題包含兩種情況:一種是求從某個源點到其他各結點的最短路徑,另一種是求每 一對結點之間的最短路徑。根據教學大綱安排,重點講解第一種情況問題的解決。安排一個課時 講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決 與算法分析相結合,逐步推動教學過程。

二、教學目標分析 1、知識目標:掌握最短路徑概念、能夠求解最短路徑。 2、能力目標: (1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養(yǎng)學生的數據抽象能力。 (2)通過旅游景點線路選擇問題的解決,培養(yǎng)學生的獨立思考、分析問題、解決問題的能力。 3、素質目標:培養(yǎng)學生講究工作方法、與他人合作,提高效率。

三、教法分析 課前充分準備,研讀教材,查閱相關資料,制作多媒體課件。教學過程中除了使用傳統(tǒng)的“講授 法”以外,主要采用“案例教學法” ,同時輔以多媒體課件,以啟發(fā)的方式展開教學。由于本節(jié)課的 內容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據學生的反應控制好教學進度 是本節(jié)課成功的關鍵。

四、學法指導 1、 課前 上次課結課時給學生布置任務,使其有針對性的預習。 2、 課中 指導學生討論任務解決方法,引導學生分析本節(jié)課知識點。 3、 課后 給學生布置同類型任務,加強練習。

五、教學過程分析 (一)課前復習(3~5 分鐘) 回顧“路徑”的概念,為引出“最短路徑”做鋪墊。 教學方法及注意事項: (1)采用提問方式,注意及時小結,提問的目的是幫助學生回憶概念。 (2)提示學生“溫故而知新” ,養(yǎng)成良好的學習習慣。

(二)導入新課(3~5 分鐘) 以城市公路網為例, 基于求兩個點間最短距離的實際需要, 引出本課教學內容 “求最短路徑問題” 。 教學方法及注意事項: (1)先講實例,再指出概念,既可以吸引學生注意力,激發(fā)學習興趣,又可以實現教學內容的 自然過渡。 (2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例 子只需要概述,能夠說明問題即可。

(三)講授新課(25~30 分鐘) 1、 求某一結點到其他各結點的最短路徑(重點) 主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。 (1)將實際問題抽象成圖中求任一結點到其他結點最短路徑問題。 (3~5 分鐘) 教學方法及注意事項: ① 主要采用講授法,將實際問題用圖形表示出來。語言描述轉換的方法(用圓圈加標號 表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用 寫在箭頭的旁邊。 )一邊用語言描述,一邊在黑上畫圖。 ② 注意示范畫圖只進行一部分,讓學生獨立思考、自主完成余下部分的轉化。 ③ 及時總結,原型抽象(景點作為圖的結點,景點間的線路作為圖的邊,旅途費用作為 邊的權值) ,將案例求解問題抽象成求圖中某一結點到其他各結點的最短路徑問題。 ④ 利用多媒體課件,向學生展示一張帶權有向圖,并略作解釋,為后續(xù)教學做準備。

教學方法及注意事項: ① 啟發(fā)式教學,如何實現按路徑長度遞增產生最短路 徑? ② 結合案例分析求解最短路徑過程中 (重點)注意此處借助 黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下 部分由學生獨立思考完成。

(四)課堂小結(3~5 分鐘) 1、明確本節(jié)課重點

2、提示學生, 這種方式形成的圖又可以解決哪類實際問題呢?

(五)布置作業(yè)1、書面作業(yè):復習本次課內容,準備一道備用習題,靈活把握時間安排。 六、教學特色 以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯 燥的理論講解生動起來。在順利開展教學的同時,體現所講內容的實用性,提高學生的學習興趣。

初二數學教學案例 初二數學教案篇三

一、指導思想

通過數學課的教學,使學生切實學好從事現代化建設和進一步學習現代化科學技術所必需的數學基本知識和基本技能;努力培養(yǎng)學生的運算能力、邏輯思維能力,以及分析問題和解決問題的能力。

二、學情分析

八年級是初中學習過程中的關鍵時期,學生基礎的好壞,直接影響到將來是否能升學。八(1)班、(3)班,兩班比較,一班優(yōu)生稍多一些,但后進面卻較大,學生非常活躍,有少數學生不上進,思維不緊跟老師。三班學生單純,有少數同學基礎特差,問題較嚴重。要在本期獲得理想成績,老師和學生都要付出努力,查漏補缺,充分發(fā)揮學生是學習的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。

三、教材分析

第十一章一次函數通過對變量的考察,體會函數的概念,并進一步研究其中最為簡單的一種函數——一次函數。了解函數的有關性質和研究方法,并初步形成利用函數的觀點認識現實世界的意識和能力。在教材中,通過體現“問題情境——建立數學模型——概念、規(guī)律、應用與拓展”的模式,讓學生從實際問題情境中抽象出函數以及一次函數的概念,并進行探索一次函數及其圖象的性質,最后利用一次函數及其圖象解決有關現實問題;同時在教學順序上,將正比例函數納入一次函數的研究中去。教材注意新舊知識的比較與聯系,如在教材中,加強了一次函數與一次方程(組)、一次不等式的聯系等。

第十二章數據的描述通過對實際問題的討論,使學生體會數據的作用,更好地理解數據表達的信息,發(fā)展數感和統(tǒng)計觀念,為了更好地理解較大的數據信息,本單元首先安排了有關大數的感受與表示的內容,重點是讓學生運用身邊熟悉的事物,從多種角度對大數進行估計,對于所收集的數據,還要清晰、有效的進行展示,以盡可能的獲取有用的信息。教材安排了扇形統(tǒng)計圖、條形圖、折線圖、直方圖等的認識與制作,不同的統(tǒng)計圖表的選擇等內容。

第十三章全等三角形主要介紹了三角形全等的性質和判定方法及直角三角形全等的特殊條件。更多的注重學生推理意識的建立和對推理過程的理解,學生在直觀認識和簡單說明理由的基礎上,從幾個基本事實出發(fā),比較嚴格地證明全等三角形的一些性質,探索三角形全等的條件。

第十四章軸對稱立足于已有的生活經驗和初步的數學活動經歷,從觀察生活中的軸對稱現象開始,從整體的角度直觀認識并概括出軸對稱的特征;通過逐步分析角、線段、等腰三角形等簡單的軸對稱圖形,引入等腰三角形的性質和判定的概念。

第十五章整式在形式上力求突出:整式及整式運算產生的實際背景————使學生經歷實際問題“符號化”的過程,發(fā)展符號感;有關運算法則的探索過程————為探索有關運算法則設置了歸納、類比等活動;對算理的理解和基本運算技能的掌握————設置恰當數量和難度的符號運算,同時要求學生說明運算的根據。

四、教學措施

1、課堂內講授與練習相結合,及時根據反饋信息,掃除學習中的障礙點。

2、認真?zhèn)湔n、精心授課,抓緊課堂四十五分鐘,努力提高教學效果。

3、抓住關鍵、分散難點、突出重點,在培養(yǎng)學生能力上下功夫。

4、不斷改進教學方法,提高自身業(yè)務素養(yǎng)。

5、教學中注重自主學習、合作學習、探究學習。

初二數學教學案例 初二數學教案篇四

一、學習目標:1.多項式除以單項式的運算法則及其應用.

2.多項式除以單項式的運算算理.

二、重點難點:

重點: 多項式除以單項式的運算法則及其應用

難點: 探索多項式與單項式相除的運算法則的過程

三、合作學習:

(一) 回顧單項式除以單項式法則

(二) 學生動手,探究新課

1. 計算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2. 提問:①說說你是怎樣計算的 ②還有什么發(fā)現嗎?

(三) 總結法則

1. 多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______

2. 本質:把多項式除以單項式轉化成______________

四、精講精練

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

隨堂練習: 教科書 練習

五、小結

1、單項式的除法法則

2、應用單項式除法法則應注意:

a、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號

b、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;

c、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;

d、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.

e、多項式除以單項式法則

第三十四學時:14.2.1 平方差公式

一、學習目標:1.經歷探索平方差公式的過程.

2.會推導平方差公式,并能運用公式進行簡單的運算.

二、重點難點

重點: 平方差公式的推導和應用

難點: 理解平方差公式的結構特征,靈活應用平方差公式.

三、合作學習

你能用簡便方法計算下列各題嗎?

(1)2001×1999 (2)998×1002

導入新課: 計算下列多項式的積.

(1)(x+1)(x-1) (2)(m+2)(m-2)

(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差.

即:(a+b)(a-b)=a2-b2

四、精講精練

例1:運用平方差公式計算:

(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

例2:計算:

(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

隨堂練習

計算:

(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)

(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)

五、小結:(a+b)(a-b)=a2-b2

初二數學教學案例 初二數學教案篇五

一、學習目標:1.多項式除以單項式的運算法則及其應用.

2.多項式除以單項式的運算算理.

二、重點難點:

重點: 多項式除以單項式的運算法則及其應用

難點: 探索多項式與單項式相除的運算法則的過程

三、合作學習:

(一) 回顧單項式除以單項式法則

(二) 學生動手,探究新課

1. 計算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2. 提問:①說說你是怎樣計算的 ②還有什么發(fā)現嗎?

(三) 總結法則

1. 多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______

2. 本質:把多項式除以單項式轉化成______________

四、精講精練

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

隨堂練習: 教科書 練習

五、小結

1、單項式的除法法則

2、應用單項式除法法則應注意:

a、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號

b、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;

c、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;

d、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.

e、多項式除以單項式法則

【本文地址:http://mlvmservice.com/zuowen/2060704.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔