我們在一些事情上受到啟發(fā)后,可以通過寫心得體會的方式將其記錄下來,它可以幫助我們了解自己的這段時間的學(xué)習(xí)、工作生活狀態(tài)。心得體會是我們對于所經(jīng)歷的事件、經(jīng)驗和教訓(xùn)的總結(jié)和反思。下面是小編幫大家整理的優(yōu)秀心得體會范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學(xué)說課心得體會篇一
數(shù)學(xué)作為一門抽象而又具有廣泛應(yīng)用的學(xué)科,在學(xué)習(xí)中能夠培養(yǎng)我們的邏輯思維和分析問題的能力。而我在讀數(shù)學(xué)的過程中也積累了一些心得體會。通過數(shù)學(xué)學(xué)習(xí),我不僅僅是學(xué)會了解決問題的方法,更重要的是鍛煉了自己的思考能力和解決實際問題的能力。
第二段:理論與實踐相結(jié)合
數(shù)學(xué)學(xué)習(xí)中,我發(fā)現(xiàn)理論與實踐的結(jié)合是非常重要的。在學(xué)習(xí)理論的同時,我會盡量將其應(yīng)用到實際問題中,以鞏固對知識的掌握。例如,在學(xué)習(xí)幾何相關(guān)知識時,我會通過畫圖、構(gòu)建實際物體的模型等方式將抽象的理論聯(lián)系到具體的實際生活中。這樣不僅能夠幫助我更好地理解和記憶知識,還能培養(yǎng)我獨立思考和解決實際問題的能力。
第三段:堅持動手實踐
數(shù)學(xué)學(xué)習(xí)中,動手實踐是非常重要的環(huán)節(jié)。單純死記硬背的學(xué)習(xí)方式很容易導(dǎo)致知識的“空洞化”,不能真正理解和掌握知識的實質(zhì)。因此,我在學(xué)習(xí)數(shù)學(xué)時經(jīng)常進(jìn)行習(xí)題訓(xùn)練和解題實踐。通過實際動手解題,我能夠更加深入地理解和掌握所學(xué)的知識,并能夠從中發(fā)現(xiàn)問題、總結(jié)經(jīng)驗和改進(jìn)方法。這種實踐不僅可以提高自己的解題能力,還能夠激發(fā)對數(shù)學(xué)的興趣,增強(qiáng)學(xué)習(xí)的主動性。
第四段:思維方式的培養(yǎng)
數(shù)學(xué)學(xué)習(xí)中,培養(yǎng)自己的思維方式是至關(guān)重要的。數(shù)學(xué)學(xué)科強(qiáng)調(diào)邏輯思維和分析問題的能力,這要求我們能夠以一種科學(xué)的思維方式來思考問題。在解題過程中,我養(yǎng)成了先理清問題的關(guān)鍵點,分析其內(nèi)在的邏輯關(guān)系,然后選擇合適的解決方法的思維習(xí)慣。通過這種思維方式的培養(yǎng),我不僅在數(shù)學(xué)學(xué)習(xí)中受益,還能將其運用到其他學(xué)科和實際問題的解決中,提高了自己的綜合素質(zhì)。
第五段:數(shù)學(xué)與生活的結(jié)合
數(shù)學(xué)學(xué)習(xí)并不僅僅是為了應(yīng)付考試和獲取好成績,更重要的是將所學(xué)的數(shù)學(xué)知識應(yīng)用到實際生活中。數(shù)學(xué)在現(xiàn)實生活中無處不在,可以幫助我們解決很多實際問題。例如,在日常生活中,我們會遇到計算和測量問題,通過數(shù)學(xué)的方法和理論,我們可以更加準(zhǔn)確地計算和測量出需要的數(shù)值。數(shù)學(xué)還可以幫助我們分析和處理數(shù)據(jù),從而幫助我們更好地理解和把握一些現(xiàn)象和規(guī)律。因此,將數(shù)學(xué)與生活相結(jié)合,我們既可以更好地理解和學(xué)習(xí)數(shù)學(xué),也能夠提高我們的實際應(yīng)用能力。
結(jié)尾:
通過數(shù)學(xué)的學(xué)習(xí),我收獲了很多。我不僅僅學(xué)到了解決問題的方法和技巧,更重要的是,我培養(yǎng)了自己的思考能力和解決實際問題的能力。數(shù)學(xué)學(xué)習(xí)讓我更加理性、嚴(yán)謹(jǐn)和細(xì)致,也讓我更加熱愛生活。我相信,通過不斷努力和實踐,我會在數(shù)學(xué)學(xué)習(xí)中不斷成長,為將來的學(xué)習(xí)和工作打下堅實的基礎(chǔ)。
數(shù)學(xué)說課心得體會篇二
離散數(shù)學(xué),對絕大多數(shù)學(xué)生來說是一門十分困難的課程,當(dāng)然也包括我在內(nèi),而當(dāng)初選這門課是想挑戰(zhàn)一下自己。通過這一學(xué)期的學(xué)習(xí),我對這門課程有一些初步的了解,現(xiàn)在的心情和當(dāng)初也很不相同。
在還沒有接觸的時候,看見課本就想退縮,心想:這是什么課程啊,這叫數(shù)學(xué)嗎,這些符號都是之前沒有見過的呢!但是既然都說是挑戰(zhàn)就沒有退縮的道理。雖然不能說是抱著“視死如歸”的精神,至少能說是忐忑不安。第一次聽老師講課的時候已經(jīng)是落后別人兩次課,前面的知識都是自己看書,所以難免有些看不懂,在聽老師講課的時候有些定義性的東西就會混淆,我自認(rèn)為是個越挫越勇的人,并沒有因此退縮。超乎想象的是,老師講課好仔細(xì),好詳細(xì),因為前面的知識是為后面做鋪墊,所以在后面老師經(jīng)常強(qiáng)調(diào),那么,我錯過的東西也都掌握了。
在聽過老師講解以后,我覺得前三章自己都能很好的掌握。后面的開始深入一些,對于好多以前沒有接觸過的名詞定義不能馬上理解,但是只要跟著老師的思維走,上課認(rèn)真聽講,課后看一下書本就能懂。有了這些認(rèn)知,我覺得這門課的難點在于課程比較枯燥,好多理論的知識需要我們?nèi)ダ斫狻?/p>
前三章主要是認(rèn)識邏輯語言符號,了解了數(shù)理邏輯的特點,并做一些簡單的邏輯推理和運算。這些知識都是以前所學(xué)的進(jìn)一步轉(zhuǎn)換,只要將數(shù)學(xué)的函數(shù)符號邏輯化就行。也就是說,那些符號知識形式上的不同,實質(zhì)上是一樣的。不同的是,之前的數(shù)學(xué)只需要運用結(jié)論證明其他的案例等。但是邏輯數(shù)學(xué)不僅要知其然還要知其所以然,運用結(jié)論正結(jié)論。即使如此,我還是覺得這幾章學(xué)著很輕松,只要熟練掌握公式定理就會覺得離散數(shù)學(xué)并不像之前想象的那么困難。第四章講的是關(guān)系。這一章,進(jìn)一步認(rèn)識、運用數(shù)理邏輯語言,熟練強(qiáng)化練習(xí),深入理解。這一章的難度相較于前幾章要繁瑣些,有很多的符號轉(zhuǎn)換,運算,運算過程很復(fù)雜。對于計算能力不強(qiáng)的我來說,這一章或許是最吃力的,即使知道原理也需要通過大量的練習(xí)強(qiáng)化鞏固,而這其中用到的還有線性代數(shù)里面的矩陣。第五章學(xué)的是函數(shù),定義和高中所學(xué)一樣,只不過是把它轉(zhuǎn)換運用于數(shù)理邏輯,并用邏輯符號進(jìn)行運算。雖說如此,但是這其中仍然有更深層次的概念和邏輯公式,如果單純的用原有的思維是很難想透徹的。
第六章“圖”和第七章“樹及其應(yīng)用”可以歸為“圖論”。在剛接觸到“圖”這一章的時候我是抱著好奇之心去學(xué)習(xí)的,因為這章都是關(guān)于“圖”,想了解一下和幾何圖形的差別,所以覺得善長幾何的我應(yīng)該能夠把它學(xué)好。但是不可否認(rèn),隨著知識的深入,這一章一定會比前面的更難理解,更難學(xué)。因此,上課的時候聽得格外認(rèn)真,課后還找了一些相關(guān)書籍閱覽。在看過這些書籍以后,我才真正了解到它并不是枯燥乏味的,它的用途非常廣泛,并且應(yīng)用于我們整個日常生活中。比如:怎樣布線才能使每一部電話互相連通,并且花費最小?從首府到每州州府的最短路線是什么?n項任務(wù)怎樣才能最有效地由n個人完成?管道網(wǎng)絡(luò)中從源點到集匯點的單位時間最大流是多少?一個計算機(jī)芯片需要多少層才能使得同一層的路線互不相交?怎樣安排一個體育聯(lián)盟季度賽的日程表使其在最少的周數(shù)內(nèi)完成?一位流動推銷員要以怎樣的順序到達(dá)每一個城市才能使得旅行時間最短?我們能用4種顏色來為每張地圖的各個區(qū)域著色并使得相鄰的區(qū)域具有不同的顏色嗎?這些問題以及其他一些實際問題都涉及“圖論”。
這里所說的圖并不是幾何學(xué)中的圖形,而是客觀世界中某些具體事物間聯(lián)系的一個數(shù)學(xué)抽象,用頂點代表事物,用邊表示各式物間的二元關(guān)系,如果所討論的事物之間有某種二元關(guān)系,我們就把相應(yīng)的頂點練成一條邊。這種由頂點及連接這些頂點的邊所組成的圖就是圖論中所研究的圖。由于它關(guān)系著客觀世界的事物,所以對于解決實際問題是相當(dāng)有效的。哥尼斯堡橋問題(七橋問題),這個著名的數(shù)學(xué)難題,在經(jīng)過如此漫長的時間最終還是瑞士數(shù)學(xué)家歐拉利用圖論解決了它,并得出沒有一種方法使得從這塊陸地中的任意一塊開始,通過每一座橋恰好一次再回到原點。
樹是指沒有回路的連通圖。它是連通圖中最簡單的一類圖,許多問題對一般連通圖未能解決或者沒有簡單的方法,而對于樹,則已圓滿解決,且方法較為簡單。而且在許多不同領(lǐng)域中有著廣泛的應(yīng)用。例如家譜圖就是其中之一。如果將每個人用一個頂點來表示,并且在父子之間連一條邊,便得到一個樹狀圖。
圖論中最著名的應(yīng)該就是圖的`染色問題。這個問題的研究來源于著名的四色問題。四色問題是圖論中也許是全部數(shù)學(xué)中最出名、最難得一個問題之一。所謂四色猜想就是在平面上任何一張地圖,總可以用至多四種顏色給每一個國家染色,使得任何相鄰國家的顏色是不同的。四色問題粗看起來似乎與我們所討論的圖沒有什么聯(lián)系。其實也是可以轉(zhuǎn)化為圖論中的問題來討論。首先從地圖出發(fā)來構(gòu)作一個圖,讓每一個頂點代表地圖的一個區(qū)域,如果兩個區(qū)域有一段公共邊界線,就在相應(yīng)的頂點之間連上一條邊。由于地圖中每一塊區(qū)域?qū)?yīng)圖的一個頂點,兩個相鄰頂點對應(yīng)兩個相鄰的區(qū)域。所以對地圖染色使相鄰的區(qū)域染以不同的顏色相當(dāng)于對圖的每個頂點染以相應(yīng)的一種顏色,使得相鄰的頂點有不同的顏色。總之,圖論是數(shù)學(xué)科學(xué)的一個分支,而四色問題是典型的圖論課題。
通過對圖論的初步理解和認(rèn)識,我深深地認(rèn)識到,圖論的概念雖然有其直觀、通俗的方面,但是這許多日常生活用語被引入圖論后就都有了其嚴(yán)格、確切的含義。我們既要學(xué)會通過術(shù)語的通俗含義更快、更好地理解圖論概念,又要注意保持術(shù)語起碼的嚴(yán)格。
本以為枯燥乏味的離散數(shù)學(xué)竟然會是貼近生活是我意想不到的,這些歷史難題等等,都讓我對它產(chǎn)生了一定的興趣,雖然不可否認(rèn)的是,對我來說它確實是一門很難很深奧很抽象的課程,但是仍然不減我對圖論產(chǎn)生的興趣,或許這也就是我選擇這門課程最大的收獲吧。
數(shù)學(xué)說課心得體會篇三
引言:
數(shù)學(xué)作為一門學(xué)科,伴隨著我們的成長,是我們學(xué)生們最常接觸和探索的科目之一。通過學(xué)習(xí)數(shù)學(xué),我們不僅能夠鍛煉思維方式和邏輯能力,還能培養(yǎng)嚴(yán)謹(jǐn)性和解決問題的能力。下面我將與你分享我在數(shù)學(xué)學(xué)習(xí)中的一些心得體會。
第一段:數(shù)學(xué)的智力訓(xùn)練
數(shù)學(xué)是一門需要動腦思考的學(xué)科,它要求我們擁有良好的邏輯思維能力。數(shù)學(xué)學(xué)習(xí)的過程中,我們需要分析問題、提煉問題、尋找解決問題的方法等等,這些步驟都要求我們進(jìn)行抽象思維和創(chuàng)造性思維的訓(xùn)練。而這種訓(xùn)練對于我們在其他學(xué)科中的表現(xiàn)和問題解決能力都有著積極的影響。
第二段:數(shù)學(xué)的實用性
數(shù)學(xué)是一門實用的學(xué)科,它廣泛應(yīng)用于各個領(lǐng)域。無論是在物理學(xué)、化學(xué)、經(jīng)濟(jì)學(xué),還是生物學(xué)、工程學(xué)中,數(shù)學(xué)都扮演著不可或缺的角色。通過學(xué)習(xí)數(shù)學(xué),我們能夠更好地理解現(xiàn)實生活中的問題,并且通過數(shù)學(xué)的方法和工具來解決這些問題,提高我們的生活質(zhì)量。
第三段:數(shù)學(xué)的美感
數(shù)學(xué)是一門充滿了美感的學(xué)科。數(shù)學(xué)中的公式和定理,隱藏著一種簡潔而優(yōu)雅的智慧。當(dāng)我們通過邏輯推理和證明來理解和掌握這些數(shù)學(xué)規(guī)律時,會感受到一種美的愉悅。而且,數(shù)學(xué)中的圖形和模型也給人以視覺上的享受。數(shù)學(xué)的美妙之處在于它的簡潔性和普適性,每個人只要用心去發(fā)現(xiàn),都能體會到數(shù)學(xué)的美。
第四段:數(shù)學(xué)的挑戰(zhàn)性
數(shù)學(xué)是一門需要不斷思考和挑戰(zhàn)的學(xué)科。在學(xué)習(xí)數(shù)學(xué)的過程中,我們時常會遇到困難和挫折,而這正是培養(yǎng)我們毅力和堅持不懈精神的機(jī)會。通過克服難題和化解困難,我們能夠鍛煉自己的耐心和堅韌,提高我們在其他學(xué)科和生活中的應(yīng)對能力。
結(jié)尾:
在數(shù)學(xué)學(xué)習(xí)的道路上,我們不僅探索了數(shù)學(xué)的奧秘,也培養(yǎng)了自身的思維能力和解決問題的能力。數(shù)學(xué)的智力訓(xùn)練、實用性、美感和挑戰(zhàn)性,都使我對數(shù)學(xué)產(chǎn)生了濃厚的興趣與熱愛。我相信,只要我們持之以恒、勇往直前,數(shù)學(xué)的世界將為我們打開更多的大門,不斷帶給我們新的成就和體驗。
數(shù)學(xué)說課心得體會篇四
本學(xué)期,我參加了學(xué)校組織的小學(xué)數(shù)學(xué)校本教學(xué)研討活動,其中有幾節(jié)錄像課給我留下了深刻的印象?;顒又懈魑粚<业木庶c評,使我感受頗深,受益匪淺。通過活動我有以下幾點感受。
原來我一直認(rèn)為應(yīng)用題和解決問題是一回事,只不過是換個名稱而已。聽了專家的點評,我終于明白二者不光是名稱的改變,而且有質(zhì)的區(qū)別。應(yīng)用題關(guān)注的是它的結(jié)構(gòu),重點要進(jìn)行數(shù)量關(guān)系的分析,在此基礎(chǔ)上正確地列式;解決問題關(guān)注的是情境,讓學(xué)生進(jìn)入情境后,自己尋求解決問題的策略。
教學(xué)的藝術(shù),不是傳授而是激發(fā)和喚醒,所以老師要利用學(xué)生非常熟悉的生活材料,引發(fā)學(xué)生的數(shù)學(xué)思考。在《解決問題》一課中,教師從學(xué)生感興趣的團(tuán)體操,列方陣入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲,讓學(xué)生切實的感受到了數(shù)學(xué)知識來源于生活,生活中數(shù)學(xué)問題處處存在。這樣既調(diào)動了學(xué)生的學(xué)習(xí)興趣,又為接下來的數(shù)學(xué)教學(xué)進(jìn)行了情感鋪墊。
新課改革中強(qiáng)調(diào),教師要讓學(xué)生“學(xué)會”變?yōu)椤皶W(xué)”,變“要我學(xué)”為“我要學(xué)”。教師在教學(xué)過程中成為了學(xué)生學(xué)習(xí)的幫助者、合作者、引導(dǎo)者。每一個教學(xué)環(huán)節(jié),教師只作恰如其分的點撥,并未一問一答的大包大攬。創(chuàng)設(shè)自由、和諧地學(xué)習(xí)氛圍,把學(xué)習(xí)的主動權(quán)真正交給學(xué)生,指導(dǎo)學(xué)生學(xué)會學(xué)習(xí),提高學(xué)生的學(xué)習(xí)能力,掌握學(xué)習(xí)的方法。
在教學(xué)活動中,教師對學(xué)生的贊揚和鼓勵不斷。如“你說的真好”“你真棒”“你的方法可真多”“等等。這些看似微不足道的評價語言,在學(xué)生的心里卻可以激起不小的情感波瀾。對于整個教學(xué)效果的提高也起到了相當(dāng)程度的積極影響。
教學(xué)活動中,教師不是把小組合作流于形式,更注重了小組合作的實效性。
1.正確處理好了合作學(xué)習(xí)與自主探究的關(guān)系,也就是說獨立思考是合作學(xué)習(xí)的前提。
2小組合作學(xué)習(xí),在時間安排上恰到好處。什么時間合作學(xué)習(xí)?必須在突出本課重點,突破難點時,幾位教師都做到了這一點。
數(shù)學(xué)說課心得體會篇五
為了構(gòu)建生動活潑、富有個性的數(shù)學(xué)課堂,我把創(chuàng)設(shè)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣當(dāng)成數(shù)學(xué)教學(xué)的重頭戲,“創(chuàng)設(shè)情境”成為我們小學(xué)數(shù)學(xué)課堂中一道亮麗的風(fēng)景線。我盡量用學(xué)生熟悉的生活情境或生活經(jīng)驗入手引出學(xué)習(xí)內(nèi)容,這樣學(xué)生樂于接受。在課堂中我創(chuàng)設(shè)出“學(xué)”與“玩”融為一體的教學(xué)方法,學(xué)生在“玩”中學(xué),在學(xué)中“玩”。如教學(xué)“長方形面積計算”,我設(shè)計了一個情境:“一塊長方形玻璃打碎了,要想配上新玻璃,該帶哪一塊去?”頓時枯燥的數(shù)學(xué)課堂一下變得生機(jī)盎然,孩子們覺得學(xué)數(shù)學(xué)很有趣,從而激發(fā)了學(xué)生學(xué)習(xí)的興趣。
俗話說:“學(xué)貴心悟,守舊無功?!薄耙墒撬贾迹瑢W(xué)之端?!痹诮虒W(xué)過程中,我以學(xué)生的“學(xué)”為標(biāo)準(zhǔn)和導(dǎo)向,引導(dǎo)學(xué)生大膽質(zhì)疑,以疑問引導(dǎo)思維。
學(xué)生的質(zhì)疑,就是一種資源,提出一個問題比解決一個問題更有價值。課堂上經(jīng)常能聽到這樣的聲音:“老師,這道題可不可以這樣做?”“老師,我還有個想法。”“老師,我有個問題想問一下?!薄袄蠋?,我還有一個更簡便的方法?!薄棵窟@時,我總是欣喜地、耐心地聽孩子們陳述完自己的意見,并給予恰當(dāng)?shù)脑u價和引導(dǎo),當(dāng)遇到一些學(xué)生間有爭議的問題時,充分發(fā)揮組織者、引導(dǎo)者的作用,引導(dǎo)爭議各方分別陳述自己的觀點,把評判權(quán)交給學(xué)生,引導(dǎo)他們最后達(dá)成共識。
水嘗無華,相蕩而成漣漪;石本無火,相擊乃生靈光。讓課堂成為一個學(xué)生無話不敢說、無題不敢辯的對話場,讓自由交流在一種輕松、和諧、愉悅的心境中進(jìn)行。不唯師,不唯書、不唯上,只唯己,讓學(xué)生主動言說,質(zhì)疑問難,放飛心智。
要讓數(shù)學(xué)課堂靈動起來,充滿生機(jī)和活力,學(xué)生的動手實踐操作不可忽視。例如,教學(xué)“長度單位”時,我讓學(xué)生帶長度單位的丈量工具,如格尺、米尺等,先讓學(xué)生測量出一厘米的長度、一分米的長度,并把它們畫在本子上,然后讓學(xué)生用手里的`工具量一量課桌的面長、寬、高分別是多少厘米?接著,我讓學(xué)生猜一猜我的身高,然后找學(xué)生用米尺量一量我的實際身高,學(xué)生爭先恐后,躍躍欲試,表現(xiàn)出極高的熱情。在這個活動中,學(xué)生增長了知識,鍛煉了動手操作能力,同時活躍了課堂氣氛。
靈動的數(shù)學(xué)課堂是學(xué)生思辨的課堂。學(xué)生能否在思辨中形成有層次的思維,和教師教學(xué)開放的程度有很大的關(guān)系。在課堂教學(xué)中,我始終圍繞“如何學(xué)”為學(xué)生創(chuàng)建多維互動的平臺,讓思想充分碰撞,鼓勵學(xué)生從不同的角度去分析問題,重視學(xué)生解決問題的過程,加強(qiáng)知識間的縱橫聯(lián)系。引導(dǎo)學(xué)生靈活運用多種思維方式去分析問題、解決問題,創(chuàng)造一個靈動的課堂。
數(shù)學(xué)說課心得體會篇六
4月25日、26日,我有幸參加了第十屆“名師之路”小學(xué)數(shù)學(xué)觀摩研討活動。歷史一天半,領(lǐng)略了周xx、高xx、徐xx、黃xx、張xx等小學(xué)數(shù)學(xué)界專家名師的風(fēng)采,觀摩示范課和聆聽報告共達(dá)十節(jié)次。他們的課猶如好茶留有余香,讓人回味無窮,他們的報告更是讓人受益匪淺。細(xì)細(xì)品味他們的課滲透著與我們不一樣的教學(xué)觀念,彰顯著數(shù)學(xué)獨有的魅力;他們的報告是他們經(jīng)驗的總結(jié),引領(lǐng)著我們前進(jìn)的方向,從他們的報告中可以看出每位名師的背后都有一些不平凡的故事,不禁使我想到很樸實的一句話:一分耕耘,一分收獲。
通過這次學(xué)習(xí),不僅僅讓我與專家名師們有了零距離的接觸,更重要的是使我的思想觀念豁然開朗,讓我給自己的教學(xué)找到了一個很好的“參照”。對比之下,我頗受感觸,下面我就談?wù)勎业囊恍w會:
收獲一:一堂好課就是要真正與學(xué)生成為朋友,課堂上把主動權(quán)交給學(xué)生,讓學(xué)生沒有任何約束,鼓勵學(xué)生敢想、敢說、敢做。每位名師的課都給學(xué)生創(chuàng)造了一個輕松愉快的學(xué)習(xí)環(huán)境。黃xx老師的《異分母分?jǐn)?shù)加減法》一課把這方面表現(xiàn)的淋漓盡致。課前告訴孩子們這節(jié)課我們來“聊數(shù)學(xué)”,復(fù)習(xí)了整數(shù)加減法和小數(shù)加減法的運算法則統(tǒng)一為相同計數(shù)單位的個數(shù)相加減,接著拋出問題:分?jǐn)?shù)加減法能用以上方法解決嗎?針對這一問題老師完全放手,讓學(xué)生以答辯會的形式展開討論研究,孩子們的思維之花完全開放了,奇跡出現(xiàn)了,孩子們的答辯出現(xiàn)了意想不到的結(jié)果,非常精彩。整個過程中,老師只是一個旁觀者,孩子們通過自己的能力發(fā)現(xiàn)異分母分?jǐn)?shù)相加減可以通過通分把它變成相同的計數(shù)單位,和整數(shù)、小數(shù)加減法的計算方法完全統(tǒng)一。
收獲二:每位名師都創(chuàng)造性地使用教材,不脫離教材,也不背離生活實際,不斷地開發(fā)教學(xué)資源,即學(xué)生在課堂上生成的錯誤,經(jīng)過教師巧妙地引導(dǎo)使學(xué)生真正地理解了知識。徐xx老師在上《平均數(shù)》一課時,根據(jù)課題情景套圈游戲,出現(xiàn)了四組漸變式統(tǒng)計圖:第一組個男生每人都套中7個,四個女生每人都套中6個,引“總體水平”;第二組四個男生每人套中7個,五個女生每人套中6個,討論后學(xué)生發(fā)現(xiàn):女生雖然多一人,但總體水平還是6個;第三組男女生人數(shù)相同,但每個學(xué)生套中的不一樣;第四組男女生人數(shù)不同,每人套中的不同,總數(shù)不同,引導(dǎo)學(xué)生發(fā)現(xiàn)套的最多的和最少的不能代表整體水平,通過移多補少得出每人同樣多這就是表示整體水平的平均數(shù)的范圍。這種根據(jù)教材設(shè)置的層層深入的教學(xué)情境一下子激起了學(xué)生們的求知欲望,把學(xué)生們帶入了知識的海洋。這一點也正是我在教學(xué)中所缺乏的。
收獲三:教師在課堂上豐富的語言,給不同學(xué)生多種多樣的評價,注重了學(xué)生的情感,態(tài)度,和價值觀的發(fā)展。如:“真是服了你;你提出的問題很有價值;你真夠水平”等等。這樣就讓學(xué)生有了學(xué)習(xí)的勇氣和動力。
收獲四:從名師們的專題講座中感受到了許多新的教育理念。周xx老師《例談數(shù)學(xué)課的“數(shù)學(xué)味”》中指出數(shù)學(xué)課應(yīng)還原數(shù)學(xué)本質(zhì),要看到學(xué)科的本質(zhì),教材的核心,深入核心本質(zhì),從學(xué)生的需求出發(fā)。在計算教學(xué)中,擺小棒只是手段,不是目的,其目的是為了建立操作過程與計算算理之間的聯(lián)系,更好的讓算理外顯;高xx老師提出了開放式數(shù)學(xué)課堂教學(xué)六步法:創(chuàng)設(shè)情境,提出問題,提出探究要求,學(xué)生自主探索,組織研討,提升認(rèn)識;徐xx老師為我們介紹了概念教學(xué)的策略,重視概念的產(chǎn)生來源,重視概念的教學(xué)本質(zhì),重視概念的相互聯(lián)系,重視概念的靈活應(yīng)用;黃xx老師提出大問題教學(xué)的理念,研究“大問題”,提供“大空間”,呈現(xiàn)“大格局”,圍繞“大問題”的提出進(jìn)行10分鐘的模擬教學(xué),由學(xué)生提出優(yōu)化意見,上課老師稍作調(diào)整后進(jìn)行第二輪模擬教學(xué),再討論優(yōu)化。
走進(jìn)名師,感受名師,使我明白了:教育是我們一生的事業(yè),給別人一滴水,自己至少要有一桶水甚至更多,學(xué)習(xí)是我們生活中不可缺少的一部分。教師要想真正在三尺講臺上盡顯光彩,必須腳踏實際上好每節(jié)課,學(xué)習(xí)名師但又不一味的模仿名師,創(chuàng)造出自己的課堂,走出屬于自己的路。
數(shù)學(xué)說課心得體會篇七
第一段:引言(100字)
數(shù)學(xué)球是一門集數(shù)學(xué)、物理和藝術(shù)于一體的學(xué)科。在近期的學(xué)習(xí)中,我深刻體會到了解數(shù)學(xué)球?qū)ε囵B(yǎng)自己的抽象思維、邏輯思維和創(chuàng)造力所起到的重要作用。通過對公式和幾何形狀的靈活運用,我發(fā)現(xiàn)數(shù)學(xué)球不僅僅是一個學(xué)科,更是一種思考和解決問題的方式。
第二段:抽象思維的培養(yǎng)(200字)
數(shù)學(xué)球的學(xué)習(xí)讓我逐漸養(yǎng)成了一種抽象思維的習(xí)慣。尤其是在解決復(fù)雜的幾何問題時,我需要將問題中繁雜的線、面、角轉(zhuǎn)化為抽象的數(shù)學(xué)符號,進(jìn)而通過計算和推理找到問題的解決方案。這樣的訓(xùn)練培養(yǎng)了我對問題的深入分析和抽象總結(jié)的能力,提高了我的邏輯思維水平。
第三段:邏輯思維的提升(300字)
數(shù)學(xué)球的學(xué)習(xí)過程中,邏輯思維是至關(guān)重要的。不論是在構(gòu)造幾何圖形,還是在解決物理問題時,我都需要嚴(yán)密的邏輯推理。這讓我認(rèn)識到,一個嚴(yán)謹(jǐn)?shù)倪壿嬐评磉^程是數(shù)學(xué)和物理學(xué)習(xí)中成功的關(guān)鍵。通過數(shù)學(xué)球的學(xué)習(xí),我的邏輯思維能力得到了顯著提升,我能夠更清晰地理解問題的本質(zhì),并運用邏輯推理解決問題。
第四段:創(chuàng)造力的發(fā)展(300字)
數(shù)學(xué)球的學(xué)習(xí)也培養(yǎng)了我的創(chuàng)造力。在解決幾何問題時,我常常需要尋找不同的解決方法或構(gòu)造新的幾何形狀。這要求我擁有創(chuàng)造性的思維,能夠從不同的角度出發(fā),尋找新穎的解決途徑。同時,我還學(xué)會了將數(shù)學(xué)球中的知識應(yīng)用于生活中的實際問題,這讓我具備了更強(qiáng)的創(chuàng)新能力。
第五段:結(jié)語(200字)
總的來說,數(shù)學(xué)球的學(xué)習(xí)對我的成長起到了重要的推動作用。通過培養(yǎng)抽象思維、邏輯思維和創(chuàng)造力,數(shù)學(xué)球讓我在其他學(xué)科和生活中展現(xiàn)出更大的潛力。我相信數(shù)學(xué)球不僅僅是一門學(xué)科,更是培養(yǎng)學(xué)生綜合能力的利器。因此,我將繼續(xù)保持對數(shù)學(xué)球的學(xué)習(xí)興趣,期待未來更多的發(fā)現(xiàn)和成長。
數(shù)學(xué)說課心得體會篇八
數(shù)學(xué)一直以來都是令人望而卻步的學(xué)科,被認(rèn)為是枯燥乏味的。然而,當(dāng)我真正開始系統(tǒng)學(xué)習(xí)數(shù)學(xué)的時候,我才發(fā)現(xiàn)數(shù)學(xué)的魅力遠(yuǎn)不止于此。通過這段時間的學(xué)習(xí),我意識到數(shù)學(xué)不僅僅是一門學(xué)科,而是一種思維方式和解決問題的方法。數(shù)學(xué)啟發(fā)了我對世界的認(rèn)識,讓我懂得了如何抽象思考和邏輯推理。下面將圍繞這幾個方面,談?wù)勎以趯W(xué)習(xí)數(shù)學(xué)中的一些心得體會。
第一,數(shù)學(xué)是一種思維方式。數(shù)學(xué)讓我養(yǎng)成了一種嚴(yán)謹(jǐn)、精確的思考方式。在解決數(shù)學(xué)問題時,需要我們有條理地分析、推理和演繹。在這個過程中,我學(xué)會了如何思考問題的本質(zhì)和關(guān)鍵,如何從具體到抽象,從已知到未知,從整體到部分。這種思維方式不僅可以幫助我解決數(shù)學(xué)問題,更可以應(yīng)用到其他學(xué)科和實際生活中。在學(xué)習(xí)其他學(xué)科時,我發(fā)現(xiàn)數(shù)學(xué)給了我一種獨特的認(rèn)識世界的視角,讓我能夠更加準(zhǔn)確地理解和描述問題,提出并驗證假設(shè)。
第二,數(shù)學(xué)是解決問題的方法。數(shù)學(xué)教會了我如何分析和解決問題。在學(xué)習(xí)數(shù)學(xué)的過程中,我遇到了許多難題,有時候確實會感到困惑和沮喪。但是,我從不放棄。通過不斷思考和嘗試,我漸漸地掌握了解決問題的方法和技巧。數(shù)學(xué)讓我養(yǎng)成了堅持不懈、勇于挑戰(zhàn)和尋找多種解法的態(tài)度。在解決數(shù)學(xué)問題的同時,我也學(xué)會了如何分析生活中的問題,提出解決方案并付諸行動。數(shù)學(xué)的思維方式已經(jīng)成為我解決問題的重要工具。
第三,數(shù)學(xué)啟發(fā)了我對世界的認(rèn)識。數(shù)學(xué)是一種獨特的語言,可以用來描述和解釋世界的各種現(xiàn)象。通過數(shù)學(xué),我對自然現(xiàn)象、社會現(xiàn)象和人類行為有了更深入的認(rèn)識。數(shù)學(xué)告訴我世界并不是一片混沌和隨機(jī)的,而是有一定規(guī)律和秩序可循的。我開始注意到很多平時忽略的細(xì)節(jié)和特征,發(fā)現(xiàn)它們之間竟然存在著某種數(shù)學(xué)的聯(lián)系。數(shù)學(xué)使我更加敏銳和理性地觀察世界,更加深刻地理解宇宙的奧秘。
第四,數(shù)學(xué)使我懂得了如何抽象思考。數(shù)學(xué)是一門非常抽象的學(xué)科,要理解和運用數(shù)學(xué)知識,就需要具備較強(qiáng)的抽象思維能力。通過學(xué)習(xí)數(shù)學(xué),我學(xué)會了如何從具體的實例中抽象出普遍規(guī)律,將問題簡化并運用數(shù)學(xué)方法進(jìn)行解決。這種能力在現(xiàn)實生活中也同樣重要。在遇到復(fù)雜的問題時,我可以將其分解成若干個較為簡單的部分,然后逐個解決,最后將各個部分的解歸納起來,達(dá)到整體問題的解決。
最后,數(shù)學(xué)讓我懂得了邏輯推理。數(shù)學(xué)的推理過程嚴(yán)謹(jǐn)而且邏輯性強(qiáng),訓(xùn)練了我的思維能力。通過證明和推導(dǎo)數(shù)學(xué)定理,我學(xué)會了正確使用前提和結(jié)論,通過邏輯推理發(fā)現(xiàn)新的真理。這種能力在解決問題、做事情時都是必不可少的。它使我能夠站在客觀的角度審視問題,邏輯嚴(yán)密地分析問題,合理地論證和推理,最終得出正確的結(jié)論。這也是數(shù)學(xué)對于培養(yǎng)人的思維能力和創(chuàng)造力起到的重要作用之一。
綜上所述,數(shù)學(xué)既是一門學(xué)科,又是一種思維方式和解決問題的方法。通過學(xué)習(xí)數(shù)學(xué),我清晰地認(rèn)識到了數(shù)學(xué)對于培養(yǎng)思維能力、解決問題、認(rèn)識世界和提高邏輯推理能力的重要性。數(shù)學(xué)激發(fā)了我的求知欲,讓我對它充滿了濃厚的興趣和渴望。我希望在今后的學(xué)習(xí)和生活中能夠繼續(xù)發(fā)掘并運用數(shù)學(xué)的力量,為實現(xiàn)自己的目標(biāo)和夢想不斷努力。
數(shù)學(xué)說課心得體會篇九
新的數(shù)學(xué)課程標(biāo)準(zhǔn)的確定,立足學(xué)生核心素養(yǎng)發(fā)展,新課標(biāo)中新增了“三會”核心素養(yǎng)內(nèi)涵:會用數(shù)學(xué)的眼光觀察現(xiàn)實世界、會用數(shù)學(xué)的思維思考現(xiàn)實世界、會用數(shù)學(xué)的語言表達(dá)現(xiàn)實世界。在圖形與幾何(第一學(xué)段)的課程內(nèi)容部分,集中體現(xiàn)的核心素養(yǎng)內(nèi)涵在“培養(yǎng)學(xué)生的抽象能力(包括數(shù)感、量感、符號意識)、幾何直觀、空間觀念與創(chuàng)新意識”、“通過數(shù)學(xué)的語言,可以簡約、精確地描述自然現(xiàn)象、科學(xué)情境和日常生活中的數(shù)量關(guān)系與空間形式”,通過培養(yǎng)學(xué)生的核心素養(yǎng),有助于學(xué)生在空間觀念的基礎(chǔ)上進(jìn)一步建立幾何直觀,提升抽象能力和推理能力。
課標(biāo)新增在第一學(xué)段要求圖形的測量教學(xué)要引導(dǎo)學(xué)生經(jīng)歷統(tǒng)一度量單位的過程,創(chuàng)設(shè)測量課桌長度等生活情境,借助拃的長度、鉛筆的長度等不同的方式測量,經(jīng)歷測量的過程,比較測量的結(jié)果,感受統(tǒng)一長度單位的意義;引導(dǎo)學(xué)生經(jīng)歷用統(tǒng)一的長度單位(米、厘米)測量物體長度的過程,如重新測量課桌長度,加深對長度單位的理解。這種要求對面積、體積的單位也同樣適用。度量單位是度量的核心,度量單位的統(tǒng)一是使度量從個別的、特殊的測量活動成為一般化的、可以在更大范圍內(nèi)應(yīng)用和交流的前提。因此,在課程的實施過程中,應(yīng)該為學(xué)生提供必要的機(jī)會,鼓勵學(xué)生選擇不同的方法進(jìn)行測量,并在相互交流的過程中發(fā)現(xiàn)發(fā)現(xiàn)不同的方法,不同單位的選擇對測量結(jié)果的影響,進(jìn)而體會建立統(tǒng)一度量單位的重要性。
在教學(xué)長度單位的認(rèn)識時,經(jīng)常有老師問為什么要講統(tǒng)一單位,原來的教學(xué)中學(xué)生就是直接認(rèn)識長度單位,學(xué)習(xí)度量單位有什么價值,下面以人教版教材為例談一談《厘米的認(rèn)識》一課,學(xué)生在活動中充分體會了統(tǒng)一度量單位的重要性。首先創(chuàng)設(shè)情境,鼓勵學(xué)生采用不同的辦法去測量相同的長度,有的學(xué)生用手量,有的用自己的鉛筆量,還有可能用自己桌上的橡皮去量,由于采用了不同的測量工具,所得的結(jié)論,當(dāng)然是不同的了。比如說,有的同學(xué)測量的是三扎長,有的同學(xué)可能測量的是五根鉛筆這么長,還有的同學(xué)測量的是15塊橡皮那么長。學(xué)生通過交流發(fā)現(xiàn),當(dāng)同學(xué)們你說你的結(jié)果,我說我的結(jié)果,彼此間就無法交流。通過這個活動讓學(xué)生深刻地體會到度量單位需要統(tǒng)一,否則它會給生活帶來不便。這時,學(xué)生有一個共同的心理需求,即要使測量結(jié)果讓大家都接受,就必須要有一個公認(rèn)的標(biāo)準(zhǔn)單位。學(xué)生產(chǎn)生了這種需求,然后再來學(xué)習(xí)長度單位。
建立標(biāo)準(zhǔn)度量單位,有助于學(xué)生從知識本身的邏輯體系出發(fā),對建立標(biāo)準(zhǔn)單位的意義有客觀地認(rèn)識。教師在教學(xué)實踐中,應(yīng)該堅持把讓學(xué)生體會了統(tǒng)一度量單位的重要性這個環(huán)節(jié)設(shè)計好,讓學(xué)生經(jīng)歷完整“度量單位”的從形成到產(chǎn)生的過程。由此看來,關(guān)于讓學(xué)生體會建立統(tǒng)一的度量單位的重要性,不僅要在長度的測量中給予關(guān)注,在面積和體積的測量中,仍要讓學(xué)生去感受。
新課標(biāo)在第一學(xué)段要求“感悟統(tǒng)一單位的重要性,能恰當(dāng)?shù)剡x擇長度單位米、厘米描述生活中常見物體的長度,能進(jìn)行單位之間的換算”。進(jìn)行單位之間的換算,不能靠機(jī)械地記憶換算公式和反復(fù)操練,而是要能夠體會單位之間的實際關(guān)系,這就涉及到了對單位的理解。單位不僅僅是一個抽象的概念,對它的體會和認(rèn)識應(yīng)當(dāng)通過實踐活動,體驗它的實際意義。
例如,生活中哪些物體的長度大約為1米,1厘米的長度可以用什么熟悉的物體來估計。對單位的實際意義的理解,還體現(xiàn)在對測量結(jié)果、對量的大小或關(guān)系的感悟。關(guān)于對度量單位的認(rèn)識,要結(jié)合實際例子體會度量單位的大小,比如,一個成人的身高為175(),應(yīng)當(dāng)選擇cm而不是mm作為單位,這是對認(rèn)識長度單位地深化理解。再如北京到南京的鐵路長約1000(),引導(dǎo)學(xué)生學(xué)會選擇合適的度量單位;要用實物感知度量單位的大小,如1米約相當(dāng)于幾根鉛筆長,強(qiáng)化學(xué)生對度量單位地感知。在明確實際測量的對象后,選擇恰當(dāng)?shù)亩攘繂挝?、測量工具及方法關(guān)系到測量能否方便、可操作地進(jìn)行、影響著測量結(jié)果的準(zhǔn)確程度。比如,用直尺測量黑板的長度是不錯的選擇,但用它測量一棟大樓的長度就比較困難了。
總之,在具體的問題情境中恰當(dāng)?shù)剡x擇度量單位、工具和方法進(jìn)行測量測量是從人類的生產(chǎn)、生活實際需要中產(chǎn)生的,學(xué)習(xí)測量的目的是為了實際的應(yīng)用。學(xué)生只有在親身實踐中才能積累選擇度量單位、測量工具和具體方法的經(jīng)驗。
估測長度是新課標(biāo)突出強(qiáng)調(diào)的內(nèi)容。估測既是一種意識的體現(xiàn),也是一種能力的表現(xiàn);不僅具有現(xiàn)實的意義,而且也有助于學(xué)生感受度量單位的大小。估測與精確測量之間有著密切的關(guān)系。生活中精確測量的結(jié)果有時需要用估計的辦法來感受,對事物進(jìn)行估計時則需要對度量單位很好的認(rèn)識與把握。估測的意識和能力是在實踐中發(fā)展起來的。新課標(biāo)中要求“能估測一些物體的長度,并進(jìn)行測量”,“能估測一些身邊常見物體的長度,并能借助工具測量生活中物體的長度,初步形成量感”。
例如1支鉛筆大約長()厘米;1米約相當(dāng)于()支鉛筆長;無障礙坡道的寬度應(yīng)不小于90();學(xué)校操場上的旗桿高15()。學(xué)生有一定的日常生活經(jīng)驗積累,學(xué)生根據(jù)生活經(jīng)驗,在實際情境中理解長度單位的意義,選擇合適的長度單位,進(jìn)行物體長度的比較。在教學(xué)中,教師要引導(dǎo)學(xué)生找到一個生活中熟悉的物體長度作參照,比如平時經(jīng)常使用的鉛筆,通過測量,對鉛筆長度有準(zhǔn)確的認(rèn)識和把握,然后再用已知的數(shù)據(jù)對其他物體作出估測,以便作出更精準(zhǔn)的判斷。
學(xué)生估測意識和方法的培養(yǎng),關(guān)鍵在于選擇合適的估測“單位”位標(biāo)準(zhǔn),以該標(biāo)準(zhǔn)作為“新標(biāo)準(zhǔn)”,估測其他物體的長度,初步形成量感。教學(xué)過程中教師要注重幫助學(xué)生養(yǎng)成善于觀察的習(xí)慣,啟發(fā)學(xué)生運用不同的物體估計長度。在此基礎(chǔ)上教師可以鼓勵引導(dǎo)學(xué)生用自己的方法進(jìn)行估計,通過記錄、計算、比較的探究過程,體會估測的意義和方法。
數(shù)學(xué)說課心得體會篇十
數(shù)學(xué)美常常被認(rèn)為是一種藝術(shù)形式,因為它在構(gòu)建和表達(dá)之間建立了聯(lián)系。它鼓勵我們思考問題、推理和創(chuàng)新,同時它也能反映在我們周圍的事物中。在我的個人經(jīng)歷中,我發(fā)現(xiàn),通過學(xué)習(xí)數(shù)學(xué),不僅能夠提高我的思考能力,也使我更敏感于周圍事物的奇妙之處,這啟示我看待世界的新角度。
第二段:數(shù)學(xué)美的含義
在我的觀點中,數(shù)學(xué)美是指數(shù)學(xué)的溫和和藝術(shù)性質(zhì),可以從形式、結(jié)構(gòu)、模式等多個角度來體現(xiàn)。每一個數(shù)字和符號都有其獨特的美感,而像圖表和公式等集合也都有一種獨特的美麗。令人贊嘆的是,它的美感有其普遍性和客觀性,每個人都能通過自己的視角感受到。數(shù)學(xué)美與其他形式的美感——視覺、聽覺等——沒有明顯的界限。它包含的不僅僅是關(guān)于圖像或音樂的審美,而是關(guān)于基本概念和原理的審美。當(dāng)我們了解數(shù)學(xué)的含義和方法時,我們會對它的美感有更深刻的感悟。
第三段:數(shù)學(xué)的神奇之處
將目光轉(zhuǎn)向具體的數(shù)學(xué)問題,我們可以更好地理解數(shù)學(xué)之美。比如,反正弦函數(shù)的圖像婀娜多姿、無窮級數(shù)的奇妙收斂性質(zhì)等等,它們是由數(shù)學(xué)方法構(gòu)建而來的,呈現(xiàn)一個不可思議的形態(tài)。這些形形色色的數(shù)學(xué)問題需要我們深入的思考,去發(fā)掘其中的結(jié)構(gòu)和規(guī)律。在這個過程中,我們會發(fā)現(xiàn)數(shù)學(xué)中的對稱性、空間關(guān)系、和無限的奧妙。然而,這些神奇的特性還隱含一種美感,這是在我們的心靈深處感受得到的。
第四段:數(shù)學(xué)學(xué)習(xí)的益處
學(xué)習(xí)數(shù)學(xué)可以帶來很多益處,尤其是對大腦的發(fā)展。數(shù)學(xué)讓我們思考抽象、評估風(fēng)險、做出決策,從而增強(qiáng)我們的思考能力和邏輯能力。正因為如此,很多人把數(shù)學(xué)視為一種智力的體操。數(shù)學(xué)的跨學(xué)科應(yīng)用也增加了其重要性。它貫穿于科學(xué)、工程、技術(shù)、金融等領(lǐng)域。因此,數(shù)學(xué)作為一種基礎(chǔ)知識,在我們的生活和職業(yè)中扮演著不可或缺的角色。
第五段:總結(jié)
總的來說,數(shù)學(xué)美是一種與日常生活密切相關(guān)的美。雖然并不是每個人都感受到了它,但我相信所有人都可以通過適當(dāng)?shù)膶W(xué)習(xí)和思考來感受它。學(xué)習(xí)數(shù)學(xué)有益于我們的思維和職業(yè)發(fā)展,同時也讓我們更敏感于周圍世界的多樣性和奇妙之處。以這種方式品味數(shù)學(xué)中的美,絕對是一件享受和奇妙的體驗。
數(shù)學(xué)說課心得體會篇十一
第一段:引言(150字)
數(shù)學(xué)球是學(xué)習(xí)數(shù)學(xué)的一種有趣的方法,在這個游戲中,參與者需要通過解決數(shù)學(xué)問題來得到分?jǐn)?shù)。這個游戲不僅可以提高我們的數(shù)學(xué)能力,還能增強(qiáng)我們的邏輯思維和團(tuán)隊合作能力。近期,我也參加了數(shù)學(xué)球比賽,并從中受益匪淺。在這篇文章中,我將分享我從數(shù)學(xué)球比賽中所獲得的體會。
第二段:團(tuán)隊合作(250字)
數(shù)學(xué)球是一個團(tuán)隊活動,團(tuán)隊合作是取得成功的關(guān)鍵所在。在比賽中,每個人都發(fā)揮著不同的作用,各自擁有自己的強(qiáng)項。有的人擅長解決數(shù)學(xué)題目,有的人能夠快速計算,有的人則擅長策略規(guī)劃。通過分工合作,我們的團(tuán)隊能夠高效地解決問題。在比賽中,我們時刻保持著緊密的溝通和密切的合作,這使得我們能夠更好地利用各自的優(yōu)勢,取得了出色的成績。通過這個過程,我深刻認(rèn)識到團(tuán)隊合作的重要性,也更加明白了一個成功的團(tuán)隊需要每個成員的努力和奉獻(xiàn)。
第三段:邏輯思維(250字)
數(shù)學(xué)球的問題需要我們運用邏輯思維來解決。在比賽中,我們會遇到許多復(fù)雜的問題,但是通過分析問題、找出關(guān)鍵信息,再用邏輯推理的方法得出結(jié)論,我們就能夠有效地解決問題。邏輯思維不僅幫助我們在比賽中取得好成績,也對我們的日常學(xué)習(xí)和生活產(chǎn)生了積極的影響。通過數(shù)學(xué)球,我發(fā)現(xiàn)邏輯思維可以幫助我們更好地分析和解決問題,使我們的思維變得更加清晰和有效。
第四段:壓力管理(250字)
數(shù)學(xué)球比賽的時間緊湊,任務(wù)繁重,給參賽者帶來了一定的壓力。在比賽中,我們不僅需要在限定的時間內(nèi)解決問題,還需要和其他團(tuán)隊競爭。這給我提出了一個挑戰(zhàn),如何在壓力下保持冷靜。通過參加數(shù)學(xué)球比賽,我學(xué)會了有效地管理壓力。首先,我學(xué)會了合理規(guī)劃時間,合理安排任務(wù)。其次,我也學(xué)會了通過深呼吸和放松自己來緩解壓力。最后,我發(fā)現(xiàn)持久的努力和決心是克服壓力的關(guān)鍵。數(shù)學(xué)球比賽提供了一個很好的機(jī)會來鍛煉自己的壓力管理能力,并為將來面對其他挑戰(zhàn)做好準(zhǔn)備。
第五段:總結(jié)(300字)
通過參與數(shù)學(xué)球比賽,我不僅提高了自己的數(shù)學(xué)能力,還學(xué)到了很多與數(shù)學(xué)相關(guān)的技巧。團(tuán)隊合作、邏輯思維和壓力管理都是取得成功的重要因素。我相信,這些技巧和經(jīng)驗對我今后的學(xué)習(xí)和生活都將產(chǎn)生積極的影響。我將繼續(xù)努力學(xué)習(xí)數(shù)學(xué),參加更多的數(shù)學(xué)球比賽,相信這將使我取得更大的進(jìn)步。數(shù)學(xué)球不僅是一種提高數(shù)學(xué)能力的方法,更是培養(yǎng)自己各方面能力的一種途徑。我將積極參與其中,不斷探索和發(fā)展自己的潛力。
數(shù)學(xué)說課心得體會篇十二
數(shù)學(xué)一直以來都是學(xué)生們所懼怕的科目之一,但是隨著時間的推移,我逐漸意識到了數(shù)學(xué)對于我們生活的重要性,同時也發(fā)現(xiàn)了數(shù)學(xué)給我?guī)淼囊恍┟篮玫捏w驗。在我看來,數(shù)學(xué)和美的結(jié)合使得這門科目充滿了樂趣和魅力。
第二段:數(shù)學(xué)之美
人們常說“數(shù)學(xué)是美的”,這個說法也絕非空穴來風(fēng)。在數(shù)學(xué)中,我們可以看到許多規(guī)律和對稱性,例如小學(xué)時學(xué)的對稱圖形,圓形、正方形等等,這些圖形都有自己的對稱性,讓我們覺得這些圖形很美。除此之外,數(shù)學(xué)中還有一些簡潔、優(yōu)美的定理和公式,例如歐拉公式、費馬大定理等等,這些定理和公式通過簡潔、優(yōu)美的表達(dá)方式展現(xiàn)出了數(shù)學(xué)之美。
第三段:數(shù)學(xué)的實用價值
除了數(shù)學(xué)之美之外,數(shù)學(xué)還有著極其重要的實用價值。數(shù)學(xué)不僅可以解決日常生活中的計算問題,還可以幫助我們在許多大科學(xué)領(lǐng)域中取得巨大的成就,例如天文學(xué)、物理學(xué)等等。在現(xiàn)代社會,數(shù)學(xué)已經(jīng)成為了所有領(lǐng)域中的基礎(chǔ),沒有數(shù)學(xué)支持的科學(xué)是不完整的。
第四段:學(xué)習(xí)數(shù)學(xué)的方法
對于想要學(xué)習(xí)好數(shù)學(xué)的學(xué)生,掌握正確的學(xué)習(xí)方法是非常重要的。首先,我們應(yīng)該打牢基礎(chǔ),掌握好最基本的知識點,這可以幫助我們輕松掌握更高級的知識。其次,我們應(yīng)該多多動手,在運用的過程中學(xué)習(xí)、總結(jié)、掌握,這樣不僅可以提高數(shù)學(xué)水平,還可以激發(fā)對數(shù)學(xué)的興趣。最后,積極參加數(shù)學(xué)競賽或者與有著較高數(shù)學(xué)水平的同學(xué)共同討論數(shù)學(xué)題目,這樣可以從更深層次了解數(shù)學(xué)。
第五段:結(jié)語
數(shù)學(xué)與美的結(jié)合使得這門科目充滿了魅力和樂趣,同時也具有無限的實用價值,成為現(xiàn)代社會發(fā)展所必須的。我們應(yīng)該認(rèn)真學(xué)習(xí)、積極探索,從中體會數(shù)學(xué)之美。希望每一個學(xué)生都能夠找到自己喜歡的數(shù)學(xué)領(lǐng)域,在探索中收獲快樂和成長。
數(shù)學(xué)說課心得體會篇十三
第一,知識點的復(fù)習(xí)。
更加強(qiáng)調(diào)對于基礎(chǔ)知識的復(fù)習(xí),同時這些基礎(chǔ)知識復(fù)習(xí)完了以后,一些簡單的應(yīng)用,你需要注意,特別像我們關(guān)于定積分的一些幾何應(yīng)用,從今年的角度來說,我們數(shù)二的試卷,體現(xiàn)的非常的明確,在以后的考試當(dāng)中,可能我們數(shù)一的同學(xué),數(shù)三的同學(xué),對這部分也會作為重點的內(nèi)容出現(xiàn)。這是第一件事情,對基礎(chǔ)知識的復(fù)習(xí),以及對于知識的應(yīng)用的角度提出認(rèn)識。
第二,對于重點和難點,能夠運用綜合知識解決。
我想針對于我們真題體現(xiàn)出來的這些特點,我們在復(fù)習(xí)的過程中,對于重點和難點,以及老師反復(fù)強(qiáng)調(diào)的內(nèi)容,需要真正提高這種訓(xùn)練的力度。如果把知識,特別是簡單的知識,能夠明確,這樣在我們真正在考試的過程中,能夠比較靈活的去運用知識,解決這些問題。
第三,提前備考,夯實基礎(chǔ)。
具體來說,在復(fù)習(xí)的過程中,我們整個考研的數(shù)學(xué)復(fù)習(xí)分成三個階段,基礎(chǔ)階段、強(qiáng)化階段、沖刺階段。我們一開始的時候,主要關(guān)于基礎(chǔ)知識復(fù)習(xí)的基礎(chǔ)階段,核心的材料就是我們在本科的時候,來上課的時候,這種本科教材,在大家看的過程中,主要看基本概念,基本理論,基本方法,在此基礎(chǔ)上做一些適當(dāng)?shù)念}目,最后能夠做到,當(dāng)老師強(qiáng)化課程的時候,當(dāng)老師講到某些知識的情況下,你能夠回憶起這個知識具體說的是什么樣的內(nèi)容,這樣的話,能夠提高你對知識的認(rèn)識,這個階段就可以,一般的情況下,大約在6月30日之前,能夠合理地把三科的教材,按照以上所說的達(dá)到基本要求就ok了。強(qiáng)化階段是關(guān)于知識的運用,在知識運用的過程中,核心的,我想是兩個部分。
1.歸納總結(jié)知識的運用,特別是在考研的過程中,會出現(xiàn)哪些??嫉念}型。我們20xx年出現(xiàn)的試題,仍然有很多的重點難點的問題,是我們老師在課上一定講到的,甚至有一些題型是我們在平時舉例子的時候一些原題,這樣的話希望大家能夠很好去理解老師在課上所講的。
2.強(qiáng)化階段做的第二件就是系統(tǒng)的做一些復(fù)習(xí),具體來說要選擇一本比較好的考研數(shù)學(xué)的輔導(dǎo)書,按照書的順序,這種結(jié)構(gòu),重點地去研究書上所說的??嫉念}型,典型的方法,同時要做大量的訓(xùn)練,這個訓(xùn)練的目的是加強(qiáng)對知識的一個認(rèn)識,特別是在考研的過程中,能夠把一些最常見的一些問題,通過合理的這種方法,來給他解決,這樣的話,容易提高我們成績。另外在沖刺階段,核心的就是需要大家進(jìn)一步地加深對知識的運用能夠,主要需要去做應(yīng)試層面的套題,包括真題。
我們每一年的真題,對于下一年的復(fù)習(xí)都是有很重要的指導(dǎo)作用,如果說我們能夠把以前的真題進(jìn)行系統(tǒng)地研究,我們有的時候,是能夠判斷這種趨勢性的,你比如說今年的很多的試題,都是延續(xù)了這樣一個特點,像我們數(shù)三的題,經(jīng)濟(jì)應(yīng)用的考察,是我們一直強(qiáng)調(diào)的,另外,關(guān)于比如數(shù)一??嫉母耪摻y(tǒng)計部分,參數(shù)部分也是我們在各個課程中反復(fù)強(qiáng)調(diào)的,如果說基本的方法,你能夠通過做這個題,通過聽老師的上課,能夠合理地理解,這樣的話我們在做的時候,一定會取得相對好的成績。
【本文地址:http://mlvmservice.com/zuowen/19756932.html】