有理數(shù)的加法數(shù)學(xué)七年級教案(精選19篇)

格式:DOC 上傳日期:2023-12-14 17:33:11
有理數(shù)的加法數(shù)學(xué)七年級教案(精選19篇)
時間:2023-12-14 17:33:11     小編:字海

教案的編寫需要根據(jù)學(xué)生的實際情況和教學(xué)要求,注重理論與實際的結(jié)合。教案的內(nèi)容應(yīng)緊密結(jié)合學(xué)生的實際生活和學(xué)習(xí)經(jīng)驗,以增強學(xué)習(xí)的實效性和可操作性。這里為大家提供一些與教學(xué)內(nèi)容相關(guān)的教案案例,希望可以豐富你的教案設(shè)計。

有理數(shù)的加法數(shù)學(xué)七年級教案篇一

1、知識目標:了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運用有理數(shù)的法則進行準確運算。

2、能力目標:通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。

3、情感目標:培養(yǎng)積極思考和勇于探索的精神,形成良好的學(xué)習(xí)習(xí)慣。

重點:有理數(shù)乘法運算法則的推導(dǎo)及熟練運用。

難點:有理數(shù)乘法運算中積的符號的確定。

1、在小學(xué)我們已經(jīng)接觸了乘法,那什么叫乘法呢?

求幾個的運算,叫乘法。

一個數(shù)同0相乘,得0。

2、請你列舉幾道小學(xué)學(xué)過的乘法算式。

規(guī)定:向右為正,現(xiàn)在之后為正。

3分鐘后蝸牛應(yīng)在o點的()邊()cm處。

可以列式為:(+2)(+3)=。

問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?

規(guī)定:向右為正,現(xiàn)在之后為正。

3分鐘后蝸牛應(yīng)在o點的()邊()cm處。

可以列式為:

問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?

規(guī)定:向右為正,現(xiàn)在之后為正。

3分鐘前蝸牛應(yīng)在o點的()邊()cm處。

可以表示為:

問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?

規(guī)定:向右為正,現(xiàn)在之后為正。

3分鐘前蝸牛應(yīng)在o點的()邊()cm處。

可以表示為:

2、觀察這四個式子:

(+2)(+3)=+6(—2)(—3)=+6。

(—2)(+3)=—6(+2)(—3)=—6。

正數(shù)乘正數(shù)積為__數(shù):負數(shù)乘負數(shù)積為__數(shù):

負數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負數(shù)積為__數(shù):

乘積的絕對值等于各乘數(shù)絕對值的_____。

思考:當(dāng)一個因數(shù)為0時,積是多少?

兩數(shù)相乘,同號得,異號得,并把絕對值。

任何數(shù)同0相乘,都得。

1、你能確定下列乘積的符號嗎?

37積的符號為;(—3)7積的符號為;

3(—7)積的`符號為;(—3)(—7)積的符號為。

2先閱讀,再填空:

(—5)x(—3)。同號兩數(shù)相乘。

(—5)x(—3)=+()得正。

5x3=15把絕對值相乘。

所以(—5)x(—3)=15。

填空:(—7)x4____________________。

(—7)x4=—()___________。

7x4=28_____________。

所以(—7)x4=____________。

[例1]計算:

(1)(—5)(2)(—5)。

(3)(—6)(—0.45)(4)(—7)0=。

解:(1)(—5)(—6)=+(56)=+30=30。

請同學(xué)們仿照上述步驟計算(2)(3)(4)。

(2)(—5)6==。

(3)(—6)(—0.45)==。

(4)(—7)0=。

讓我們來總結(jié)求解步驟:

兩個數(shù)相乘,應(yīng)先確定積的,再確定積的。

1、小組口算比賽,看誰更棒。

(1)3(—4)(2)2(—6)(3)(—6)2。

(4)6(—2)(5)(—6)0(6)0(—6)。

2、仔細計算。,注意積的符號和絕對值。

(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。

(4)(—2)(—)(5)(—)(—)(6)(—)5。

1、下列說法錯誤的是()。

a、一個數(shù)同0相乘,仍得0。

b、一個數(shù)同1相乘,仍得原數(shù)。

c、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)。

d、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)。

2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()。

a、10b、12c、—20d、不是以上的答案。

3、計算下列各題:

(5)(—6)(—5)=;(6)(—5)(—6)=。

有理數(shù)的加法數(shù)學(xué)七年級教案篇二

2.培養(yǎng)學(xué)生觀察、分析、歸納及運算能力。

三、教學(xué)重點。

四、教學(xué)難點。

五、教學(xué)用具。

三角尺、小黑板、小卡片。

六、課時安排。

1課時。

七、教學(xué)過程。

(一)、從學(xué)生原有認知結(jié)構(gòu)提出問題。

1.計算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化簡下列各式符號:

(1)-(-6);(2)-(+8);(3)+(-7);。

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;。

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學(xué)里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運算。

(二)、師生共同研究有理數(shù)減法法則。

問題1(1)(+10)-(+3)=______;。

(2)(+10)+(-3)=______.

教師引導(dǎo)學(xué)生發(fā)現(xiàn):兩式的結(jié)果相同,(更多內(nèi)容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).

(2)(+10)+(+3)=______.

(2)的結(jié)果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教師引導(dǎo)學(xué)生歸納出有理數(shù)減法法則:

減去一個數(shù),等于加上這個數(shù)的。相反數(shù)。

教師強調(diào)運用此法則時注意“兩變”:一是減法變?yōu)榧臃?;二是減數(shù)變?yōu)槠湎喾磾?shù)。減數(shù)變號(減法============加法)。

(三)、運用舉例變式練習(xí)。

例1計算:

(1)(-3)-(-5);(2)0-7.

例2計算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通過計算上面一組有理數(shù)減法算式,引導(dǎo)學(xué)生發(fā)現(xiàn):

在小學(xué)里學(xué)習(xí)的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負數(shù),其差就大于被減數(shù)。

閱讀課本63頁例3。

(四)、小結(jié)。

1.教師指導(dǎo)學(xué)生閱讀教材后強調(diào)指出:

由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法。有理數(shù)的加法和減法,當(dāng)引進負數(shù)后就可以統(tǒng)一用加法來解決。

2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。

(五)、課堂練習(xí)。

1.計算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。

2.計算:

3.計算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。

(4)(-5.9)-(-6.1);。

(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

利用有理數(shù)減法解下列問題。

八、布置課后作業(yè):

課本習(xí)題2.6知識技能的2、3、4和問題解決1。

九、板書設(shè)計。

2.5有理數(shù)的減法。

(一)知識回顧(三)例題解析(五)課堂小結(jié)。

例1、例2、例3。

(二)觀察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計。

十、課后反思。

有理數(shù)的加法數(shù)學(xué)七年級教案篇三

1.1正數(shù)和負數(shù)(2)。

教學(xué)目標:

教學(xué)重點:

深化對正負數(shù)概念的理解。

教學(xué)難點:

正確理解和表示向指定方向變化的量。

教學(xué)準備:彩色粉筆。

教學(xué)過程:

一、復(fù)習(xí)引入:

學(xué)生思考并討論.

(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.

二、講解新課。

度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。

思考:教科書第4頁(學(xué)生先思考,教師再講解)。

三、課堂練習(xí)課本p4練習(xí)1,2,3,4。

四、課時小結(jié)。

引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當(dāng)考慮一個數(shù)時,一定要考慮它的符號,這與以前學(xué)過的數(shù)有很大的區(qū)別.

五、課外作業(yè)教科書p5:2、4。

板書設(shè)計:

有理數(shù)的加法數(shù)學(xué)七年級教案篇四

理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分數(shù),是正數(shù)、負數(shù)還是零。

二、過程與方法。

經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。

三、情感態(tài)度與價值觀。

通過對有理數(shù)的學(xué)習(xí),體會到數(shù)學(xué)與現(xiàn)實世界的緊密聯(lián)系。

教學(xué)重難點及突破。

在引入了負數(shù)后,本課對所學(xué)過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí),使學(xué)生了解分類的思想并進行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視。關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不宜過多展開。

教學(xué)準備。

用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。

教學(xué)過程。

四、課堂引入。

2.舉例說明現(xiàn)實中具有相反意義的量。

3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?

4.舉兩個例子說明+5與-5的區(qū)別。

有理數(shù)的加法數(shù)學(xué)七年級教案篇五

學(xué)習(xí)目標:。

1、理解加減法統(tǒng)一成加法運算的意義.

2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算.

3、培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,增強學(xué)習(xí)數(shù)學(xué)的信心.

教學(xué)方法:講練相結(jié)合。

教學(xué)過程。

1、一架飛機作特技表演,起飛后的高度變化如下表:

高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。

記作+4.5千米—3.2千米+1.1千米—1.4千米。

請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.

2、你是怎么算出來的,方法是。

1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!

2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導(dǎo).

如:(-20)+(+3)-(-5)-(+7)有加法也有減法。

=(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法。

=-20+3+5-7再把加號記在腦子里,省略不寫。

可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.

4、師生完整寫出解題過程。

1、解決引例中的問題,再比較前面的方法,你的感覺是。

2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。

3、練習(xí):計算1)(—7)—(+5)+(—4)—(—10)。

1、小結(jié):說說這節(jié)課的收獲。

2、p241、2。

3、計算。

1)27—18+(—7)—322)。

五、作業(yè)。

1、p2552、p26第8題、14題。

有理數(shù)的加法數(shù)學(xué)七年級教案篇六

1.使學(xué)生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)的加法運算.

2.通過有理數(shù)的加法運算,培養(yǎng)學(xué)生的運算能力.

教學(xué)重點與難點。

重點:熟練應(yīng)用有理數(shù)的加法法則進行加法運算.

教學(xué)過程。

(一)復(fù)習(xí)提問。

1.有理數(shù)是怎么分類的?

2.有理數(shù)的絕對值是怎么定義的?一個有理數(shù)的絕對值的幾何意義是什么?

3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個較大?利用數(shù)軸說明?

-3與-2;3與-3;-3與0;。

-2與+1;-+4與-3.

(二)引入新課。

在小學(xué)算術(shù)中學(xué)過了加、減、乘、除四則運算,這些運算是在正有理數(shù)和零的范圍內(nèi)的運算.引入負數(shù)之后,這些運算法則將是怎樣的呢?我們先來學(xué)有理數(shù)的加法運算.

兩次行走后距原點0為8米,應(yīng)該用加法.

為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數(shù)相加有以下三種情況:

1.同號兩數(shù)相加。

(1)某人向東走5米,再向東走3米,兩次一共走了多少米?

這是求兩次行走的路程的和.

5+3=8。

用數(shù)軸表示如圖:略。

從數(shù)軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.

可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個加數(shù)的絕對值的和.

(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?

顯然,兩次一共向西走了8米。

(-5)+(-3)=-8。

用數(shù)軸表示如圖:略。

從數(shù)軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.

可見,負數(shù)加負數(shù),其和仍是負數(shù),和的絕對值也是等于兩個加數(shù)的絕對值的和.

總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加.

例如,(-4)+(-5),同號兩數(shù)相加。

(-4)+(-5)=-(),取相同的符號。

4+5=9把絕對值相加。

(-4)+(-5)=-9.

口答練習(xí):

(1)舉例說明算式7+9的實際意義?

(2)(-20)+(-13)=?

2.異號兩數(shù)相加。

(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?

由數(shù)軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.

5+(-5)=0。

可知,互為相反數(shù)的兩個數(shù)相加,和為零.

(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?

由數(shù)軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.

就是5+(-3)=2.

(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?

由數(shù)軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.

就是3+(-5)=-2.

最后歸納。

例如(-8)+5絕對值不相等的異號兩數(shù)相加。

85。

(-8)+5=-()取絕對值較大的加數(shù)符號。

8-5=3用較大的絕對值減去較小的絕對值。

(-8)+5=-3.

口答練習(xí)。

用算式表示:溫度由-4℃上升7℃,達到什么溫度.

(-4)+7=3(℃)。

3.一個數(shù)和零相加。

(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?

顯然,5+0=5.結(jié)果向東走了5米.

(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?

容易得出:(-5)+0=-5.結(jié)果向東走了-5米,即向西走了5米.

請同學(xué)們把(1)、(2)畫出圖來。

由(1),(2)得出:一個數(shù)同0相加,仍得這個數(shù).

總結(jié)有理數(shù)加法的三個法則.學(xué)生看書,引導(dǎo)他們看有理數(shù)加法運算的三種情況.

特例:兩個互為相反數(shù)相加;。

(3)一個數(shù)和零相加.

每種運算的法則強調(diào):(1)確定和的符號;(2)確定和的絕對值的方法.

(四)例題分析。

例1計算(-3)+(-9).

分析:這是兩個負數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應(yīng)為負),和的絕對值就是把絕對值相加(應(yīng)為3+9=12)(強調(diào)相同、相加的特征).

解:(-3)+(-9)=-12.

例2。

分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應(yīng)為負),和的絕對值等于較大絕對值減去較小絕對值..(強調(diào)兩個較大一個較小)。

解:解題時,先確定和的符號,后計算和的絕對值.

(五)鞏固練習(xí)。

1.計算(口答)。

(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);。

(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;。

2.計算。

(1)5+(-22);(2)(-1.3)+(-8)。

(3)(-0.9)+1.5;(4)2.7+(-3.5)。

將本文的word文檔下載到電腦,方便收藏和打印。

有理數(shù)的加法數(shù)學(xué)七年級教案篇七

學(xué)習(xí)過程:

一、自主學(xué)習(xí)不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:

1.小學(xué)學(xué)過的加法運算律有哪些?舉例說明運用運算律有何好處?

2.加法的交換律:

兩個數(shù)相加,交換_______的位置,和不變.用式子表示:a+b=_______.

3.加法的結(jié)合律:

有理數(shù)的加法數(shù)學(xué)七年級教案篇八

教材分析:

在教材分析中我將談一下幾點:

(一)、教材的地位與作用:

【有理數(shù)的加法法則】是初中華師版七年級上冊第二章第六節(jié)的內(nèi)容,在這之前,學(xué)生已經(jīng)在小學(xué)掌握了算術(shù)運算,而前邊的學(xué)習(xí)又初步掌握了有理數(shù)的基本概念,有理數(shù)的加法運算是建立在小學(xué)運算的基礎(chǔ)之上的,又與小學(xué)加法運算有很大的區(qū)別,如小學(xué)的加法運算不需要確定符號運算單一,而有理數(shù)的加法不但要計算絕對值的大小而且還要確定結(jié)果的符號,由算術(shù)到代數(shù)式學(xué)生從小學(xué)到初中的一個新的轉(zhuǎn)折點。而有理數(shù)的加法又是有理數(shù)運算的主要內(nèi)容是初等數(shù)學(xué)運算的基礎(chǔ),同時又是學(xué)習(xí)物理、化學(xué)等相關(guān)學(xué)科的基礎(chǔ)。因此,這部分內(nèi)容在學(xué)習(xí)數(shù)學(xué)及其他方面占有相當(dāng)重要的地位及作用。

(二)、教學(xué)內(nèi)容:

有理數(shù)的加法的教學(xué)共分2課時,這是有理數(shù)的加法第一課時。本節(jié)課主要講授有理數(shù)加法的意義,歸納有理數(shù)加法的法則,能區(qū)別有理數(shù)的和與小學(xué)運算的和的不同,并要求學(xué)生在掌握法則的基礎(chǔ)上熟練地進行有理數(shù)的加法運算。

(三)、教學(xué)目標:

倡導(dǎo)有理數(shù)的加法要以學(xué)生為主,讓學(xué)生參與”觀察、猜想、驗證、歸納、運用“的全過程。以培養(yǎng)創(chuàng)新意識與培養(yǎng)能力為宗旨。從教材的特點和初一學(xué)生的認知水平,以教學(xué)思維為出發(fā)點。我設(shè)計如下的教學(xué)目標:

1、知識目標:使學(xué)生有理數(shù)加法的意義,掌握有理數(shù)加法的法則,并要求學(xué)生在掌握法則的基礎(chǔ)上熟練地進行有理數(shù)的加法運算。

2、能力目標:在本節(jié)課的教學(xué)中,借助數(shù)軸向?qū)W生滲透數(shù)形結(jié)合的思想,利用絕對值把有理數(shù)的加法運算化歸為小學(xué)算術(shù)的加減運算,體現(xiàn)化歸的思想,以及適度加強法則的形成過程,著重培養(yǎng)學(xué)生”觀察、猜想、驗證、歸納、運用“等綜合能力。

3、情感目標:遵循學(xué)生學(xué)習(xí)的認知規(guī)律和初一學(xué)生的身心特點,按照啟發(fā)式教學(xué)原則用發(fā)現(xiàn)法和直觀教學(xué)法激發(fā)學(xué)生探究教學(xué)的興趣,培養(yǎng)學(xué)生敢于探索、樂于創(chuàng)新的精神。

4、教學(xué)重點、難點和教學(xué)關(guān)鍵:

解決問題的關(guān)鍵是有理數(shù)加法中結(jié)果符號的確定。

二、教法分析:

為了充分調(diào)動學(xué)生的積極性,變被動學(xué)習(xí)為主動學(xué)習(xí)使教學(xué)生動、有趣、高效,我采用啟發(fā)式教學(xué),發(fā)現(xiàn)法教學(xué)形成性學(xué)習(xí)和多媒體教學(xué)手段共用,考慮到學(xué)生目前仍以直觀思維為主,在教學(xué)中,我采用針對性較強的相應(yīng)措施。首先,我創(chuàng)設(shè)具體的問題情景運用多媒體手段進行必要的動態(tài)演示,讓學(xué)生看的清楚,聽的明白逐步從圖形的直觀向深化過渡,最后向抽象思維過渡,引導(dǎo)學(xué)生觀察與思考,以增強教學(xué)的直觀性、有效性;其次,引導(dǎo)學(xué)生從特殊到一般的探究,師生共同歸納出有理數(shù)的加法法則,以以增強教學(xué)的直觀性、有效性、深刻性這既是形象思維轉(zhuǎn)化為抽象思維的過程,也是對學(xué)生觀察、歸納思維能力的過程,再讓學(xué)生參與知識的形成過程,促進認知結(jié)構(gòu)的建構(gòu),培養(yǎng)學(xué)生活動知識的能力,從而使學(xué)生在學(xué)習(xí)知識的過程中,獲得成功的體驗。

三、學(xué)法指導(dǎo):

課堂教學(xué)要體現(xiàn)以學(xué)生的發(fā)展為本,為充分體現(xiàn)教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,我采用啟發(fā)式教學(xué)原則,通過提出問題,多媒體的直觀演示和學(xué)生一起分析,歸納出法則。始終讓學(xué)生參與整個問題的全過程,在整個教學(xué)過程的設(shè)計中力求發(fā)揮學(xué)生的主體意識,盡情創(chuàng)造性的學(xué)習(xí),無論在法則的形成,還是法則的運用數(shù)學(xué)思想方法的滲透,都避免教師的灌輸方法,有意識的讓學(xué)生主動觀察、比較、分類、歸納積極思考,教師在教學(xué)中加以引導(dǎo)、及時點撥,激發(fā)學(xué)生的探索精神和求知欲望,培養(yǎng)學(xué)生的學(xué)習(xí)數(shù)學(xué)的主動性,讓學(xué)生在愉悅的氣氛中感受到數(shù)學(xué)學(xué)習(xí)的無限樂趣。

四、說教學(xué)過程:

2、然后設(shè)置這樣一個問題情景,利用動態(tài)演示帶領(lǐng)學(xué)生進行新課探索,首先我提出問題”兩次一共向東走了多少米?“用什么方法呢?接著我提醒學(xué)生注意審題,暗示學(xué)生題中沒有明確小明朝那個方向走,通過暗示,引導(dǎo)學(xué)生思考。

3、接著我又提出問題2”在東西走向的馬路上小明從o點出發(fā),向東走了20米,又向西走了-20米,那么兩次一共走了多少米?“利用動態(tài)演示,學(xué)生很容易得出”互為相反數(shù)的兩數(shù)相加得0“之后我又提出問題3”在東西走向的馬路上小明從o點出發(fā),向東走了20米,又向西走了0米,那么兩次一共走了多少米?“學(xué)生很容易得出”一個數(shù)與0相加,仍得0“從而利用上面的演示過程,歸納出有一個加數(shù)為0的法則。

4、至此,通過師生多種情形的歸納,一起歸納出有理數(shù)的加法法則。

1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;

3、互為相反數(shù)的兩數(shù)相加得0。

4、一個數(shù)與0相加,仍得0】意義上教學(xué)過程通過多媒體演示,把數(shù)、式、形的靜變?yōu)閯?,以增強法則的直觀性,加深法則的理解,突出本節(jié)課的重點、突破難點,同時也增強了數(shù)形結(jié)合的思想運用,在歸納出法則后,我有進一步啟發(fā)引導(dǎo)學(xué)生分析法則的'特點,并總結(jié)規(guī)律”兩有理數(shù)相加,所得的和為符號和和兩部分組成,加法運算的關(guān)鍵是福海的確定,符號運算一旦解決,余下的就是小學(xué)算術(shù)的加減問題了“在這里,我給出兩個具體的實例通過對他們的分析得出:

(-4)+(-8)=-(4+8)=-12。

同號兩數(shù)相加取相同的符號通過絕對值化歸為算術(shù)數(shù)和的過程。

(-9)+(+2)=-(9-2)=-7。

異號兩數(shù)相加取絕對值較大符號通過絕對值化歸為算術(shù)數(shù)減的過程。

總結(jié):同號兩數(shù)之和——名副其實的和——做加法。

異號兩數(shù)之和——表面是”和“實際上是做減法。

運算步驟:1、先判斷類型:同號還是異號;2、確定和的符號;

3、后進行絕對值的加減運算。

簡單歸為:8字訣——符號法則+算式加減。

通過以上的設(shè)計,進一步加深了對法則中難點問題的理解之后教師引導(dǎo)學(xué)生歸納出運算步驟,然后又教師歸納出加法法則。

6、接下來我又設(shè)置了一道改錯題:

設(shè)置問題,強化關(guān)鍵判斷正誤,并改錯。

1、兩個負數(shù)相加,絕對值相加;

2、正數(shù)加負數(shù),何謂負數(shù);

3、負數(shù)加正數(shù),和為正數(shù);

4、兩個有理數(shù)和為負數(shù)時,著兩個有理數(shù)都是負數(shù)它是專為學(xué)生在運用法則時易出錯的問題而設(shè)計的為促使學(xué)生在引用時仔細審題,通過分析辯誤,抓住關(guān)鍵。

7、為了完成從掌握知識到引用知識的轉(zhuǎn)化,使知識教學(xué)與智能訓(xùn)練相結(jié)合,我設(shè)置了以下例、習(xí)題易培養(yǎng)他們的邏輯思維和嚴密的計算能力,下面的這組練習(xí)由淺入深、循序漸進的原則,其目的在于鞏固法則,加深對法則的理解和記憶,練習(xí)2通過強化與訓(xùn)練,使學(xué)生熟中生巧、將知識轉(zhuǎn)化為技能,也為以后的學(xué)習(xí)奠定基礎(chǔ)。

計算下列各題:

例題1、(-6)+(-8)2、5.2+(-4.5)。

練習(xí):1、計算下列各題:并說明理由(1)、(-4)+(-7)。

(2)、(-4)+(+7)(3)、(+4)+(+7)。

(4)、(-4)+(+4)(5)、(-9)+0。

練習(xí):2、計算下列各題:

(1)、15+(-22)(2)、(+0.9)+1.5(3)、(+2.7)+(-3.5)。

8、到這時,整個教學(xué)過程也接近尾聲了,為了是學(xué)生對所學(xué)知識有一個完整的框架,利于學(xué)生對知識的理解和記憶,師生共同合作,從以下三方面進行小結(jié):

1、本節(jié)課學(xué)習(xí)的主要內(nèi)容;

2、運用有理數(shù)加法法則的關(guān)鍵問題;

9作業(yè)布置:(必做)練習(xí)2、3、4、(選作)習(xí)題1、

10、最后是我的板書設(shè)計:

法則小結(jié)。

步驟與口訣布置作業(yè)。

結(jié)論。

以上是我從四個方面闡述了本節(jié)課”教什么,怎么教,有理數(shù)的加法為什么這樣教"希望各位專家、老師對本節(jié)課提出寶貴意見,再次謝謝各位評委老師。

有理數(shù)的加法數(shù)學(xué)七年級教案篇九

1.1正數(shù)和負數(shù)(2)。

教學(xué)目標:

教學(xué)重點:

深化對正負數(shù)概念的理解。

教學(xué)難點:

正確理解和表示向指定方向變化的量。

教學(xué)準備:彩色粉筆。

教學(xué)過程:

一、復(fù)習(xí)引入:

學(xué)生思考并討論.

(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.

二、講解新課。

度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。

思考:教科書第4頁(學(xué)生先思考,教師再講解)。

三、課堂練習(xí)課本p4練習(xí)1,2,3,4。

四、課時小結(jié)。

引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當(dāng)考慮一個數(shù)時,一定要考慮它的符號,這與以前學(xué)過的數(shù)有很大的區(qū)別.

五、課外作業(yè)教科書p5:2、4。

板書設(shè)計:

有理數(shù)的加法數(shù)學(xué)七年級教案篇十

2.內(nèi)容解析。

有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學(xué)習(xí)是至關(guān)重要的.

與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學(xué)已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.

基于以上分析,可以確定本課的教學(xué)重點是兩個有理數(shù)相乘的符號法則.

二、目標及其解析。

1.目標。

(1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.

(2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.

2.目標解析。

達成目標(1)的標志是學(xué)生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果.

達成目標(2)的標志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.

三、教學(xué)問題診斷分析。

有理數(shù)的乘法與小學(xué)學(xué)習(xí)的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學(xué)生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導(dǎo),并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.

本課的教學(xué)難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.

四、教學(xué)過程設(shè)計。

教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).

設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習(xí)有關(guān)知識,為下面的教學(xué)做好準備,又滲透了分類討論思想.

問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?

3×3=9,

3×2=6,

3×1=3,

3×0=0.

追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?

如果學(xué)生仍然有困難,教師給予提示:

(1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.

(2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.

設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.

教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.

追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?

3×(-2)=,

3×(-3)=.

練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.

設(shè)計意圖:讓學(xué)生自主構(gòu)造算式,加深對運算規(guī)律的理解.

先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.

設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學(xué)習(xí)奠定基礎(chǔ).

問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?

3×3=9,

2×3=6,

1×3=3,

0×3=0.

鼓勵學(xué)生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.

設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學(xué)生的模仿、概括的能力.

追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?

(-1)×3=,

(-2)×3=,

(-3)×3=.

練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.

先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.

追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?

設(shè)計意圖:讓學(xué)生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.

問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?

(-3)×3=,

(-3)×2=,

(-3)×1=,

(-3)×0=.

追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?

(-3)×(-1)=,

(-3)×(-2)=,

(-3)×(-3)=.

設(shè)計意圖:由學(xué)生自主探究得出負數(shù)乘負數(shù)的結(jié)論.因為有前面積累的豐富經(jīng)驗,學(xué)生能獨立完成.

問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?

學(xué)生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書.

學(xué)生獨立思考、回答.如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字.

設(shè)計意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟.

例1計算:

(1)。

;(2)。

;(3)。

學(xué)生獨立完成后,全班交流.

教師說明:在(3)中,我們得到了。

=1.與以前學(xué)習(xí)過的倒數(shù)概念一樣,我們說。

與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).

追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?

設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).

設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.

小結(jié)、布置作業(yè)。

請同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:

(2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?

(3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.

(4)你能舉例說明符號法則“負負得正”的合理性嗎?

設(shè)計意圖:引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習(xí)過程兩個方面進行小結(jié).

作業(yè):教科書第30頁,練習(xí)1,2,3;第37頁,習(xí)題1.4第1題.

五、目標檢測設(shè)計。

1.判斷下列運算結(jié)果的符號:

(1)5×(-3);。

(2)(-3)×3;。

(3)(-2)×(-7);。

(4)(+0.5)×(+0.7).

2計算:

(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。

(4)。

;(5)0×(-6);(6)8×。

設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法法則的理解情況.

有理數(shù)的加法數(shù)學(xué)七年級教案篇十一

三、情感態(tài)度與價值觀。

體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、

教學(xué)重點、難點與關(guān)鍵。

1、重點:有理數(shù)加減法統(tǒng)一為加法運算,掌握有理數(shù)加減混合運算、

2、難點:省略括號和加號的加法算式的運算方法、

投影儀、

四、教學(xué)過程。

一、復(fù)習(xí)提問,引入新課。

1、敘述有理數(shù)的加法、減法法則、

2、計算、

(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。

(4)(—8)—6;(5)5—14、

五、新授。

我們已學(xué)習(xí)了有理數(shù)加、減法的運算,今天我們來研究怎樣進行有理數(shù)的加減混合運算、

六、鞏固練習(xí)。

1、課本第24頁練習(xí)、

(1)題是已寫成省略加號的代數(shù)和,可運用加法交換律、結(jié)合律、

原式=1+3—4—0。5=0—0。5=—0。5。

(2)題運用加減混合運算律,同號結(jié)合、

原式=—2。4—4。6+3。5+3。5=—7+7=0。

(3)題先把加減混合運算統(tǒng)一為加法運算、

原式=(—7)+(—5)+(—4)+(+10)。

=—7—5—4+10(省略括號和加號)。

=—16+10。

=—6。

七、課堂小結(jié)。

八、作業(yè)布置。

1、課本第25頁第26頁習(xí)題1、3第5、6、13題、

九、板書設(shè)計:

第四課時。

1、把有理數(shù)加減混合運算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計算簡便、

歸納:加減混合運算可以統(tǒng)一為加法運算、

用式子表示為a+b—c=a+b+(—c)、

2、隨堂練習(xí)。

3、小結(jié)。

4、課后作業(yè)。

十、課后反思。

本課教學(xué)反思。

本節(jié)課主要采用過程教案法訓(xùn)練學(xué)生的聽說讀寫。過程教案法的理論基礎(chǔ)是交際理論,認為寫作的過程實質(zhì)上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學(xué)生指導(dǎo),更正其錯誤,幫助學(xué)生完成寫作各階段任務(wù)。課堂是寫作車間,學(xué)生與教師,學(xué)生與學(xué)生彼此交流,提出反饋或修改意見,學(xué)生不斷進行寫作,修改和再寫作。在應(yīng)用過程教案法對學(xué)生進行寫作訓(xùn)練時,學(xué)生從沒有想法到有想法,從不會構(gòu)思到會構(gòu)思,從不會修改到會修改,這一過程有利于培養(yǎng)學(xué)生的寫作能力和自主學(xué)習(xí)能力。學(xué)生由于能得到教師的及時幫助和指導(dǎo),所以,即使是英語基礎(chǔ)薄弱的同學(xué),也能在這樣的環(huán)境下,寫出較好的作文來,從而提高了學(xué)生寫作興趣,增強了寫作的自信心。

這個話題很容易引起學(xué)生的共鳴,比較貼近生活,能激發(fā)學(xué)生的興趣,在教授知識的同時,應(yīng)注意將本單元情感目標融入其中,即保持樂觀積極的生活態(tài)度,同時要珍惜生活的點點滴滴。在教授語法時,應(yīng)注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當(dāng)于一個簡單的定語從句,一個清晰的脈絡(luò)能為后續(xù)學(xué)習(xí)打下基礎(chǔ)。此教案設(shè)計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。

在此教案過程中,應(yīng)注重培養(yǎng)學(xué)生的自學(xué)能力,通過輔導(dǎo)學(xué)生掌握一套科學(xué)的學(xué)習(xí)方法,才能使學(xué)生的學(xué)習(xí)積極性進一步提高。再者,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,增強教案效果,才能避免在以后的學(xué)習(xí)中產(chǎn)生兩極分化。

在教案中任然存在的問題是,學(xué)生在“說”英語這個環(huán)節(jié)還有待提高,大部分學(xué)生都不愿意開口朗讀課文,所以復(fù)述課文便尚有難度,對于這一部分學(xué)生的學(xué)習(xí)成績的提高還有待研究。

有理數(shù)的加法數(shù)學(xué)七年級教案篇十二

分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。

1、有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強學(xué)生對數(shù)學(xué)的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎(chǔ)之一,它是整個初中代數(shù)的一個基礎(chǔ),它直接關(guān)系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、研究函數(shù)等內(nèi)容的學(xué)習(xí)。

2、就第二章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分----有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎(chǔ),有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進行的各種運算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。

從以上兩點不難看出它的地位和作用都是很重要的。

接下來,介紹本節(jié)課的教學(xué)目標、重點和難點。(結(jié)合微機顯示)。

教學(xué)大綱是我們確定教學(xué)目標,重點和難點的依據(jù)。教學(xué)大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進行準確運算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標。1、知識目標是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進行準確運算;(4)滲透數(shù)形結(jié)合的思想。2、能力目標是:(1)培養(yǎng)學(xué)生準確運算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識的能力;3、德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想;(2)培養(yǎng)學(xué)生嚴謹?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進行的加法運算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內(nèi)容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學(xué)生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。

本節(jié)課是在前面學(xué)習(xí)了有理數(shù)的意義的基礎(chǔ)上進行的,學(xué)生已經(jīng)很牢固地掌握了正數(shù)、負數(shù)、數(shù)軸、相反數(shù)、絕對值等概念,因此我沒有把時間過多地放在復(fù)習(xí)這些舊知識上,而是利用學(xué)生的好奇心,采用生動形象的事例,讓學(xué)生充當(dāng)指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程中,我引進了現(xiàn)代化的教學(xué)工具微機,讓學(xué)生在微機演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過書上的基本練習(xí)達到訓(xùn)練雙基的目的,通過變式練習(xí)達到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過程的設(shè)計中具體體現(xiàn)。而且在做練習(xí)的過程中讓學(xué)生互相提問,使課堂在學(xué)生的參與下積極有序的進行。

在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動情況,使其在教學(xué)過程中在掌握知識同時、發(fā)展智力、受到教育。

1、引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學(xué)生的注意,所以我選擇了學(xué)生們感興趣的軍事問題,讓學(xué)生在充當(dāng)指揮官的同時,有一種解決問題的成就感,從而使學(xué)生積極主動的學(xué)習(xí),并且營造了良好的學(xué)習(xí)氛圍。

2、探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個小人在坐標軸上來回的移動,使學(xué)生在小人的移動過程中體會兩個數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學(xué)手段,學(xué)生能夠全副身心的投入到思考問題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學(xué)生對規(guī)律進行歸納總結(jié)補充,從而得出有理數(shù)的加法法則。

3、鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個循序漸進的.過程,所以習(xí)題的配備由難而易,使學(xué)生在練習(xí)的過程中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問題。

4、歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a充。最后教師對本節(jié)的課進行說明。

有理數(shù)的加法數(shù)學(xué)七年級教案篇十三

從簡單的轉(zhuǎn)盤游戲開始,使學(xué)生在生活經(jīng)驗和試驗的基礎(chǔ)上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。

能用實驗對數(shù)學(xué)猜想做出檢驗,從而增加猜想的可信度。 解決問題

在轉(zhuǎn)盤游戲過程中,經(jīng)歷猜測結(jié)果,實驗驗證,分析試驗結(jié)果等數(shù)學(xué)活動,增加數(shù)學(xué)活動經(jīng)驗。

情感態(tài)度與價值觀

在合作與交流過程中,體驗小組合作更有利于探究數(shù)學(xué)知識,敢于發(fā)表自己觀點,提高個人認識。

在實驗中,體會不確定事件的特點及事件發(fā)生可能性大小;使每個學(xué)生都能積極認真參與課堂設(shè)計中的實驗,真正在實驗中獲得知識上的認識。

創(chuàng)設(shè)情境,切入標題

請同學(xué)們猜測,當(dāng)我自由轉(zhuǎn)動轉(zhuǎn)盤時,指針會落在什么顏域呢?

請各小組分別派一名代表,看哪組能轉(zhuǎn)出紅色。

結(jié)果,8小組有6組轉(zhuǎn)出了紅色。

為什么會出現(xiàn)這樣的結(jié)果呢?

因為,在這個轉(zhuǎn)盤中,紅域的面積大,白域的面積小,因此,當(dāng)轉(zhuǎn)盤停上轉(zhuǎn)動時,指針落到紅域的可能性大。

大家同意這種看法嗎?下面我們親自動手感受一下。

學(xué)生按照題目要求進行實驗。

請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結(jié)果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。

請同學(xué)們對我們的實驗結(jié)果進行分析交流,談?wù)勀阍谠囼炛杏心男┬牡谩?/p>

根據(jù)觀察,轉(zhuǎn)盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應(yīng)該是一半。通過對我們?nèi)嗟膶嶒灲Y(jié)果分析,指針落在紅域的比例是50∶96,結(jié)果接近百分之五十。

在小組內(nèi)實驗結(jié)果不明顯,實驗次數(shù)越多越能說明問題。

通過實驗,我們確定感受到,轉(zhuǎn)盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關(guān)系。以后在生活中再遇到轉(zhuǎn)盤游戲問題可要想想今天的實驗結(jié)論。

下面我們利用轉(zhuǎn)盤做一下數(shù)學(xué)游戲(出示幻燈片),學(xué)生按教學(xué)設(shè)計中要求進行游戲,教師巡回指導(dǎo)。

每組每人游戲一次,全班共游戲48次。其游戲結(jié)果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。

請同學(xué)們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉(zhuǎn)盤轉(zhuǎn)到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。

如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。

同學(xué)們說出很多種方法,不一一列舉。

“平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。

如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。

同學(xué)們說的都很好,課后能不能自己也利用轉(zhuǎn)盤設(shè)計一個新的游戲,感興趣的同學(xué)可以在課下與我交流。

以下過程同教學(xué)設(shè)計,略去。

指導(dǎo)學(xué)生完成教材第206頁習(xí)題。

學(xué)生可從各個方面加以小結(jié)。 布置作業(yè)

仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設(shè)計本節(jié)轉(zhuǎn)盤游戲。

有理數(shù)的加法數(shù)學(xué)七年級教案篇十四

師:以前學(xué)過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).

問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?

請同學(xué)們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學(xué)生感受引入負數(shù)的必要性)并思考討論,然后進行交流。

(也可以出示氣象預(yù)報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)。

學(xué)生交流后,教師歸納:以前學(xué)過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有-的新數(shù)。

有理數(shù)的加法數(shù)學(xué)七年級教案篇十五

有理數(shù)的加、減、乘、除和乘方運算是建立在小學(xué)算術(shù)運算的基礎(chǔ)上,有理數(shù)教學(xué)反思。有關(guān)有理數(shù)運算的教學(xué),在性質(zhì)上屬于定義教學(xué),歷來是一個難點課題,教師難教,學(xué)生難理解。有一個比較省事的做法是,略舉簡單的事例,盡早出現(xiàn)法則,然后用較多的時間去練法則,背法則。但新課程提倡讓學(xué)生體驗知識的形成過程。本單元教學(xué)設(shè)計上盡量考慮有利于基礎(chǔ)知識、基礎(chǔ)技能的掌握和學(xué)生的創(chuàng)新能力的培養(yǎng),能最大限度地使教學(xué)面向全體學(xué)生,充分照顧不同層次的學(xué)生,使設(shè)計的思路符合新課程倡導(dǎo)的理念。

反思本單元課,成功之處在于:

1、創(chuàng)設(shè)情境,引入課題,體現(xiàn)了數(shù)學(xué)來源于生活又服務(wù)于生活的理念。例如:在教學(xué)“有理數(shù)的乘法”時,首先由學(xué)生口答有理數(shù)加法的練習(xí)入手,自然地過度到有理數(shù)的乘法,找準了新知識的生長點,為學(xué)習(xí)新知識做準備。然后,讓學(xué)生舉例說明兩個加法算式的在實際生活中意義。再提出生活中的另一些實際問題又可以用怎樣的數(shù)學(xué)知識去解決的問題。

2、精心設(shè)計的現(xiàn)實模型“水位變化,日期前后”使有理數(shù)的乘法法則的“規(guī)定合理性”與“規(guī)定必要性”都得到了事實的說明。新課程標準強調(diào),教師的'有效教學(xué)應(yīng)指向?qū)W生有意義的數(shù)學(xué)學(xué)習(xí),而有意義的數(shù)學(xué)學(xué)習(xí)又必須建立在學(xué)生的主觀愿望和知識經(jīng)驗基礎(chǔ)之上.在此背景下,本節(jié)課的引入部分通過幻燈片形象直觀地展示學(xué)生熟悉的水庫水位變化情況,創(chuàng)設(shè)了真實的問題情境,意在誘發(fā)同學(xué)們進行探索與解決問題,這樣既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又弘揚了灘坑移民精神,對學(xué)生進行德育教育,同時讓學(xué)生體會到數(shù)學(xué)問題來源于實際生活。

3、練習(xí)設(shè)計,讓學(xué)生體驗到成功的樂趣。本單元內(nèi)容安排緊湊,由淺入深,循序漸進地突破難點。根據(jù)七年級學(xué)生的思維特點和年齡特征,設(shè)計了“試一試”、“練一練”、“合作學(xué)習(xí)”等環(huán)節(jié),激發(fā)學(xué)生的好奇心,并在教學(xué)中盡量用激勵性和導(dǎo)向性的語言來鼓勵學(xué)生大膽發(fā)言,面向全體學(xué)生,讓學(xué)生在比較輕松和諧的課堂氛圍中較好地完成了學(xué)習(xí)任務(wù)。

盡管最初的設(shè)計能體現(xiàn)一些新的理念,但經(jīng)過課堂實踐后,仍感到有許多不足。

1、課堂引入化時間太多。有理數(shù)的加法對本節(jié)課的作用不是很大,直接從水位變化的實例引出可以節(jié)省一些時間用于合作學(xué)習(xí)的環(huán)節(jié)。

2、“鞏固訓(xùn)練”這一環(huán)節(jié)的題目有時設(shè)計的較難,對中下學(xué)生一時難以接受。重點應(yīng)該是練習(xí)有理數(shù)運算的法則,計算量不易太大。應(yīng)按由易到難的順序進行,學(xué)生會容易接受。

3、教學(xué)中感覺教師啟發(fā)引導(dǎo)的較多,給學(xué)生自主探索思考的空間較少。這樣不利于學(xué)生思維的發(fā)展,不利于學(xué)生主體作用的發(fā)揮。

有理數(shù)的加法數(shù)學(xué)七年級教案篇十六

數(shù)學(xué)學(xué)習(xí)過程應(yīng)當(dāng)是一個生動活潑的、主動的和富有個性的過程,而不能再是單一的、枯燥的,以被動聽講和練習(xí)為主的方式,它應(yīng)該是一個充滿生命力的過程。本節(jié)課在教學(xué)中以故事引入,在學(xué)生已有的知識經(jīng)驗建構(gòu)新知主動探索有理數(shù)加法交換律和結(jié)合律,從而引起他們學(xué)習(xí)的興趣,把他們被動地接受學(xué)習(xí)變成一種主動探索獲取知識的過程。

數(shù)學(xué)與人和現(xiàn)實生活之間是有著緊密的聯(lián)系的,把貼近學(xué)生熟悉的,現(xiàn)實生活,引入教學(xué),不斷溝通生活中的數(shù)學(xué)與教科書的聯(lián)系使生活和數(shù)學(xué)融為一體,是“新課標”所倡導(dǎo)的理念之一。本課教學(xué)時的最大特點是讓學(xué)生體會生活中的數(shù)學(xué),有益于學(xué)生理解數(shù)學(xué)、熱愛數(shù)學(xué),從而把數(shù)學(xué)當(dāng)成自己發(fā)展的重要動力源泉。

本節(jié)課中如何更有效地調(diào)動“弱勢群體”的積極性,是我們進一步要探討的方向。

有理數(shù)的加法數(shù)學(xué)七年級教案篇十七

《有理數(shù)的加法》是有理數(shù)混合運算的第一堂課。正因為萬事開頭難,可見這堂課在接下來的教學(xué)中起著非常重要的指向作用。下面是我上這堂課的總結(jié):

一.在引入部分和同學(xué)們共同探討書上的問題,采用了讓學(xué)生相互先探討的方法,發(fā)現(xiàn)學(xué)生非常的投入,課堂氣氛被充分調(diào)動起來了。由于問題的難度一下跨越太大,太抽象,所以在教學(xué)中采用了動畫解析的過程,更為形象具體,讓問題深入淺出,容易讓學(xué)生接受。

二.在一些細節(jié)部分處理到位。比如說解應(yīng)用題的步驟,應(yīng)將它的完整步驟都在黑板上演示一下。電子白板大大的提高了效率和課堂容量。

三.在推導(dǎo)有理數(shù)加法法則時,學(xué)生的回答讓學(xué)生說完他的思路,然后引導(dǎo)他將其他情況補充完整。這個說明課堂應(yīng)變能力十分重要,整個課堂中,我注意力十分集中,真是耳聽八方,眼觀四路。

四.整堂課的語言需要改進,應(yīng)更加精練,簡潔。本堂是概念課,對于概念課來說,概念不要重復(fù)太多遍,尤其是一些說出來比較拗口的概念,容易混淆,所以當(dāng)表述的差不多的時候就可以寫出來,不必在這個問題上糾纏不清。這點需要改進。說,讀,寫結(jié)合,增強記憶。

有理數(shù)的加法數(shù)學(xué)七年級教案篇十八

2、在教學(xué)設(shè)計中,除了考慮學(xué)生探索新知的'需要,還考慮學(xué)生對法則的理解和掌握是建立在一定量的練習(xí)基礎(chǔ)之上的,因此,在例題中增加了一道實際問題,讓學(xué)生在解決實際間題過程中培養(yǎng)運算能力.另外教師引導(dǎo)(提倡)學(xué)生進行解題后的反思,意在逐步培養(yǎng)學(xué)生思維的全面性、系統(tǒng)性.在反思的基礎(chǔ)上又讓學(xué)生(或教師啟發(fā)引導(dǎo))去尋找一些(如減正數(shù)即加負數(shù);減負數(shù)即加正數(shù))規(guī)律,目的是讓學(xué)生順利地掌握法則,并達到熟練運用的程度。

有理數(shù)的加法數(shù)學(xué)七年級教案篇十九

1.同號相加,取相同符號,并把絕對值相加。

2.絕對值不等的異號相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。

3.一個數(shù)同0相加,仍得這個數(shù)。

4.相反數(shù)相加結(jié)果一定得0。

注意。

一是確定結(jié)果的符號;二是求結(jié)果的絕對值.在進行有理數(shù)加法運算時,首先判斷兩個加數(shù)的符號:是同號還是異號,是否有0.從而確定用那一條法則。在應(yīng)用過程中,一定要牢記“先符號,后絕對值”,熟練以后就不會出錯了.多個有理數(shù)的加法,可以從左向右計算,也可以用加法的運算定律計算,但是在下筆前一定要思考好,哪一個要用定律哪一個要從左往右計算.

減法。

法則。

有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。其中:兩變:減法運算變加法運算,減數(shù)變成它的相反數(shù)做加數(shù)。一不變:被減數(shù)不變??梢员硎境桑篴-b=a+(-b)。

乘法。

法則。

(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘。例:(-5)×(-3)=15(-6)×4=-24。

(2)任何數(shù)同0相乘,都得0。例:0×1=0。

(4)幾個數(shù)相乘,有一個因數(shù)為0時,積為0。例:3×(-2)×0=0。

(5)乘積為1的兩個有理數(shù)互為倒數(shù)(reciprocal)。(乘積為-1的互為負倒數(shù))例如,—3與—1/3,—3/8與—8/3。

除法。

法則。

(1)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。(注意:0沒有倒數(shù))。

(2)兩數(shù)相除,同號為正,異號為負,并把絕對值相除。

(3)0除以任何一個不等于0的數(shù),都等于0。

注意:

0在任何條件下都不能做除數(shù)。

【本文地址:http://mlvmservice.com/zuowen/19542429.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔