教案還可以幫助教師分析學(xué)生的學(xué)習(xí)情況,及時(shí)調(diào)整教學(xué)策略,提高教學(xué)效果。教案的編寫還需要注意教學(xué)的個(gè)性化和差異化,靈活調(diào)整教學(xué)策略和措施,提高教學(xué)的針對(duì)性和有效性。通過學(xué)習(xí)這些教案范文,教師可以不斷提高自己的教學(xué)水平和專業(yè)素養(yǎng)。
不等關(guān)系與不等式教案篇一
1.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
2.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
3.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
4.一元一次不等式組的解集:一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
5.不等式的性質(zhì):
不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。
不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。
不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
數(shù)學(xué)整式概念知識(shí)點(diǎn)。
1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
2、單項(xiàng)式或多項(xiàng)式都是整式。
3、整式不一定是單項(xiàng)式。
4、整式不一定是多項(xiàng)式。
5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。
初中數(shù)學(xué)二元一次方程組知識(shí)點(diǎn)。
1.二元一次方程:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數(shù)個(gè)解.
2.二元一次方程組:兩個(gè)二元一次方程聯(lián)立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個(gè)方程,左右兩邊都相等的兩個(gè)未知數(shù)的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:。
(1)代入消元法;(2)加減消元法;。
(3)注意:判斷如何解簡單是關(guān)鍵.
※5.一次方程組的應(yīng)用:。
(2)對(duì)于方程組,若方程個(gè)數(shù)與未知數(shù)個(gè)數(shù)相等時(shí),一般可求出未知數(shù)的值;。
(3)對(duì)于方程組,若方程個(gè)數(shù)比未知數(shù)個(gè)數(shù)少一個(gè)時(shí),一般求不出未知數(shù)的值,但總可以求出任何兩個(gè)未知數(shù)的關(guān)系.
1.不等式:用不等號(hào),把兩個(gè)代數(shù)式連接起來的式子叫不等式.
2.不等式的基本性質(zhì):。
不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;。
不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向要改變.
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個(gè)不等式的解;不等式所有解的集合,叫做這個(gè)不等式的解集.
4.一元一次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標(biāo)準(zhǔn)形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時(shí),要注意空圈和實(shí)點(diǎn).
不等關(guān)系與不等式教案篇二
(一)內(nèi)容。
(二)內(nèi)容解析。
二、目標(biāo)和目標(biāo)解析。
(一)教學(xué)目標(biāo)。
1、理解不等式的概念。
2、理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系。
3、了解解不等式的概念。
4、用數(shù)軸來表示簡單不等式的解集。
(二)目標(biāo)解析。
1、達(dá)成目標(biāo)1的標(biāo)志是:能正確區(qū)別不等式、等式以及代數(shù)式、
3、達(dá)成目標(biāo)3的標(biāo)志是:理解解不等式是求不等式解集的一個(gè)過程、
三、教學(xué)問題診斷分析。
因此,本節(jié)課的教學(xué)難點(diǎn)是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集、
四、教學(xué)支持條件分析。
利用多媒體直觀演示課前引入問題,激發(fā)學(xué)生的學(xué)習(xí)興趣、
五、教學(xué)過程設(shè)計(jì)。
(一)動(dòng)畫演示情景激趣。
(二)立足實(shí)際引出新知。
小組討論,合作交流,然后小組反饋交流結(jié)果、
最后,老師將小組反饋意見進(jìn)行整理(學(xué)生沒有討論出來的思路老師進(jìn)行補(bǔ)充)。
不等關(guān)系與不等式教案篇三
4.會(huì)利用一元二次不等式,對(duì)給定的與一元二次不等式有關(guān)的`問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識(shí)解題.
二、過程與方法
1.采用探究法,按照思考、交流、實(shí)驗(yàn)、觀察、分析得出結(jié)論的方法進(jìn)行啟發(fā)式教學(xué);
2.發(fā)揮學(xué)生的主體作用,作好探究性教學(xué);
3.理論聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)積極性.
三、情感態(tài)度與價(jià)值觀
1.進(jìn)一步提高學(xué)生的運(yùn)算能力和思維能力;
2.培養(yǎng)學(xué)生分析問題和解決問題的能力;
3.強(qiáng)化學(xué)生應(yīng)用轉(zhuǎn)化的數(shù)學(xué)思想和分類討論的數(shù)學(xué)思想.
1.從實(shí)際問題中抽象出一元二次不等式模型.
2.圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想.
1.深入理解二次函數(shù)、一元二次方程與一元二次不等式的關(guān)系.
啟發(fā)、探究式教學(xué)
復(fù)習(xí)引入
師:上一節(jié)課我們通過具體的問題情景,體會(huì)到現(xiàn)實(shí)世界存在大量的不等量關(guān)系,并且研究了用不等式或不等式組來表示實(shí)際問題中的不等關(guān)系?;仡櫹碌缺葦?shù)列的性質(zhì)。
生:略
師:某同學(xué)要把自己的計(jì)算機(jī)接入因特網(wǎng),現(xiàn)有兩種isp公司可供選擇,公司a每小時(shí)收費(fèi)1.5元(不足1小時(shí)按1小時(shí)計(jì)算),公司b的收費(fèi)原則是第1小時(shí)內(nèi)(含恰好1小時(shí),下同)收費(fèi)1.7元,第2小時(shí)內(nèi)收費(fèi)1.6元以后每小時(shí)減少0.1元(若用戶一次上網(wǎng)時(shí)間超過17小時(shí),按17小時(shí)計(jì)算)那么,一次上網(wǎng)在多少時(shí)間以內(nèi)能夠保證選擇公司a的上網(wǎng)費(fèi)用小于等于選擇公司b所需費(fèi)用。
學(xué)生自己討論
點(diǎn)題,板書課題
新課學(xué)習(xí)
1.一元二次不等式
只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式。
2.三個(gè)“二次”之間的關(guān)系及一元二次不等式的解法
師在前面我們已經(jīng)學(xué)習(xí)過一元二次不等的解法,發(fā)現(xiàn)一元二次方程及對(duì)應(yīng)的二次函數(shù)有關(guān)系,那么同學(xué)們課本打開到p77填表格。
生略
師學(xué)生討論歸納出解一元二次不等式的步驟
一看:看二次項(xiàng)系數(shù)的正負(fù),并且變形為
二算:,判斷正負(fù),有根則求并畫出對(duì)應(yīng)的函數(shù)圖象
三寫:寫出原不等式的解集
練習(xí)反饋
[例題剖析]
例1解下列不等式
(1)(2)
(3)(4)
(5)(6)
課本80頁練習(xí)
例2已知不等式的解集為試解不等式
變式:
已知
課堂
小結(jié)
1.三個(gè)“二次的關(guān)系”
2.解二次不等式的步驟
作業(yè)布置
課本第80頁習(xí)題3.2a組第1.2.4題b組1
練習(xí)調(diào)配
不等關(guān)系與不等式教案篇四
尊敬的各位老師:
對(duì)于本節(jié)課,我將從教什么、怎么教、為什么這么教來闡述本次說課。
新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。
一、說教材。
教材是連接教師和學(xué)生的紐帶,在整個(gè)教學(xué)過程中起著至關(guān)重要的作用,所以,先談?wù)勎覍?duì)教材的理解。
在本節(jié)課之前學(xué)生已經(jīng)掌握了一元一次方程的相關(guān)知識(shí)和不等式的性質(zhì),所以,本節(jié)課類比一元一次方程的解法,利用不等式的性質(zhì)解一元一次不等式。另外,本節(jié)課為后續(xù)學(xué)習(xí)解一元一次不等式組奠定基礎(chǔ)。
不等式在日常生產(chǎn)生活中的應(yīng)用很廣泛,它與數(shù)、式、方程、函數(shù)甚至幾何圖形有著密切的聯(lián)系,它幾乎滲透到初中數(shù)學(xué)的每一部分。所以,本節(jié)課在數(shù)學(xué)領(lǐng)域中起著非常重要的地位。
二、說學(xué)情。
合理把握學(xué)情是上好一堂課的基礎(chǔ),本次課所面對(duì)的學(xué)生群體具有以下特點(diǎn)。
本學(xué)段的學(xué)生逐漸掌握抽象概念和復(fù)雜的概念系統(tǒng),能作科學(xué)定義,抽象邏輯思維逐步占優(yōu)勢。
本階段的學(xué)生類比推理能力都有了一定的發(fā)展,并且在生活中已經(jīng)遇到過很多關(guān)于一元一次方程的具體的事例,所以在生活上面有了很多的經(jīng)驗(yàn)基礎(chǔ)。為本節(jié)課的順利開展做好了充分準(zhǔn)備。
三、說教學(xué)目標(biāo)。
根據(jù)以上對(duì)教材的.分析以及對(duì)學(xué)情的把握,我制定了如下三維目標(biāo):
(一)知識(shí)與技能。
認(rèn)識(shí)一元一次不等式,會(huì)解簡單的一元一次不等式,類比一元一次方程的步驟,總結(jié)歸納解一元一次不等式的基本步驟。
(二)過程與方法。
通過對(duì)比解一元一次方程的步驟,學(xué)生自己總結(jié)歸納一元一次不等式步驟的過程,提高歸納能力,并學(xué)會(huì)類比的學(xué)習(xí)方法。
(三)情感態(tài)度價(jià)值觀。
通過數(shù)學(xué)建模,提高對(duì)數(shù)學(xué)的學(xué)習(xí)興趣。
四、說教學(xué)重難點(diǎn)。
本著新課程標(biāo)準(zhǔn),吃透教材,了解學(xué)生特點(diǎn)的基礎(chǔ)上我確定了以下重難點(diǎn):
(一)教學(xué)重點(diǎn)。
掌握一元一次不等式的概念,會(huì)解一元一次不等式并能夠在數(shù)軸上表示出來。
(二)教學(xué)難點(diǎn)。
不等關(guān)系與不等式教案篇五
(三)情感、態(tài)度和價(jià)值觀目標(biāo):
2.教師提供問題、素材,并及時(shí)點(diǎn)撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;?
2.讓學(xué)生探究用基本不等式解決實(shí)際問題;?
教學(xué)難點(diǎn):1.讓學(xué)生探究用基本不等式解決實(shí)際問題;?
六、教學(xué)過程教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)意圖(一)導(dǎo)入新課。
(二)推進(jìn)新課。
已知,若ab為常數(shù)k,那么a+b的值如何變化?
若a+b為常數(shù)s,那么ab的值如何變化?
老師用投影儀給出本節(jié)課的第一組問題。
(1)求函數(shù)y=2x2+(x0)的最小值。?
(2)求函數(shù)y=x2+(x0)的最小值。?
(3)求函數(shù)y=3x2-2x3(0xp="")的最大值。?
(5)設(shè)a0,b0,且a2+=1,求的最大值。?
(四)例題精析?
當(dāng)且僅當(dāng)a=b時(shí),a+b就有最小值為2k.?
當(dāng)且僅當(dāng)a=b時(shí),ab就有最大值(或ab有最大值).?
學(xué)生完成。
留五分鐘的時(shí)間讓學(xué)生思考,合作交流。
學(xué)生思考、回答,
不等關(guān)系與不等式教案篇六
本節(jié)課的內(nèi)容,是人教版七年級(jí)下冊第九章第二節(jié)“實(shí)際問題與一元一次不等式”。它是在學(xué)習(xí)不等式的概念、性質(zhì)及其解法和運(yùn)用一元一次方程(或方程組)解決實(shí)際問題等知識(shí)的基礎(chǔ)上,利用不等式解決實(shí)際問題。這既是對(duì)已學(xué)知識(shí)的運(yùn)用和深化,又為今后在解決實(shí)際問題中提供另一種有效的解決途徑。通過實(shí)際問題的探究,讓學(xué)生學(xué)會(huì)列一元一次不等式,解決具有不等關(guān)系的實(shí)際問題。經(jīng)歷由實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的過程,掌握利用一元一次不等式解決問題的基本過程。促進(jìn)學(xué)生的數(shù)學(xué)思維意識(shí),從而使學(xué)生樂于接觸社會(huì)環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承?shù)學(xué)話題,能夠在數(shù)學(xué)活動(dòng)中發(fā)揮積極作用。同時(shí)向?qū)W生滲透由特殊到一般、類比、建模和分類考慮問題的思想方法。不等式與現(xiàn)實(shí)生活中聯(lián)系非常緊密,解決好這類應(yīng)用題,有助于學(xué)生在以后的日常生活中自主靈活應(yīng)用所學(xué)知識(shí)解決實(shí)際問題。
七2班班現(xiàn)有56名同學(xué),部分學(xué)生基礎(chǔ)較差,拔尖學(xué)生少,尤其個(gè)別學(xué)生底子太薄,學(xué)生學(xué)習(xí)較為被動(dòng),預(yù)習(xí)工作做得不夠認(rèn)真,同時(shí)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性不高,基本能力較差,解決問題的能力不強(qiáng),知識(shí)掌握不夠扎實(shí),運(yùn)用不夠靈活。從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認(rèn)知特點(diǎn)來說:學(xué)生已經(jīng)在前一階段學(xué)習(xí)的學(xué)習(xí)中已經(jīng)具備了實(shí)際問題建立一元一次方程和解一元一次方程的一般步驟的基礎(chǔ),能進(jìn)行數(shù)學(xué)建模和簡單的解釋應(yīng)用。雖然初一學(xué)生對(duì)消費(fèi)問題比較熱心,但由于年紀(jì)太小,缺少生活經(jīng)驗(yàn),由于本節(jié)問題的背景和表達(dá)都比較貼近實(shí)際,其中有些數(shù)量關(guān)系比較隱蔽,可能會(huì)產(chǎn)生一定的障礙。
一元一次不等式的應(yīng)用,是中學(xué)數(shù)學(xué)的重要內(nèi)容,和一元一次方程應(yīng)用相似,對(duì)培養(yǎng)學(xué)生分析問題、解決問題的能力,體會(huì)數(shù)學(xué)的價(jià)值都有較大的意義.對(duì)實(shí)際生活中的不等量關(guān)系、數(shù)量大小比較等知識(shí),學(xué)生在小學(xué)階段已經(jīng)有所了解.但用不等式表示,并對(duì)不等式的.相關(guān)性質(zhì)進(jìn)行探究,對(duì)學(xué)生是新的內(nèi)容。這些問題能培養(yǎng)學(xué)生思維的深刻性和靈活性,優(yōu)化學(xué)生的思維品質(zhì)。分組活動(dòng),先獨(dú)立思考,再組內(nèi)交流,然后各組匯報(bào)討論結(jié)果,可極大調(diào)動(dòng)學(xué)生的創(chuàng)造積極性,應(yīng)把握學(xué)生的創(chuàng)新潛能,使不同層次的學(xué)生都能得到發(fā)展。在實(shí)施教學(xué)時(shí),要根據(jù)課程改革的基本理念和教材特點(diǎn)組織教學(xué).結(jié)合具體內(nèi)容,讓學(xué)生經(jīng)歷知識(shí)的形成與應(yīng)用過程。
知識(shí)目標(biāo):能進(jìn)一步熟練的解一元一次不等式,會(huì)從實(shí)際問題中抽象出數(shù)學(xué)模型,會(huì)用一元一次不等式解決簡單的實(shí)際問題。
能力目標(biāo):通過觀察、實(shí)踐、討論等活動(dòng),積累利用一元一次不等式解決實(shí)際問題的經(jīng)驗(yàn),提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會(huì)不等式和方程同樣都是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的重要模型。
情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過程中,形成實(shí)事求是的態(tài)度和獨(dú)立思考的習(xí)慣;學(xué)會(huì)在解決問題時(shí),與其他同學(xué)交流,培養(yǎng)互相合作精神。
關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實(shí)際中抽象出數(shù)量關(guān)系。注意問題中隱含的不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問題求解。
創(chuàng)設(shè)情境,研究新知。
(出示一個(gè)解不等式的問題,為后面新知作鋪墊)。
不等關(guān)系與不等式教案篇七
一、知識(shí)結(jié)構(gòu)。
;
;
;
二、重點(diǎn)、難點(diǎn)分析。
本節(jié)的重點(diǎn)和一個(gè)難點(diǎn)是不等式的等價(jià)轉(zhuǎn)化。解不等式與解方程有類似之處,但其二者的區(qū)別更要加以重視。解方程所產(chǎn)生的增根是可以通過檢驗(yàn)加以排除的,由于不等式的解集一般都是無限集,如果產(chǎn)生了增根卻是無法檢驗(yàn)加以排除的,所以解不等式的。過程一定要保證同解,所涉及的變換一定是等價(jià)變換。在學(xué)生過程中另一個(gè)難點(diǎn)是不等式的求解。這個(gè)不等式其實(shí)是一個(gè)不等式組的簡化形式,當(dāng)為一元一次式時(shí),可直接解這個(gè)不等式組,但當(dāng)為一元二次式時(shí),就必須將其改寫成兩個(gè)一元二次不等式的形式,分別求解在求交集。
三、教學(xué)建議。
(1)在新課之前一定要復(fù)習(xí)舊知識(shí),包括一元二次不等式的解法,簡單的絕對(duì)值不等式的解法,簡單的分式不等式的解法,不等式的性質(zhì),實(shí)數(shù)運(yùn)算的符號(hào)法則等。特別是對(duì)于基礎(chǔ)比較差的學(xué)生,這一環(huán)節(jié)不可忽視。
(2)在研究不等式的解法之前,應(yīng)先復(fù)習(xí)解不等式組的基本思路以及不等式的解法,然后提出如何求不等式的解集,啟發(fā)學(xué)生運(yùn)用換元思想將替換成,從而轉(zhuǎn)化一元二次不等式組的求解。
(3)在教學(xué)中一定讓學(xué)生充分討論,明確不等式組“”中的兩個(gè)不等式的解集間的交并關(guān)系,“”兩個(gè)不等式的解集間的交并關(guān)系。
(4)建議表述解不等式的過程中運(yùn)用符號(hào)“”。
(5)建議在研究分式不等式的解法之前,先研究簡單高次不等式(一端為0,另一端是若干個(gè)一次因式乘積形式的整式)的解法??捎蓪W(xué)生討論不同解法,師生共同比較諸法的優(yōu)劣,最后落實(shí)到區(qū)間法。
(6)分式不等式與高次不等式的等價(jià)原因,可以認(rèn)為是不等式兩端同乘以正數(shù),不等號(hào)不改變方向所得;也可以認(rèn)為是與符號(hào)相同所得。
(7)分式不等式求解時(shí)不能盲目地去分母,但當(dāng)分母恒為正數(shù)(如分母是)時(shí),應(yīng)將其去掉,從而使不等式化簡。
(8)建議補(bǔ)充簡單的無理不等式的解法,其中為一次式。教學(xué)中先由學(xué)生研究探索得到求解的基本思路及方法,再由教師概括總結(jié),得出結(jié)論后一定要強(qiáng)調(diào)不等號(hào)的方向?qū)Φ挠绊?,即保證了,而卻不能保證這一點(diǎn),所以要分和兩種情況進(jìn)行討論。
(9)求解不等式不僅要重視思路的理解,更要重視表述的規(guī)范,作為教師應(yīng)給學(xué)生做出示范,學(xué)生通過模仿掌握書寫格式,這樣才有可能保證運(yùn)算的合理性與結(jié)果的準(zhǔn)確性。
不等關(guān)系與不等式教案篇八
在上課之前,老師請(qǐng)大家來幫一個(gè)忙,幫老師來解決一道難題:老師有一個(gè)熟人姓王,他有一個(gè)哥哥和一個(gè)弟弟,哥哥的年齡是20歲,小王的年齡的2倍加上他弟弟年齡的5倍等于97.現(xiàn)在小王要老師猜猜他和他弟弟的年齡各是多少?俗話說三個(gè)臭皮匠,可抵一個(gè)諸葛亮,現(xiàn)在我們?nèi)嗤瑢W(xué)可抵得上很多諸葛亮,所以老師相信大家一定有辦法的.
(一)提出問題,引發(fā)討論
當(dāng)一個(gè)未知數(shù)同時(shí)滿足幾個(gè)不等關(guān)系時(shí),我們就按這些關(guān)系分別列幾個(gè)不等式,這樣就得到不等式組,用不等式組解決實(shí)際問題時(shí),其公共解是否一定為實(shí)際問題的解呢?請(qǐng)舉例說明.
(二)導(dǎo)入知識(shí),解釋疑難
1.教材內(nèi)容講解
2.探究活動(dòng)
1. 應(yīng)用不等式組解決實(shí)際問題的步驟:1.審清題意;2.設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組;3.解不等式組;4.由不等式組的解確立實(shí)際問題的解;5.作答.(與列方程組解應(yīng)用題進(jìn)行比較)
2.雙基練習(xí)
1.已知方程組 有正整數(shù)解,則k的取值范圍是_________.
2.若不等式組 無解,求a的取值范圍.
3.當(dāng)2(m-3) 時(shí),求關(guān)于x的不等式 x-m的解集.
某商場為了促銷,開展對(duì)顧客贈(zèng)送禮品活動(dòng),準(zhǔn)備了若干件禮品送給顧客,在一次活動(dòng)中,如果每人送5件,則還余8件,如果每人送7件,則最后一人還不足3件.設(shè)該商場準(zhǔn)備了m件禮品,有x名顧客獲贈(zèng),請(qǐng)回答下列問題:
(1)用含x的代數(shù)式表示m.
(2)求出該次活動(dòng)中獲贈(zèng)顧客人數(shù)及所準(zhǔn)備的禮品數(shù)
不等關(guān)系與不等式教案篇九
(一)知識(shí)與能力目標(biāo):(課件第2張)
1.體會(huì)解不等式的步驟,體會(huì)比較、轉(zhuǎn)化的作用。
2.學(xué)生理解、鞏固一元一次不等式的解法.
3.用數(shù)軸表示解集,加深對(duì)數(shù)形結(jié)合思想的進(jìn)一步理解和掌握。
4.在解決實(shí)際問題中能夠體會(huì)將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,學(xué)會(huì)用數(shù)學(xué)語言表示實(shí)際的數(shù)量關(guān)系。
(二)過程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過對(duì)一元一次方程的解法的復(fù)習(xí)和對(duì)不等式性質(zhì)的利用,導(dǎo)入對(duì)解不等式的討論。
3.學(xué)生體會(huì)通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達(dá)轉(zhuǎn)化為數(shù)學(xué)語言,從而解決實(shí)際問題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
(三)情感、態(tài)度與價(jià)值目標(biāo):(課件第3張)
1.在教學(xué)過程中,學(xué)生體會(huì)數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式的解法,樹立辯證統(tǒng)一思想。
3.通過學(xué)生的討論,學(xué)生進(jìn)一步體會(huì)集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學(xué)習(xí),學(xué)生體會(huì)不等式解集的奇異的數(shù)學(xué)美。
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的`階梯步驟,并能準(zhǔn)確求出解集。
3.能將文字?jǐn)⑹鲛D(zhuǎn)化為數(shù)學(xué)語言,從而完成對(duì)應(yīng)用問題的解決。
教材中沒有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡單不等式的過程,并通過學(xué)生的討論交流使學(xué)生經(jīng)歷知識(shí)的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會(huì)用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵(lì)學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
(一)、復(fù)習(xí):
教學(xué)環(huán)節(jié)
教 師 活 動(dòng)
學(xué) 生 活 動(dòng)
設(shè) 計(jì) 意 圖
不等關(guān)系與不等式教案篇十
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一。
基于此,我準(zhǔn)備采用的教法講授法、討論法。德國教育學(xué)家第斯多慧:差的教師只會(huì)奉送真理,好的教師則交給學(xué)生如何發(fā)現(xiàn)真理,老師的教是為了不教,這才是教學(xué)的最高境界,所以我采用的學(xué)法是練習(xí)法、自主合作法。
六、說教學(xué)過程。
在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項(xiàng)活動(dòng)的安排也注重互動(dòng)、交流,最大限度的調(diào)動(dòng)學(xué)生參與課堂的積極性、主動(dòng)性。
(一)新課導(dǎo)入。
首先是導(dǎo)入環(huán)節(jié),我采用復(fù)習(xí)舊知的導(dǎo)入方法。我會(huì)讓學(xué)生回憶不等式的概念以及一元一次方程的概念,明確指出今天學(xué)習(xí)的內(nèi)容是《一元一次不等式》。
這樣的設(shè)計(jì)既可以考查學(xué)生對(duì)之前知識(shí)的掌握情況,還能夠?yàn)榻裉鞂W(xué)習(xí)一元一次方程的概念打下基礎(chǔ)。而且開門見山的導(dǎo)入方式能夠快速地進(jìn)入主題。
(二)新知探索。
接下來是新知探索環(huán)節(jié),首先我請(qǐng)學(xué)生類比不等式以及一元一次方程的概念,給一元一次不等式下定義。
能夠總結(jié)出:含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
接下來讓學(xué)生回憶上節(jié)課學(xué)習(xí)的不等式x-726如何解決的,通過學(xué)生回憶總結(jié)可以得到:通過“不等式的兩邊都加7,不等號(hào)的方向不變”而得到的。
接下來提問學(xué)生有沒有更加簡便的方法解不等式?讓學(xué)生類比解一元一次方程的步驟進(jìn)行解題??梢缘玫较喈?dāng)于可以用“移項(xiàng)”,來解決。
在這個(gè)過程中,強(qiáng)調(diào)每一個(gè)步驟,在第二題最后一步,強(qiáng)調(diào)當(dāng)不等式的兩邊同時(shí)乘以(或除以)同一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向改變。
從而我們歸納:解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa的形式。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者”。根據(jù)這一教學(xué)理念,在本環(huán)節(jié)中,我組織學(xué)生進(jìn)行了自主探究活動(dòng),讓學(xué)生在保持高度學(xué)習(xí)熱情和探究欲望的活動(dòng)過程中,始終以愉悅的心情,親身經(jīng)歷和體驗(yàn)知識(shí)的形成過程。培養(yǎng)學(xué)生的探究能力、分析思維能力,激發(fā)他們的創(chuàng)新意識(shí)、參與意識(shí)。
(三)課堂練習(xí)。
之所以這樣設(shè)計(jì)是因?yàn)榫毩?xí)是掌握知識(shí)、形成技能、發(fā)展思維的重要手段,針對(duì)本課的教學(xué)重點(diǎn)和難點(diǎn),上述練習(xí),目的是讓學(xué)生進(jìn)一步鞏固對(duì)新知的理解??梢陨罨虒W(xué)內(nèi)容,培養(yǎng)思維的靈活性。
(四)小結(jié)作業(yè)。
最后一個(gè)環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學(xué)生自己來總結(jié)今天的收獲。
這樣既發(fā)揮了學(xué)生的主體性,又可以提高學(xué)生的總結(jié)概括能力,讓我在第一時(shí)間得到學(xué)習(xí)反饋,及時(shí)加以疏導(dǎo)。
通過這樣的方式能夠?yàn)楸竟?jié)課學(xué)習(xí)的知識(shí)進(jìn)行進(jìn)一步的鞏固。
七、說板書設(shè)計(jì)。
我的板書設(shè)計(jì)遵循簡潔明了突出重點(diǎn)的意圖,這是我的板書設(shè)計(jì):
不等關(guān)系與不等式教案篇十一
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標(biāo)。
(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;
(2)體驗(yàn)數(shù)形結(jié)合思想。
3、情感、態(tài)度和價(jià)值觀目標(biāo)。
(1)感悟數(shù)學(xué)的發(fā)展過程,學(xué)會(huì)用數(shù)學(xué)的眼光觀察、分析事物;
(2)體會(huì)多角度探索、解決問題。
【能力培養(yǎng)】。
培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的學(xué)習(xí)能力,辯證地分析問題的能力,學(xué)以致用的能力,分析問題、解決問題的能力。
【教學(xué)重點(diǎn)】。
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式的證明過程。
【教學(xué)難點(diǎn)】。
【教學(xué)方法】。
教師啟發(fā)引導(dǎo)與學(xué)生自主探索相結(jié)合。
【教學(xué)工具】。
課件輔助教學(xué)、實(shí)物演示實(shí)驗(yàn)。
【教學(xué)流程】。
shapemergeformat。
【教學(xué)過程設(shè)計(jì)】。
創(chuàng)設(shè)情景,引入新課。
趙爽弦圖。
1.探究圖形中的不等關(guān)系。
將圖中的“風(fēng)車”抽象成如圖,在正方形abcd中右個(gè)全等的直角三角形。
設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式:。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時(shí),正方形efgh縮為一個(gè)點(diǎn),這時(shí)有。
2.得到結(jié)論:一般的,如果。
3.思考證明:你能給出它的證明嗎?
證明:因?yàn)椤?/p>
當(dāng)
所以,,即。
1)特別的,如果a0,b0,我們用分別代替a、b,可得,通常我們把上式寫作:
用分析法證明:
要證(1)。
只要證(2)。
要證(2),只要證a+b-0(3)。
要證(3),只要證(-)(4)。
顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時(shí),(4)中的等號(hào)成立。
不等關(guān)系與不等式教案篇十二
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標(biāo)。
(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;。
(2)體驗(yàn)數(shù)形結(jié)合思想。
3、情感、態(tài)度和價(jià)值觀目標(biāo)。
(1)感悟數(shù)學(xué)的發(fā)展過程,學(xué)會(huì)用數(shù)學(xué)的眼光觀察、分析事物;。
(2)體會(huì)多角度探索、解決問題。
不等關(guān)系與不等式教案篇十三
教學(xué)重點(diǎn)分析法。
教學(xué)難點(diǎn)分析法實(shí)質(zhì)的理解。
教學(xué)方法啟發(fā)引導(dǎo)式。
教學(xué)活動(dòng)。
(一)導(dǎo)入新課。
(教師活動(dòng))教師提出問題,待學(xué)生回答和思考后點(diǎn)評(píng).。
(學(xué)生活動(dòng))回答和思考教師提出的問題.。
[問題1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?
[問題2]能否用比較法或綜合法證明不等式:
在證明不等式時(shí),若用比較法或綜合法難以下手時(shí),可采用另一種證明方法:分析法.(板書課題)。
設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)證明不等式的方法.指出用比較法和綜合法證明不等式的不足之處,
激發(fā)學(xué)生學(xué)習(xí)新的證明不等式知識(shí)的積極性,導(dǎo)入本節(jié)課學(xué)習(xí)內(nèi)容:用分析法證明不等式.。
(二)新課講授。
【嘗試探索、建立新知】。
[問題2]當(dāng)我們尋找的充分條件已經(jīng)是成立的`不等式時(shí),說明了什么呢?
[問題3]說明要證明的不等式成立的理由是什么呢?
分析法證明不等式的概念.(見課本)。
【例題示范、學(xué)會(huì)應(yīng)用】。
(學(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問題,與教師一道完成問題的論證.。
不等關(guān)系與不等式教案篇十四
課前復(fù)習(xí)提問時(shí),給學(xué)生的復(fù)習(xí)思考時(shí)間太短,開始問了幾個(gè)學(xué)生不等式的三個(gè)基本性質(zhì),有的答不出來,有的答對(duì)一點(diǎn)但不完整。在很多學(xué)生沒有作好充分準(zhǔn)備時(shí)問到這個(gè)問題有點(diǎn)慌亂,我覺得更好的辦法是先讓學(xué)生看一下書復(fù)習(xí)一下不等式的三個(gè)基本性質(zhì),然后合起書再叫同學(xué)來說效果會(huì)更好。
例2學(xué)生對(duì)實(shí)際問題中的字母取值范圍考慮不全,在講解這個(gè)問題時(shí)帶有點(diǎn)填壓式,告訴學(xué)生字母的取值要大于或等于0,講過之后可能學(xué)生印象還是不深。我覺得應(yīng)先舉一些實(shí)際生活中常見的例子,比如在數(shù)人的個(gè)數(shù)時(shí)字母應(yīng)取什么值等,多列舉一些例子讓學(xué)生感性上認(rèn)識(shí),從而引導(dǎo)學(xué)生思考例2的字母的.取值范圍。
例3學(xué)生根據(jù)三邊關(guān)系往往只列出一個(gè)不等式,在教學(xué)時(shí)我先采取了提問的方式,給出了三個(gè)問題,引出三個(gè)不等式,然后讓學(xué)生移項(xiàng)變形,又得出三個(gè)不等式,對(duì)總結(jié)三角形任意兩邊之差小于第三邊做了輔墊。教學(xué)效果較好。
學(xué)生在回答問題的過程中,為了更快的得到自己預(yù)期的答案,往往打斷學(xué)生的回答,剝奪了學(xué)生的主動(dòng)權(quán);比如學(xué)生在總結(jié)不等式性質(zhì)3時(shí),總怕他們出錯(cuò)所以老師急于公布結(jié)論。有時(shí)在學(xué)生思考問題時(shí)做一些補(bǔ)充打斷學(xué)生的思路,這樣對(duì)學(xué)生思考問題又帶來一定影響;課堂小結(jié)中學(xué)生的體會(huì)與收獲談的不是很好。
不等關(guān)系與不等式教案篇十五
【教學(xué)工具】。
課件輔助教學(xué)、實(shí)物演示實(shí)驗(yàn)。
【教學(xué)流程】。
shapemergeformat。
【教學(xué)過程設(shè)計(jì)】。
創(chuàng)設(shè)情景,引入新課。
趙爽弦圖。
1.探究圖形中的不等關(guān)系。
將圖中的“風(fēng)車”抽象成如圖,在正方形abcd中右個(gè)全等的直角三角形。
設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式:。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時(shí),正方形efgh縮為一個(gè)點(diǎn),這時(shí)有。
2.得到結(jié)論:一般的,如果。
3.思考證明:你能給出它的證明嗎?
證明:因?yàn)椤?/p>
當(dāng)
所以,,即。
1)特別的,如果a0,b0,我們用分別代替a、b,可得,通常我們把上式寫作:
2)從不等式的性質(zhì)推導(dǎo)基本不等式。
用分析法證明:
要證(1)。
只要證(2)。
要證(2),只要證a+b-0(3)。
要證(3),只要證(-)(4)。
顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時(shí),(4)中的等號(hào)成立。
不等關(guān)系與不等式教案篇十六
目的:以不等式的等價(jià)命題為依據(jù),揭示不等式的常用證明方法之一——比較法,要求學(xué)生能教熟練地運(yùn)用作差、作商比較法證明不等式。
過程:
一、復(fù)習(xí):
2.比較法之一(作差法)步驟:作差——變形——判斷——結(jié)論。
二、作差法:(p13—14)。
甲乙兩人同時(shí)同地沿同一路線走到同一地點(diǎn),甲有一半時(shí)間以速度。
m
行走,另一半時(shí)間以速度。
n
行走;有一半路程乙以速度。
m
行走,另一半路。
將本文的word文檔下載到電腦,方便收藏和打印。
不等關(guān)系與不等式教案篇十七
教法與學(xué)法:
1.教學(xué)理念:“人人學(xué)有用的數(shù)學(xué)”
2.教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.。
3.教學(xué)手段:多媒體應(yīng)用教學(xué)。
4.學(xué)法指導(dǎo):嘗試,猜想,歸納,總結(jié)。
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,教材和學(xué)生的特點(diǎn),我制定了以下四個(gè)教學(xué)環(huán)節(jié)。
下面我將具體的教學(xué)過程闡述一下:
一、創(chuàng)設(shè)情境,導(dǎo)入新課。
上課伊始,我將用一個(gè)公園買門票如何才劃算的例子導(dǎo)入課題。
(此處學(xué)生是很容易得出買30張門票需要4x30=120(元),買27張門票需要5x27=135(元),由于120〈135,所以買30張門票比買27張還要?jiǎng)澦?。由此建立了一個(gè)數(shù)與數(shù)之間的不等關(guān)系式)。
緊接著進(jìn)一步提問:若人數(shù)是x時(shí),又當(dāng)如何買票劃算?
二、探求新知,講授新課。
引例列出了數(shù)與數(shù)之間的不等關(guān)系和含有未知量1205x的不等關(guān)系。那么在不等式概念提出之前,先讓學(xué)生回顧等式的概念,“類比”等式的概念,嘗試著去總結(jié)歸納出不等式的概念。使學(xué)生從一個(gè)低起點(diǎn),通過獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)應(yīng)用數(shù)學(xué)的自信心,為下面的學(xué)習(xí)調(diào)動(dòng)了積極。
接下來我用一組例題來鞏固一下對(duì)不等式概念的認(rèn)知,把表示不等量關(guān)系的常用關(guān)鍵詞提出。
(1)a是負(fù)數(shù);
(2)a是非負(fù)數(shù);
(3)a與b的和小于5;
(4)x與2的差大于-1;
(5)x的4倍不大于7;
(6)的一半不小于3。
關(guān)鍵詞:非負(fù)數(shù),非正數(shù),不大于,不小于,不超過,至少。
難點(diǎn)突破:通過上面三組算式,學(xué)生已經(jīng)嘗試著歸納出不等式的三條基本性質(zhì)了。不等式性質(zhì)3是本節(jié)的難點(diǎn)。在不等式性質(zhì)3用數(shù)探討出以后,換一個(gè)角度讓學(xué)生想一想,是否能在數(shù)軸上任取兩個(gè)點(diǎn),用相反數(shù)的相關(guān)知識(shí)挖掘一下,乘以或除以一個(gè)負(fù)數(shù)時(shí),任意兩個(gè)數(shù)比較是否性質(zhì)3都成立。通過“數(shù)形結(jié)合”的思想,使數(shù)的取值從特殊化到一般化,從對(duì)具體數(shù)的感知完成到字母代替數(shù)的升華。讓學(xué)生用實(shí)例對(duì)一些數(shù)學(xué)猜想作出檢驗(yàn),從而增加猜想的可信程度。同時(shí),讓學(xué)生嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
反饋練習(xí):用一個(gè)小練習(xí)鞏固三條性質(zhì)。
如果ab,那么。
(1)a-3b-3(2)2a2b(3)-3a-3b。
提出疑問,我們討論性質(zhì)2,3是好象遺忘了一個(gè)數(shù)0。
引出讓學(xué)生歸納,等式與不等式的區(qū)別與聯(lián)系。
三、拓展訓(xùn)練。
根據(jù)不等式基本性質(zhì),將下列不等式化為“”或“”的形式。
再次回到開頭的門票問題,讓學(xué)生解出相應(yīng)的x的取值范圍。
四、小結(jié)。
1.新知識(shí)。
2.與舊知識(shí)的聯(lián)系。
五、作業(yè)的布置。
以上是我對(duì)這節(jié)課的教學(xué)的看法,希望各位專家指正。謝謝!
“讓學(xué)生主動(dòng)參與數(shù)學(xué)教學(xué)的全過程,真正成為學(xué)習(xí)的主人”
不等關(guān)系與不等式教案篇十八
填空:
教師追問:第三題()里可以填多少個(gè)數(shù)?第4題呢?
為什么3、4題()里可以填無數(shù)個(gè)數(shù)?
()里填任何數(shù)都行嗎?哪個(gè)數(shù)不行?(板書:零除外)。
這里為什么必須“零除外”?
(板書課題:分?jǐn)?shù)基本性質(zhì))。
4.深入理解分?jǐn)?shù)基本性質(zhì).。
教師提問:分?jǐn)?shù)的基本性質(zhì)里哪幾個(gè)詞比較重要?
為什么“都”和“相同”很重要?
為什么“分?jǐn)?shù)大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習(xí).。
1.用直線把相等的分?jǐn)?shù)連接起來.。
2.把下列分?jǐn)?shù)按要求分類.。
和相等的分?jǐn)?shù):
和相等的分?jǐn)?shù):
3.判斷下列各題的對(duì)錯(cuò),并說明理由.。
4.填空并說出理由.。
5.集體練習(xí).。
四、照應(yīng)課前談話.。
問:現(xiàn)在誰知道哥哥、姐姐、弟弟三個(gè)人,誰吃的西瓜多呢?
板書:
五、課堂小結(jié).。
這節(jié)課你有什么收獲?
六、布置作業(yè).。
1.指出下面每組中的兩個(gè)分?jǐn)?shù)是相等的還是不相等的.。
2.在下面的括號(hào)里填上適當(dāng)?shù)臄?shù).。
將本文的word文檔下載到電腦,方便收藏和打印。
不等關(guān)系與不等式教案篇十九
1、熟練掌握一元一次不等式組的解法,會(huì)用一元一次不等式組解決有關(guān)的實(shí)際問題;。
3、體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂趣,感受一元一次不等式組在解決實(shí)際問題中的價(jià)值。
教學(xué)難點(diǎn)。
正確分析實(shí)際問題中的不等關(guān)系,列出不等式組。
知識(shí)重點(diǎn)。
建立不等式組解實(shí)際問題的數(shù)學(xué)模型。
探究實(shí)際問題。
出示教科書第145頁例2(略)。
問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?
(2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(3)解決這個(gè)問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結(jié)。
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?
在討論或議論的基礎(chǔ)上老師揭示:
步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。
不等關(guān)系與不等式教案篇二十
《不等式的基本性質(zhì)》它是北師大版八年級(jí)下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點(diǎn),教法學(xué)法,教學(xué)過程這五個(gè)方面談?wù)勎覍?duì)這節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用,所以對(duì)不等式的學(xué)習(xí)有著重要的實(shí)際意義。同時(shí),不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。
根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的內(nèi)容兼顧我班學(xué)生的特點(diǎn),我制定了如下教學(xué)目標(biāo):
知識(shí)與技能:
1.感受生活中存在的不等關(guān)系,了解不等式的意義。
過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會(huì)不等式與等式的異同。
情感態(tài)度與價(jià)值觀:經(jīng)歷由具體實(shí)例建立不等式模型的過程,進(jìn)一步符號(hào)感與數(shù)學(xué)化的能力。
教學(xué)重難點(diǎn):
【本文地址:http://mlvmservice.com/zuowen/17262336.html】