八年級數(shù)學下勾股定理的證明二教案(實用21篇)

格式:DOC 上傳日期:2023-12-04 07:59:04
八年級數(shù)學下勾股定理的證明二教案(實用21篇)
時間:2023-12-04 07:59:04     小編:琉璃

教案可以作為教師的備課參考,幫助教師更好地組織講授內(nèi)容。教案的編寫需要注重思維導圖的運用,以幫助學生更好地理解和記憶知識點。通過觀摩他人的教案,可以幫助我們提高編寫教案的能力。

八年級數(shù)學下勾股定理的證明二教案篇一

在教學中努力推進九年義務教育,落實新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。

通過數(shù)學課的教學,使學生切實學好從事現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術(shù)所必需的數(shù)學基本知識和基本技能;努力培養(yǎng)學生的運算能力、邏輯思維能力,以及分析問題和解決問題的能力。

二、學情分析

八年級是初中學習過程中的關(guān)鍵時期,學生基礎(chǔ)的好壞,直接影響到將來是否能升學。優(yōu)生不多,思想不夠活躍,有少數(shù)學生不上進,思維跟不上。要在本期獲得理想成績,老師和學生都要付出努力,充分發(fā)揮學生是學習的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。

三、本學期教學內(nèi)容分析

本學期教學內(nèi)容共計六章。

第一章《三角形的證明》

本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關(guān)的一些結(jié)論,證明線段垂直平分線和角平分線的有關(guān)性質(zhì),將研究直角三角形全等的判定,進一步體會證明的必要性。

第二章《一元一次不等式和一元一次不等式組》

本章通過具體實例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應用;通過具體實例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應。

第三章《圖形的平移與旋轉(zhuǎn)》

本章將在小學學習的基礎(chǔ)上進一步認識平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認識并欣賞平移,中心對稱在自然界和現(xiàn)實生活中的應用。

第四章《分解因式》

本章通過具體實例分析分解因式與整式的乘法之間的關(guān)系揭示分解因式的實質(zhì),最后學習分解因式的幾種基本方法。

第五章《分式與分式方程》

本章通過分數(shù)的有關(guān)性質(zhì)的回顧建立了分式的概念、性質(zhì)和運算法則,并在此基礎(chǔ)上學習分式的化簡求值、解分式方程及列分式方程解應用題,能解決簡單的實際應用問題。

第六章《平行四邊形》

本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實驗等幾何發(fā)現(xiàn)之旅,享受證明之美。

四、主要措施

1、面向全體學生。

由于學生在知識、技能方面的發(fā)展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應從大多數(shù)學生的實際出發(fā),并兼顧學習有困難的和學有余力的學生。對學習有困難的學生,要特別予以關(guān)心,及時采取有效措施,激發(fā)他們學習數(shù)學的興趣,指導他們改進學習方法。幫助他們解決學習中的困難,使他們經(jīng)過努力,能夠達到大綱中規(guī)定的基本要求,對學有余力的學生,要通過講授選學內(nèi)容和組織課外活動等多種形式,滿足他們的學習愿望,發(fā)展他們的數(shù)學才能。

2、重視改進教學方法,堅持啟發(fā)式,反對注入式。

教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學生課前完成,教學中教師應幫助學生梳理新課知識,指出重點和易錯點,解答學生預習時遇到的問題,再設計提高題由學生進行嘗試,使學生在學習中體會成功,調(diào)動學習積極性,同時也可激勵學生自我編題。努力培養(yǎng)學生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實際問題上升為數(shù)學模型的能力,注意激勵學生的創(chuàng)新意識。

3、 改革作業(yè)結(jié)構(gòu)減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、淺三個層次作業(yè),使每類學生都能在原有基礎(chǔ)上提高。

4、課后輔導實行流動分層。

5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

6、培養(yǎng)學生良好的學習習慣,陶行知說:教育就是培養(yǎng)習慣,有助于學生穩(wěn)步提高學習成績,發(fā)展學生的'非智力因素,彌補智力上的不足。

7、開展課題的研究,課外調(diào)查,操作實踐,帶動班級學生學習數(shù)學,同時發(fā)展這一部分學生的特長。

8、進行個別輔導,優(yōu)生提升能力,扎實打牢基礎(chǔ)知識;對學困生,一些關(guān)鍵知識,輔導他們過關(guān),為他們以后的發(fā)展鋪平道路。

9、培養(yǎng)學生學習數(shù)學的良好習慣。

四、教學進度

第一章《三角形的證明》13課時

1.1等腰三角形 4課時

1.2直角三角形 2課時

1.3線段的垂直平分線 2課時

1.4角平分線 2課時

復習小節(jié)與檢測 3課時

第二章《一元一次不等式和一元一次不等式組》 12課時

2.1 不等關(guān)系 1課時

2.2 不等式的基本性質(zhì) 1課時

2.3 不等式的解集 1課時

2.4 一元一次不等式2課時

2.5 一元一次不等式與一次函數(shù)2課時

2.6 一元一次不等式組 2課時

復習小節(jié) 與檢測 3課時

第三章《圖形的平移與旋轉(zhuǎn)》 10課時

3.1圖形的平移 3課時

3.2圖形的旋轉(zhuǎn) 2 課時

3.3中心對稱 1課時

3.4簡單的圖形設計 1 課時

復習小節(jié)與檢測 3課時

期中考試復習2 課時

第四章《分解因式》7課時

4.1分解因式1課時

4.2提公因式法 2課時

4.3公式法 2課時

4.4重心 2課時

復習小節(jié)與檢測 2課時

第五章《分式與分式方程》 11課時

5.1認識分式 2課時

5.2 分式的乘除法 1課時

5.3分式的加減法 3課時

5.4分式方程 3課時

復習小節(jié)與檢測 2課時

第六章《平行四邊形》 10課時

4.1平行四邊形的性質(zhì) 2課時

4.2特殊的平行四邊形的判定 3課時

4.3三角形的中位線 1課時

4.4多邊形的內(nèi)角和外角和 2課時

復習小節(jié)與檢測 2課時

八年級數(shù)學下勾股定理的證明二教案篇二

教學目標:

〔知識與技能〕。

1.在生活實例中認識軸對稱圖.

2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。

〔過程與方法〕。

2、在靈活運用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進一步培說理和進行簡單推理的能力。

〔情感、態(tài)度與價值觀〕。

辯證唯物主義觀點。

教學重點:.

理解軸對稱的概念。

教學難點。

能夠識別軸對稱圖形并找出它的對稱軸.

教具準備:三角尺。

教學過程。

一.創(chuàng)設情境,引入新課。

1.舉實例說明對稱的重要性和生活充滿著對稱。

2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.

3.軸對稱是對稱中重要的一種,讓我們一起走進軸對稱世界,探索它的秘密吧!

二.導入新課。

1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.

強調(diào):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對稱的例子.

練習:從學生生活周圍的事物中來找一些具有對稱特征的例子.

3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關(guān)于這條直線(成軸)?對稱.

4.動手操作:取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意。

刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?

歸納小結(jié):由此我們進一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.

5.練習:你能找出它們的對稱軸嗎?分小組討論.

思考:大家想一想,你發(fā)現(xiàn)了什么?

小結(jié)得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點是對應點,叫做對稱點.

三.隨堂練習。

1、課本60練習1、2。

四.課時小結(jié)。

分了軸對稱圖形和兩個圖形成軸對稱.

五.課后作業(yè)。

習題13.1.1、2、6題.

六.教后記。

八年級數(shù)學下勾股定理的證明二教案篇三

今天聽了馬牧池中學吉老師的一節(jié)課和薛校長的報告學到了很多東西,特別是在小組合作學習方面。吉老師的這節(jié)課勾股定理是節(jié)很難講的一節(jié)課,吉老師從知識的形成過程讓學生知道了勾股定理是怎么來的`,從而鍛煉了學生的思維能力。在平時的學習過程中吉老師也很注意及時的總結(jié)規(guī)律性的東西。特別是在小組方面的問題比如有的學生之間的差異比較大,他們會對同步進行分布置任務。每節(jié)課他們都會有課堂達標的小測驗,學校也會進行抽測。

薛校長的報告從很多的實際介紹了他們的經(jīng)驗。要夯實自主學習,給學生自主學習的時間。我們要把臺階難度要都設的小一點,讓學生都能參入進來從而讓他們體會到學習的樂趣。我們還要給學生充分的自主學習的時間和空間。只有他們把問題討論清楚了以后再遇到他們才能找到頭緒。我們在課堂上要注重追問,注重互助,探究結(jié)論的形成過程。

通過這次的學習以后在自己的課堂中要注意這些問題,真正培養(yǎng)起學生的邏輯思維能力來。

八年級數(shù)學下勾股定理的證明二教案篇四

理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理;利用勾股定理的逆定理判定一個三角形是不是直角三角形。

【過程與方法】。

通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。

【情感態(tài)度與價值觀】。

通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

二、教學重難點。

【重點】。

【難點】。

三、教學過程。

(一)導入新課。

復習回顧出勾股定理。

師生活動:學生獨立回憶勾股定理,師生共同分析得出其題設和結(jié)論,教師引導指出勾股定理是從形的特殊性得出三邊之間的數(shù)量關(guān)系。

追問1:你能把勾股定理的題設與結(jié)論交換得到一個新的命題嗎?

師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題。

(四)小結(jié)作業(yè)。

作業(yè):總結(jié)一下判定一個三角形是直角三角形的方法。

八年級數(shù)學下勾股定理的證明二教案篇五

知識與技能:

1、了解勾股定理的文化背景,體驗勾股定理的探索過程,了解利用拼圖驗證勾股定理的方法。

2、了解勾股定理的內(nèi)容。

3、能利用已知兩邊求直角三角形另一邊的長。

過程與方法:

1、通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。

2、在探索活動中,學會與人合作,并能與他人交流思維的過程和探索的結(jié)果。

情感與態(tài)度:

1、通過對勾股定理歷史的了解,對比介紹我國古代和西方數(shù)學家關(guān)于勾股定理的研究,激發(fā)學生熱愛祖國悠久文化的情感,激勵學生奮發(fā)學習。

2、在探索勾股定理的過程中,體驗獲得結(jié)論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識和探索精神。

二教學重、難點。

重點:探索和證明勾股定理難點:用拼圖方法證明勾股定理。

三、學情分析。

學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。

四、教學策略。

本節(jié)課采用探究發(fā)現(xiàn)式教學,由淺入深,由特殊到一般地提出問題,鼓勵學生采用觀察分析、自主探索、合作交流的學習方法,讓學生經(jīng)歷數(shù)學知識的形成與應用過程。

五、教學過程。

教學環(huán)節(jié)。

教學內(nèi)容。

活動和意圖。

創(chuàng)設情境導入新課。

以“航天員在太空中遇到外星人時,用什么語言進行溝通”導入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進行和外星人溝通,為什么呢?通過一段vcr說明原因。

[設計意圖]激發(fā)學生對勾股定理的興趣,從而較自然的引入課題。

新知探究。

畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。

(1)同學們,請你也來觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?

(2)你能找出圖18.1-1中正方形1、2、3面積之間的關(guān)系嗎?

通過講述故事來進一步激發(fā)學生學習興趣,使學生在不知不覺中進入學習的最佳狀態(tài)。

如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。

回答以下內(nèi)容:

(1)想一想,怎樣利用小方格計算正方形a、b、c面積?

(2)怎樣求出正方形面積c?

(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?

(4)將正方形a,b,c分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?

引導學生將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.

問題是思維的起點”,通過層層設問,引導學生發(fā)現(xiàn)新知。

探究交流歸納。

拼圖驗證加深理解。

如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。

回答以下內(nèi)容:

(1)想一想,怎樣利用小方格計算正方形p、q、r的面積?

(2)怎樣求出正方形面積r?

(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?

(4)將正方形p,q,r分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?

由以上兩問題可得猜想:

直角三角形兩直角邊的平方和等于斜邊的平方。

而猜想要通過證明才能成為定理。

活動探究:

(1)讓學生利用學具進行拼圖。

(2)多媒體課件展示拼圖過程及證明過程理解數(shù)學的嚴密性。

從特殊的等腰直角三角形過渡到一般的直角三角形。

滲透從特殊到一般的數(shù)學思想.為學生提供參與數(shù)學活動的時間和空間,發(fā)揮學生的主體作用;培養(yǎng)學生的類比遷移能力及探索問題的能力,使學生在相互欣賞、爭辯、互助中得到提高。

通過這些實際操作,學生進行一步加深對數(shù)形結(jié)合的理解,拼圖也會產(chǎn)生感性認識,也為論證勾股定理做好準備。

利用分組討論,加強合作意識。

1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。

2、加強數(shù)學嚴密教育,從而更好地理解代數(shù)與圖形相結(jié)合。

應用新知解決問題。

在應用新知這個環(huán)節(jié),我把以往的單純求解邊長之類的題目換成了幾個運用勾股定理來解決問題的古算題。

把生活中的實物抽象成幾何圖形,讓學生了解豐富變幻的圖形世界,培養(yǎng)了學生抽象思維能力,特別注重培養(yǎng)學生認識事物,探索問題,解決實際的能力。

回顧小結(jié)整體感知。

在最后的小結(jié)中,不但對知識進行小結(jié)更對方法要進行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達哥拉斯樹,讓學生切身感受到其實數(shù)學與生活是緊密聯(lián)系的,進一步發(fā)現(xiàn)數(shù)學的另一種美。

學生通過對學習過程的小結(jié),領(lǐng)會其中的數(shù)學思想方法;通過梳理所學內(nèi)容,形成完整知識結(jié)構(gòu),培養(yǎng)歸納概括能力。。

布置作業(yè)鞏固加深。

必做題:

1.完成課本習題1,2,3題。

選做題:

針對學生認知的差異設計了有層次的作業(yè)題,既使學生鞏固知識,形成技能,讓感興趣的學生課后探索,感受數(shù)學證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。

八年級數(shù)學下勾股定理的證明二教案篇六

教學目標:

1、知識目標:

(1)掌握解分式方程的步驟。

(2)理解解分式方程時驗根的必要性。

2、能力目標:

會按照解分式方程的步驟解分式方程。

3、情感與價值觀:

(1)培養(yǎng)學生自覺反思求解過程和自覺檢驗的良好習慣,培養(yǎng)嚴謹?shù)闹螌W態(tài)度。

(2)運用“轉(zhuǎn)化”的思想,將分式方程轉(zhuǎn)化為整式方程,從而獲得成就感和學習數(shù)學的自信。

老師引導學生自主探索分式方程的解法,將分式方程轉(zhuǎn)化為整式方程,在解題中親身體驗“轉(zhuǎn)化”思想。弄清了“轉(zhuǎn)化”的方向,也就明白了解分式方程的步驟,解題思路自然清晰,能力隨之形成。

重點:

1、探索解分式方程的步驟,熟練掌握分式方程的解法。

2、體會解分式方程驗根的必要性。

難點:如何將分式方程轉(zhuǎn)化為整式方程;體會分式方程驗根的必要性。

學情與教材分析:我所任教的學生大多頭腦聰明,在老師適當?shù)囊龑?,有一定的探求新知識的能力。但基礎(chǔ)不夠扎實,如計算容易出錯、考慮問題不夠嚴謹?shù)?。另外在學習本節(jié)課之前,已經(jīng)學習過《解一元一次方程》。對于《解一元一次方程》大部分同學已經(jīng)掌握,但由于是在七年級學習,有一定的時間間隔,部分同學可能已經(jīng)遺忘,給上本節(jié)課留下少許的困難。但估計絕大部分同學稍加回憶,應能接近以前的水平。本節(jié)課的內(nèi)容處在《分式》這章的后半部?!斗质健愤@章內(nèi)容安排如下的:首先介紹分式及分式的基本性質(zhì),接著進行分式的加、減、乘、除的運算,之后是根據(jù)實際問題列出分式方程(但未求解)。緊跟其后的是本節(jié)課內(nèi)容――解分式方程,最后一節(jié)是根據(jù)實際問題列出分式方程并求解。由此可見《解分式方程》涵蓋了本章前面的內(nèi)容,是本章知識的綜合與提高。學習好這部分內(nèi)容,不但掌握了初二階段有關(guān)分式方程的內(nèi)容,也為初三學習可化為一元二次的分式方程打下了良好的基礎(chǔ)。通過將分式方程轉(zhuǎn)化為整式方程(一元一次方程)滲透了一種重要的數(shù)學思想――轉(zhuǎn)化思想,即將原問題進行變形,使之轉(zhuǎn)化為我們所熟悉的或已解決的或易于解決的問題。

八年級數(shù)學下勾股定理的證明二教案篇七

教學目標:

1、知道一次函數(shù)與正比例函數(shù)的意義.

2、能寫出實際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.

3、滲透數(shù)學建模的思想,使學生體會到數(shù)學的抽象性和廣泛的應用性.

4、激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生分析問題、解決問題的能力.

教學重點:對于一次函數(shù)與正比例函數(shù)概念的理解.

教學難點:根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.

教學方法:結(jié)構(gòu)教學法、以學生“再創(chuàng)造”為主的教學方法。

教學過程:

1、復習舊課。

前面我們學習了函數(shù)的相關(guān)知識,(教師在黑板上畫出本章結(jié)構(gòu)并讓學生說出前三。

2、引入新課。

就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時一樣,我們在學習了函數(shù)這個概念以后,要學習一些具體的函數(shù),今天我們要學習的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)。

這些函數(shù)有什么共同特點呢?(注意根據(jù)學生情況適當引導,看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號內(nèi)用紅字強調(diào))那么y叫做x的一次函數(shù).特別地,當b=0時,一次函數(shù)就成為(是常數(shù),)。

3、例題講解。

例1、某油管因地震破裂,導致每分鐘漏出原油30公升。

(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。

(2)破裂3.5小時后,共漏出原油多少公升。

分析:y與x成正比例。

解:(1)(2)(升)。

例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價值1680元)。

(1)列出小丸子的銀行存款(不計利息)y與月數(shù)x的函數(shù)關(guān)系式;。

(2)多長時間以后,小丸子的銀行存款才能買隨身聽?

分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。

例3、已知函數(shù)是正比例函數(shù),求的值。

分析:本題考察的是正比例函數(shù)的概念。

解:

4、小結(jié)。

由學生對本節(jié)課知識進行總結(jié),教師板書即可.

5、布置作業(yè)。

書面作業(yè):1、書后習題2、自己寫出一個實際中的一次函數(shù)的例子并進行討論。

八年級數(shù)學下勾股定理的證明二教案篇八

一、學情分析:

知識技能基礎(chǔ):學生在小學已經(jīng)學過分數(shù)的乘除法,掌握了分數(shù)的乘除法法則,在學習分式的乘除法法則時可通過與分數(shù)的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結(jié)果的化簡奠定基礎(chǔ)。

能力基礎(chǔ):在過去的數(shù)學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。

二、教學目標:

知識目標:1、分式的乘除運算法則。

2、會進行簡單的分式的乘除法運算。

能力目標:1、類比分數(shù)的乘除運算法則,探索分式的乘除運算法則。

2、能解決一些與分式有關(guān)的簡單的實際問題。

情感目標:1、通過師生討論、交流,培養(yǎng)學生合作探究的意識和能力。

2、培養(yǎng)學生的創(chuàng)新意識和應用意識。

三、教學重點、難點。

重點:分式乘除法的法則及應用。

難點:分子、分母是多項式的分式的乘除法的運算。

三、教學過程:

第一環(huán)節(jié)復習舊知識。

復習小學學的分數(shù)乘除法法則,

活動目的:

復習小學學過的分數(shù)的乘除法運算,為學習分式乘除法的法則做準備。

第二環(huán)節(jié)引入新課。

活動內(nèi)容。

你能總結(jié)分式乘除法的法則嗎?與同伴交流。

分式的乘除法的法則:。

兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。

兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.

活動目的:

讓學生觀察運算,通過小組討論交流,并與分數(shù)的乘除法的法則類比,讓學生自己總結(jié)出分式的乘除法的法則。

第三環(huán)節(jié)知識運用。

活動內(nèi)容。

例題1:。

(1)(2)例題2。

(1)(2)活動目的:

通過例題講解,使學生會根據(jù)法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關(guān)的簡單的實際問題,增強學生代數(shù)推理的能力與應用意識。需要給學生強調(diào)的是分式運算的結(jié)果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結(jié)果要化簡。

第四環(huán)節(jié)走進中考。

(2012.漳州)第五環(huán)節(jié)課時小結(jié)。

活動內(nèi)容:

1.分式的乘除法的法則。

2.分式運算的結(jié)果通常要化成最簡分式或整式.

3.學會類比的數(shù)學方法。

第六環(huán)節(jié)當堂檢測。

八年級數(shù)學下勾股定理的證明二教案篇九

1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。

平行四邊形的判定方法及應用。

閱讀教材p44至p45。

利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:

(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?

(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

(3)你能說出你的做法及其道理嗎?

(5)你還能找出其他方法嗎?

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

證明:(畫出圖形)。

平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

八年級數(shù)學下勾股定理的證明二教案篇十

3、情感態(tài)度與價值觀:通過剪紙等活動,培養(yǎng)學生的實驗意識和探索精神,使學生進一步認識到數(shù)學與現(xiàn)實生活的密切聯(lián)系,感受數(shù)學的嚴謹性以及結(jié)果的確定性。

三、教學重、難點。

1、重點:等腰三角形的性質(zhì)。

2、難點:“等邊對等角”的證明。

四、教學方法。

動手體驗、小組、討論、合作、交流、探究驗證師生互動。

五、教、學具。

1、教具:長方形紙,剪刀,幻燈片。

2、學具:長方形紙,剪刀。

八年級數(shù)學下勾股定理的證明二教案篇十一

1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。

2.過程與方法目標:經(jīng)歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。

3.情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;通過有關(guān)勾股定理的歷史講解,對學生進行德育教育。

一、知識點講解。

知識點1:(已知兩邊求第三邊)。

1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。

2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。

3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?

知識點2:

利用方程求線段長。

(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?

(2)de與ce的位置關(guān)系。

(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?

利用方程解決翻折問題。

3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。

5、折疊矩形abcd的一邊ad,折痕為ae,且使點d落在bc邊上的點f處,已知ab=8cm,bc=10cm,以b點為原點,bc為x軸,ba為y軸建立平面直角坐標系。求點f和點e坐標。

6、邊長為8和4的矩形oabc的兩邊分別在直角坐標系的x軸和y軸上,若沿對角線ac折疊后,點b落在第四象限b1處,設b1c交x軸于點d,求(1)三角形adc的面積,(2)點b1的坐標,(3)ab1所在的直線解析式.

知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關(guān)系。

1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。

(2).將直角三角形的三邊擴大相同的倍數(shù)后,得到的三角形是____________。

(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。

二、課堂小結(jié)。

談一談你這節(jié)課都有哪些收獲?

三、課堂練習以上習題。

四、課后作業(yè)卷子。

本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應用能力。

針對本班學生的特點,學生知識水平、學習能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):

一、復習引入。

對上節(jié)課勾股定理內(nèi)容進行回顧,強調(diào)易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內(nèi)容簡短明了,花費時間短。

二、例題講解,鞏固練習,總結(jié)數(shù)學思想方法。

活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學生展示交流結(jié)果,之后教師引導學生書寫板書。整個活動以學生為主體,教師及時的引導和強調(diào)。

活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。

活動三:學生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學活動中發(fā)展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數(shù)學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數(shù)學的興趣和信心。

二、鞏固練習,熟練新知。

通過測量旗桿活動,發(fā)展學生的探究意識,培養(yǎng)學生動手操作的能力,增加學生應用數(shù)學知識解決實際問題的經(jīng)驗和感受。

在教學設計的實施中,也存在著一些問題:

1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設計中轉(zhuǎn)接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。

2.課堂上質(zhì)疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。

3.對學生課堂展示的評價方式應體現(xiàn)生評生,師評生,及評價的針對性和及時性。

八年級數(shù)學下勾股定理的證明二教案篇十二

如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。

說明:

(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b。

(1)確定最大邊;

(2)算出最大邊的平方與另兩邊的平方和;

(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。

能夠構(gòu)成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù)。

由直角三角形三邊為邊長所構(gòu)成的三個正方形滿足“兩個較小面積和等于較大面積”。

解決圓柱側(cè)面兩點間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運用勾股定理及其逆定理的應用。

有了上文梳理的勾股定理的逆定理知識點整理,相信大家對考試充滿了信心,同時預祝大家考試取得好成績。

八年級數(shù)學下勾股定理的證明二教案篇十三

今后的教學中:

(1)立足教材,鉆研教學大綱的要求;試卷中較多題目是根據(jù)課本的題目改編而來,從學生的考試情況來看課本的題目掌握不理想,這說明在平時的教學中對書本的重視不夠,過多地追求課外題目的訓練,但忽略學生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學生,讓學生積極參與到課堂中,多機會給學生展示,表演,講題,把思路和方法講出來,使學生更清淅地理解題目,提升自己對數(shù)學的理解。多點讓學生獨立思考,發(fā)現(xiàn)問題,解決問題。

(2)注重培養(yǎng)學生良好的學習習慣。

(3)加強例題示范教學,培養(yǎng)學生解題書寫表達。

(4)多一些數(shù)學方法、數(shù)學思想的滲透,少一些知識的生搬硬套。

(5)在數(shù)學教學過程中,課堂上系統(tǒng)地對數(shù)學知識進行整理、歸納、溝通知識間的內(nèi)在聯(lián)系,形成縱向、橫向知識鏈,從知識的聯(lián)系和整體上把握基礎(chǔ)知識。

(6)針對學生的兩極分化,加強課外作業(yè)布置的針對性。讓每個學生課外有適合的作業(yè)做,對不同層次的學生布置不同難度的作業(yè),提高課外學習的效率,減輕學生課外作業(yè)的負擔。正確看待學生學習數(shù)學的差異,克服兩極分化。數(shù)學課堂上多考慮、關(guān)照中下生,讓他們在數(shù)學課堂上聽得進,肯用手。

(7)教師在平時的課堂教學中必須致力于改變教師的教學行為和學生的學習方式,加強學法指導,提高學生的閱讀能力,平時培養(yǎng)學生的自學能力,使學生實實在在地理解課本知識,提高思維能力。平時要關(guān)注課本、關(guān)注運算能力、關(guān)注教學中的薄弱環(huán)節(jié)。

八年級數(shù)學下勾股定理的證明二教案篇十四

本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).

本節(jié)內(nèi)容的難點是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設與結(jié)論正好相反.學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.

本節(jié)課教學模式主要采用“學生主體性學習”的教學模式.提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納.教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人.具體說明如下:

學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關(guān)系?學生會很容易得出“相等”.然后學生完成證明,找一名學生的證明過程,進行投影總結(jié).最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理.這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.

線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點,教學時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯(lián)系.

八年級數(shù)學下勾股定理的證明二教案篇十五

2、范例講解。

(學生嘗試練習后,教師講評)。

例1:解方程例2:解方程例3:解方程講評時強調(diào):

1、怎樣確定最簡公分母?(先將各分母因式分解)。

2、解分式方程的步驟、

鞏固練習:p1471t,2t、

課堂小結(jié):解分式方程的一般步驟。

布置作業(yè):見作業(yè)本。

八年級數(shù)學下勾股定理的證明二教案篇十六

正比例函數(shù)的概念。

2、內(nèi)容解析。

一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學習的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學習,為后續(xù)類比學習一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗。

對正比例函數(shù)概念的學習,既要借助具體的函數(shù)進一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應,這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。

本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進行辨析,對實際事例進行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。

基于以上分析,確定本節(jié)課的教學重點:正比例函數(shù)的概念。

1、目標。

(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;

(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。

2、目標解析。

達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。

達成目標(2)的標志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想。

正比例函數(shù)是是初中學生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學生對函數(shù)基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的`每一個確定的值,另一個變量都有唯一確定的值與之對應;對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認識,要通過大量實例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程學生有一定難度。

因此本節(jié)課的教學難點是:對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程。

八年級數(shù)學下勾股定理的證明二教案篇十七

1、了解方差的定義和計算公式。

2、理解方差概念產(chǎn)生和形成過程。

3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。

重點:掌握方差產(chǎn)生的必要性和應用方差公式解決實際問題。

難點:理解方差公式。

(一)知識詳解:

方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。

用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。

給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。

(二)自主檢測小練習:

1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。

2、甲、乙兩組數(shù)據(jù)如下:

甲組:1091181213107;

乙組:7891011121112。

分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。

引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):

甲:9.10.10.13.7.13.10.8.11.8;

乙:8.13.12.11.10.12.7.7.10.10;

問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?

(2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))。

歸納:方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。

用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。

(一)例題講解:

金志強1013161412。

提示:先求平均數(shù),然后使用公式計算方差。

(二)小試身手。

1、甲、乙兩名學生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:

甲:7.8.6.8.6.5.9.10.7.4。

乙:9.5.7.8.7.6.8.6.7.7。

經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。

1、求下列數(shù)據(jù)的眾數(shù):

(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。

方差公式:

提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。

每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。

1、小爽和小兵在10次百米跑步練習中的成績?nèi)缦卤硭荆?單位:秒)。

如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?

必做題:教材141頁練習1.2;選做題:練習冊對應部分習題。

寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

八年級數(shù)學下勾股定理的證明二教案篇十八

1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。

2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。

算術(shù)平方根的概念。

根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。

這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關(guān)算術(shù)平方根的概念.

1、提出問題:(書p68頁的問題)

你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

這個問題相當于在等式擴=25中求出正數(shù)x的值.

一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

也就是,在等式=a (x0)中,規(guī)定x = .

2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

建議:求值時,要按照算術(shù)平方根的意義,寫出應該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應的值.例如表示25的算術(shù)平方根。

4、例1求下列各數(shù)的算術(shù)平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69練習1、2

怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

方法1:課本中的方法,略;

方法2:

可還有其他方法,鼓勵學生探究。

問題:這個大正方形的邊長應該是多少呢?

大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

1、這節(jié)課學習了什么呢?

2、算術(shù)平方根的具體意義是怎么樣的?

3、怎樣求一個正數(shù)的算術(shù)平方根

p75習題13.1活動第1、2、3題

八年級數(shù)學下勾股定理的證明二教案篇十九

1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.

2、會求一組數(shù)據(jù)的極差.

1、重點:會求一組數(shù)據(jù)的極差.

2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點、

從表中你能得到哪些信息?

比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法、

這是不是說,兩個時段的氣溫情況沒有什么差異呢?

根據(jù)兩段時間的氣溫情況可繪成的折線圖、

觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果、

本節(jié)課在教材中沒有相應的例題,教材p152習題分析。

問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大、問題2涉及前一個學期統(tǒng)計知識首先應回憶復習已學知識、問題3答案并不唯一,合理即可。

八年級數(shù)學下勾股定理的證明二教案篇二十

調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。

例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。

從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。

例如,要調(diào)查全縣農(nóng)村中學生學生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學生進行調(diào)查,就是抽樣調(diào)查,這500名學生平均每周每人的零花錢數(shù),就是總體的一個樣本。

將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。

例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。

解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。

又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。

解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。

所以這組數(shù)據(jù)的眾數(shù)是2和3。

【規(guī)律方法小結(jié)】。

(1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。

(2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。

(3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。

(4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。

探究交流。

1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?

解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。

總結(jié):

(1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。

(2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。

(3)中位數(shù)的單位與數(shù)據(jù)的單位相同。

(4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。

課堂檢測。

基本概念題。

1、填空題。

(1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;

(4)為了考察某公園一年中每天進園的人數(shù),在其中的30天里,對進園的人數(shù)進行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。

基礎(chǔ)知識應用題。

2、某公交線路總站設在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。

(1)計算這10個班次乘車人數(shù)的平均數(shù);

(2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。

八年級數(shù)學下勾股定理的證明二教案篇二十一

教學目標:

1、知識目標:了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設計出簡單的圖案。

2、能力目標:經(jīng)歷收集、欣賞、分析、操作和設計的過程,培養(yǎng)學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

3、情感體驗點:經(jīng)歷對典型圖案設計意圖的分析,進一步發(fā)展學生的空間觀念,增強審美意識,培養(yǎng)學生積極進取的生活態(tài)度。

重點與難點:

重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進行的圖案設計。

難點:分析典型圖案的設計意圖。

疑點:在設計的圖案中清晰地表現(xiàn)自己的設計意圖。

教具學具準備:

提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

教學過程設計:

1、情境導入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)。

明確在欣賞了圖案后,簡單地復習旋轉(zhuǎn)的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。

2、課本。

1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。

評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

(二)課內(nèi)練習。

(1)以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。

(2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。

(三)議一議。

生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進行交流。

(四)課時小結(jié)。

本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。

通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)。

進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結(jié)合實際背景分析它的設計意圖。

【本文地址:http://mlvmservice.com/zuowen/17215160.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔