八年級(jí)數(shù)學(xué)下勾股定理的證明二教案(專業(yè)18篇)

格式:DOC 上傳日期:2023-12-04 04:29:08
八年級(jí)數(shù)學(xué)下勾股定理的證明二教案(專業(yè)18篇)
時(shí)間:2023-12-04 04:29:08     小編:JQ文豪

教案能夠規(guī)范教學(xué)行為,提高教師的教學(xué)效果。編寫教案前,教師需要充分調(diào)研和了解學(xué)生的學(xué)情和學(xué)習(xí)需求。推薦給大家一些優(yōu)秀的教案范文,以便教師在教學(xué)過程中參考借鑒。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇一

在教學(xué)中努力推進(jìn)九年義務(wù)教育,落實(shí)新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。

通過數(shù)學(xué)課的教學(xué),使學(xué)生切實(shí)學(xué)好從事現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所必需的數(shù)學(xué)基本知識(shí)和基本技能;努力培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力,以及分析問題和解決問題的能力。

二、學(xué)情分析

八年級(jí)是初中學(xué)習(xí)過程中的關(guān)鍵時(shí)期,學(xué)生基礎(chǔ)的好壞,直接影響到將來是否能升學(xué)。優(yōu)生不多,思想不夠活躍,有少數(shù)學(xué)生不上進(jìn),思維跟不上。要在本期獲得理想成績(jī),老師和學(xué)生都要付出努力,充分發(fā)揮學(xué)生是學(xué)習(xí)的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。

三、本學(xué)期教學(xué)內(nèi)容分析

本學(xué)期教學(xué)內(nèi)容共計(jì)六章。

第一章《三角形的證明》

本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關(guān)的一些結(jié)論,證明線段垂直平分線和角平分線的有關(guān)性質(zhì),將研究直角三角形全等的判定,進(jìn)一步體會(huì)證明的必要性。

第二章《一元一次不等式和一元一次不等式組》

本章通過具體實(shí)例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應(yīng)用;通過具體實(shí)例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應(yīng)。

第三章《圖形的平移與旋轉(zhuǎn)》

本章將在小學(xué)學(xué)習(xí)的基礎(chǔ)上進(jìn)一步認(rèn)識(shí)平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認(rèn)識(shí)并欣賞平移,中心對(duì)稱在自然界和現(xiàn)實(shí)生活中的應(yīng)用。

第四章《分解因式》

本章通過具體實(shí)例分析分解因式與整式的乘法之間的關(guān)系揭示分解因式的實(shí)質(zhì),最后學(xué)習(xí)分解因式的幾種基本方法。

第五章《分式與分式方程》

本章通過分?jǐn)?shù)的有關(guān)性質(zhì)的回顧建立了分式的概念、性質(zhì)和運(yùn)算法則,并在此基礎(chǔ)上學(xué)習(xí)分式的化簡(jiǎn)求值、解分式方程及列分式方程解應(yīng)用題,能解決簡(jiǎn)單的實(shí)際應(yīng)用問題。

第六章《平行四邊形》

本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實(shí)驗(yàn)等幾何發(fā)現(xiàn)之旅,享受證明之美。

四、主要措施

1、面向全體學(xué)生。

由于學(xué)生在知識(shí)、技能方面的發(fā)展和興趣、特長(zhǎng)等不盡相同,所以要因材施教。在組織教學(xué)時(shí),應(yīng)從大多數(shù)學(xué)生的實(shí)際出發(fā),并兼顧學(xué)習(xí)有困難的和學(xué)有余力的學(xué)生。對(duì)學(xué)習(xí)有困難的學(xué)生,要特別予以關(guān)心,及時(shí)采取有效措施,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,指導(dǎo)他們改進(jìn)學(xué)習(xí)方法。幫助他們解決學(xué)習(xí)中的困難,使他們經(jīng)過努力,能夠達(dá)到大綱中規(guī)定的基本要求,對(duì)學(xué)有余力的學(xué)生,要通過講授選學(xué)內(nèi)容和組織課外活動(dòng)等多種形式,滿足他們的學(xué)習(xí)愿望,發(fā)展他們的數(shù)學(xué)才能。

2、重視改進(jìn)教學(xué)方法,堅(jiān)持啟發(fā)式,反對(duì)注入式。

教師在課前先布置學(xué)生預(yù)習(xí),同時(shí)要指導(dǎo)學(xué)生預(yù)習(xí),提出預(yù)習(xí)要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學(xué)生課前完成,教學(xué)中教師應(yīng)幫助學(xué)生梳理新課知識(shí),指出重點(diǎn)和易錯(cuò)點(diǎn),解答學(xué)生預(yù)習(xí)時(shí)遇到的問題,再設(shè)計(jì)提高題由學(xué)生進(jìn)行嘗試,使學(xué)生在學(xué)習(xí)中體會(huì)成功,調(diào)動(dòng)學(xué)習(xí)積極性,同時(shí)也可激勵(lì)學(xué)生自我編題。努力培養(yǎng)學(xué)生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實(shí)際問題上升為數(shù)學(xué)模型的能力,注意激勵(lì)學(xué)生的創(chuàng)新意識(shí)。

3、 改革作業(yè)結(jié)構(gòu)減輕學(xué)生負(fù)擔(dān)。將學(xué)生按學(xué)習(xí)能力分成幾個(gè)層次,分別布置難、中、淺三個(gè)層次作業(yè),使每類學(xué)生都能在原有基礎(chǔ)上提高。

4、課后輔導(dǎo)實(shí)行流動(dòng)分層。

5、運(yùn)用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績(jī),發(fā)展學(xué)生的'非智力因素,彌補(bǔ)智力上的不足。

7、開展課題的研究,課外調(diào)查,操作實(shí)踐,帶動(dòng)班級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué),同時(shí)發(fā)展這一部分學(xué)生的特長(zhǎng)。

8、進(jìn)行個(gè)別輔導(dǎo),優(yōu)生提升能力,扎實(shí)打牢基礎(chǔ)知識(shí);對(duì)學(xué)困生,一些關(guān)鍵知識(shí),輔導(dǎo)他們過關(guān),為他們以后的發(fā)展鋪平道路。

9、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣。

四、教學(xué)進(jìn)度

第一章《三角形的證明》13課時(shí)

1.1等腰三角形 4課時(shí)

1.2直角三角形 2課時(shí)

1.3線段的垂直平分線 2課時(shí)

1.4角平分線 2課時(shí)

復(fù)習(xí)小節(jié)與檢測(cè) 3課時(shí)

第二章《一元一次不等式和一元一次不等式組》 12課時(shí)

2.1 不等關(guān)系 1課時(shí)

2.2 不等式的基本性質(zhì) 1課時(shí)

2.3 不等式的解集 1課時(shí)

2.4 一元一次不等式2課時(shí)

2.5 一元一次不等式與一次函數(shù)2課時(shí)

2.6 一元一次不等式組 2課時(shí)

復(fù)習(xí)小節(jié) 與檢測(cè) 3課時(shí)

第三章《圖形的平移與旋轉(zhuǎn)》 10課時(shí)

3.1圖形的平移 3課時(shí)

3.2圖形的旋轉(zhuǎn) 2 課時(shí)

3.3中心對(duì)稱 1課時(shí)

3.4簡(jiǎn)單的圖形設(shè)計(jì) 1 課時(shí)

復(fù)習(xí)小節(jié)與檢測(cè) 3課時(shí)

期中考試復(fù)習(xí)2 課時(shí)

第四章《分解因式》7課時(shí)

4.1分解因式1課時(shí)

4.2提公因式法 2課時(shí)

4.3公式法 2課時(shí)

4.4重心 2課時(shí)

復(fù)習(xí)小節(jié)與檢測(cè) 2課時(shí)

第五章《分式與分式方程》 11課時(shí)

5.1認(rèn)識(shí)分式 2課時(shí)

5.2 分式的乘除法 1課時(shí)

5.3分式的加減法 3課時(shí)

5.4分式方程 3課時(shí)

復(fù)習(xí)小節(jié)與檢測(cè) 2課時(shí)

第六章《平行四邊形》 10課時(shí)

4.1平行四邊形的性質(zhì) 2課時(shí)

4.2特殊的平行四邊形的判定 3課時(shí)

4.3三角形的中位線 1課時(shí)

4.4多邊形的內(nèi)角和外角和 2課時(shí)

復(fù)習(xí)小節(jié)與檢測(cè) 2課時(shí)

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇二

今天聽了馬牧池中學(xué)吉老師的一節(jié)課和薛校長(zhǎng)的報(bào)告學(xué)到了很多東西,特別是在小組合作學(xué)習(xí)方面。吉老師的這節(jié)課勾股定理是節(jié)很難講的一節(jié)課,吉老師從知識(shí)的形成過程讓學(xué)生知道了勾股定理是怎么來的`,從而鍛煉了學(xué)生的思維能力。在平時(shí)的學(xué)習(xí)過程中吉老師也很注意及時(shí)的總結(jié)規(guī)律性的東西。特別是在小組方面的問題比如有的學(xué)生之間的差異比較大,他們會(huì)對(duì)同步進(jìn)行分布置任務(wù)。每節(jié)課他們都會(huì)有課堂達(dá)標(biāo)的小測(cè)驗(yàn),學(xué)校也會(huì)進(jìn)行抽測(cè)。

薛校長(zhǎng)的報(bào)告從很多的實(shí)際介紹了他們的經(jīng)驗(yàn)。要夯實(shí)自主學(xué)習(xí),給學(xué)生自主學(xué)習(xí)的時(shí)間。我們要把臺(tái)階難度要都設(shè)的小一點(diǎn),讓學(xué)生都能參入進(jìn)來從而讓他們體會(huì)到學(xué)習(xí)的樂趣。我們還要給學(xué)生充分的自主學(xué)習(xí)的時(shí)間和空間。只有他們把問題討論清楚了以后再遇到他們才能找到頭緒。我們?cè)谡n堂上要注重追問,注重互助,探究結(jié)論的形成過程。

通過這次的學(xué)習(xí)以后在自己的課堂中要注意這些問題,真正培養(yǎng)起學(xué)生的邏輯思維能力來。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇三

教學(xué)目標(biāo):

〔知識(shí)與技能〕。

1.在生活實(shí)例中認(rèn)識(shí)軸對(duì)稱圖.

2.分析軸對(duì)稱圖形,理解軸對(duì)稱的概念.軸對(duì)稱圖形的概念。

〔過程與方法〕。

2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡(jiǎn)單推理的能力。

〔情感、態(tài)度與價(jià)值觀〕。

辯證唯物主義觀點(diǎn)。

教學(xué)重點(diǎn):.

理解軸對(duì)稱的概念。

教學(xué)難點(diǎn)。

能夠識(shí)別軸對(duì)稱圖形并找出它的對(duì)稱軸.

教具準(zhǔn)備:三角尺。

教學(xué)過程。

一.創(chuàng)設(shè)情境,引入新課。

1.舉實(shí)例說明對(duì)稱的重要性和生活充滿著對(duì)稱。

2.對(duì)稱給我們帶來多少美的感受!初步掌握對(duì)稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.

3.軸對(duì)稱是對(duì)稱中重要的一種,讓我們一起走進(jìn)軸對(duì)稱世界,探索它的秘密吧!

二.導(dǎo)入新課。

1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.

強(qiáng)調(diào):對(duì)稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對(duì)稱的例子.

練習(xí):從學(xué)生生活周圍的事物中來找一些具有對(duì)稱特征的例子.

3.如果一個(gè)圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸.我們也說這個(gè)圖形關(guān)于這條直線(成軸)?對(duì)稱.

4.動(dòng)手操作:取一張質(zhì)地較硬的紙,將紙對(duì)折,并用小刀在紙的中央隨意。

刻出一個(gè)圖案,將紙打開后鋪平,你得到兩個(gè)成軸對(duì)稱的圖案了嗎?

歸納小結(jié):由此我們進(jìn)一步了解了軸對(duì)稱圖形的特征:一個(gè)圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.

5.練習(xí):你能找出它們的對(duì)稱軸嗎?分小組討論.

思考:大家想一想,你發(fā)現(xiàn)了什么?

小結(jié)得出:.像這樣,?把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,?這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn).

三.隨堂練習(xí)。

1、課本60練習(xí)1、2。

四.課時(shí)小結(jié)。

分了軸對(duì)稱圖形和兩個(gè)圖形成軸對(duì)稱.

五.課后作業(yè)。

習(xí)題13.1.1、2、6題.

六.教后記。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇四

教學(xué)目標(biāo):

1、知道一次函數(shù)與正比例函數(shù)的意義.

2、能寫出實(shí)際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.

3、滲透數(shù)學(xué)建模的思想,使學(xué)生體會(huì)到數(shù)學(xué)的抽象性和廣泛的應(yīng)用性.

4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生分析問題、解決問題的能力.

教學(xué)重點(diǎn):對(duì)于一次函數(shù)與正比例函數(shù)概念的理解.

教學(xué)難點(diǎn):根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.

教學(xué)方法:結(jié)構(gòu)教學(xué)法、以學(xué)生“再創(chuàng)造”為主的教學(xué)方法。

教學(xué)過程:

1、復(fù)習(xí)舊課。

前面我們學(xué)習(xí)了函數(shù)的相關(guān)知識(shí),(教師在黑板上畫出本章結(jié)構(gòu)并讓學(xué)生說出前三。

2、引入新課。

就象以前我們學(xué)習(xí)方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時(shí)一樣,我們?cè)趯W(xué)習(xí)了函數(shù)這個(gè)概念以后,要學(xué)習(xí)一些具體的函數(shù),今天我們要學(xué)習(xí)的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個(gè)名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學(xué)生完全具備這種類比的能力,所以要快、不要耽誤太多時(shí)間叫幾個(gè)同學(xué)回答就可以了.教師將學(xué)生的正確的例子寫在黑板上)。

這些函數(shù)有什么共同特點(diǎn)呢?(注意根據(jù)學(xué)生情況適當(dāng)引導(dǎo),看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號(hào)內(nèi)用紅字強(qiáng)調(diào))那么y叫做x的一次函數(shù).特別地,當(dāng)b=0時(shí),一次函數(shù)就成為(是常數(shù),)。

3、例題講解。

例1、某油管因地震破裂,導(dǎo)致每分鐘漏出原油30公升。

(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。

(2)破裂3.5小時(shí)后,共漏出原油多少公升。

分析:y與x成正比例。

解:(1)(2)(升)。

例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個(gè)月可以得到150元的零用錢,小丸子計(jì)劃每月將零用錢的60%存入銀行,用以購(gòu)買她期盼已久的cd隨身聽(價(jià)值1680元)。

(1)列出小丸子的銀行存款(不計(jì)利息)y與月數(shù)x的函數(shù)關(guān)系式;。

(2)多長(zhǎng)時(shí)間以后,小丸子的銀行存款才能買隨身聽?

分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。

例3、已知函數(shù)是正比例函數(shù),求的值。

分析:本題考察的是正比例函數(shù)的概念。

解:

4、小結(jié)。

由學(xué)生對(duì)本節(jié)課知識(shí)進(jìn)行總結(jié),教師板書即可.

5、布置作業(yè)。

書面作業(yè):1、書后習(xí)題2、自己寫出一個(gè)實(shí)際中的一次函數(shù)的例子并進(jìn)行討論。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇五

一、學(xué)情分析:

知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)過分?jǐn)?shù)的乘除法,掌握了分?jǐn)?shù)的乘除法法則,在學(xué)習(xí)分式的乘除法法則時(shí)可通過與分?jǐn)?shù)的乘除法法則進(jìn)行類比學(xué)習(xí)。在前面學(xué)習(xí)了整式乘法和因式分解,為分式的運(yùn)算和結(jié)果的化簡(jiǎn)奠定基礎(chǔ)。

能力基礎(chǔ):在過去的數(shù)學(xué)學(xué)習(xí)過程中,學(xué)生已初步具備觀察、分析、歸納的能力和類比的學(xué)習(xí)方法。

二、教學(xué)目標(biāo):

知識(shí)目標(biāo):1、分式的乘除運(yùn)算法則。

2、會(huì)進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算。

能力目標(biāo):1、類比分?jǐn)?shù)的乘除運(yùn)算法則,探索分式的乘除運(yùn)算法則。

2、能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題。

情感目標(biāo):1、通過師生討論、交流,培養(yǎng)學(xué)生合作探究的意識(shí)和能力。

2、培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和應(yīng)用意識(shí)。

三、教學(xué)重點(diǎn)、難點(diǎn)。

重點(diǎn):分式乘除法的法則及應(yīng)用。

難點(diǎn):分子、分母是多項(xiàng)式的分式的乘除法的運(yùn)算。

三、教學(xué)過程:

第一環(huán)節(jié)復(fù)習(xí)舊知識(shí)。

復(fù)習(xí)小學(xué)學(xué)的分?jǐn)?shù)乘除法法則,

活動(dòng)目的:

復(fù)習(xí)小學(xué)學(xué)過的分?jǐn)?shù)的乘除法運(yùn)算,為學(xué)習(xí)分式乘除法的法則做準(zhǔn)備。

第二環(huán)節(jié)引入新課。

活動(dòng)內(nèi)容。

你能總結(jié)分式乘除法的法則嗎?與同伴交流。

分式的乘除法的法則:。

兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。

兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.

活動(dòng)目的:

讓學(xué)生觀察運(yùn)算,通過小組討論交流,并與分?jǐn)?shù)的乘除法的法則類比,讓學(xué)生自己總結(jié)出分式的乘除法的法則。

第三環(huán)節(jié)知識(shí)運(yùn)用。

活動(dòng)內(nèi)容。

例題1:。

(1)(2)例題2。

(1)(2)活動(dòng)目的:

通過例題講解,使學(xué)生會(huì)根據(jù)法則,理解每一步的算理,從而進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算,并能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題,增強(qiáng)學(xué)生代數(shù)推理的能力與應(yīng)用意識(shí)。需要給學(xué)生強(qiáng)調(diào)的是分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式,對(duì)于這一點(diǎn),很多學(xué)生在開始學(xué)習(xí)分式計(jì)算時(shí)往往沒有注意到結(jié)果要化簡(jiǎn)。

第四環(huán)節(jié)走進(jìn)中考。

(2012.漳州)第五環(huán)節(jié)課時(shí)小結(jié)。

活動(dòng)內(nèi)容:

1.分式的乘除法的法則。

2.分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式.

3.學(xué)會(huì)類比的數(shù)學(xué)方法。

第六環(huán)節(jié)當(dāng)堂檢測(cè)。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇六

1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來判定平行四邊形的方法.

2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題。

平行四邊形的判定方法及應(yīng)用。

閱讀教材p44至p45。

利用手中的學(xué)具——硬紙板條,通過觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?

(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

(3)你能說出你的做法及其道理嗎?

(5)你還能找出其他方法嗎?

平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。

平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。

證明:(畫出圖形)。

平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇七

教學(xué)目標(biāo):

1、知識(shí)目標(biāo):

(1)掌握解分式方程的步驟。

(2)理解解分式方程時(shí)驗(yàn)根的必要性。

2、能力目標(biāo):

會(huì)按照解分式方程的步驟解分式方程。

3、情感與價(jià)值觀:

(1)培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗(yàn)的良好習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。

(2)運(yùn)用“轉(zhuǎn)化”的思想,將分式方程轉(zhuǎn)化為整式方程,從而獲得成就感和學(xué)習(xí)數(shù)學(xué)的自信。

老師引導(dǎo)學(xué)生自主探索分式方程的解法,將分式方程轉(zhuǎn)化為整式方程,在解題中親身體驗(yàn)“轉(zhuǎn)化”思想。弄清了“轉(zhuǎn)化”的方向,也就明白了解分式方程的步驟,解題思路自然清晰,能力隨之形成。

重點(diǎn):

1、探索解分式方程的步驟,熟練掌握分式方程的解法。

2、體會(huì)解分式方程驗(yàn)根的必要性。

難點(diǎn):如何將分式方程轉(zhuǎn)化為整式方程;體會(huì)分式方程驗(yàn)根的必要性。

學(xué)情與教材分析:我所任教的學(xué)生大多頭腦聰明,在老師適當(dāng)?shù)囊龑?dǎo)下,有一定的探求新知識(shí)的能力。但基礎(chǔ)不夠扎實(shí),如計(jì)算容易出錯(cuò)、考慮問題不夠嚴(yán)謹(jǐn)?shù)取A硗庠趯W(xué)習(xí)本節(jié)課之前,已經(jīng)學(xué)習(xí)過《解一元一次方程》。對(duì)于《解一元一次方程》大部分同學(xué)已經(jīng)掌握,但由于是在七年級(jí)學(xué)習(xí),有一定的時(shí)間間隔,部分同學(xué)可能已經(jīng)遺忘,給上本節(jié)課留下少許的困難。但估計(jì)絕大部分同學(xué)稍加回憶,應(yīng)能接近以前的水平。本節(jié)課的內(nèi)容處在《分式》這章的后半部。《分式》這章內(nèi)容安排如下的:首先介紹分式及分式的基本性質(zhì),接著進(jìn)行分式的加、減、乘、除的運(yùn)算,之后是根據(jù)實(shí)際問題列出分式方程(但未求解)。緊跟其后的是本節(jié)課內(nèi)容――解分式方程,最后一節(jié)是根據(jù)實(shí)際問題列出分式方程并求解。由此可見《解分式方程》涵蓋了本章前面的內(nèi)容,是本章知識(shí)的綜合與提高。學(xué)習(xí)好這部分內(nèi)容,不但掌握了初二階段有關(guān)分式方程的內(nèi)容,也為初三學(xué)習(xí)可化為一元二次的分式方程打下了良好的基礎(chǔ)。通過將分式方程轉(zhuǎn)化為整式方程(一元一次方程)滲透了一種重要的數(shù)學(xué)思想――轉(zhuǎn)化思想,即將原問題進(jìn)行變形,使之轉(zhuǎn)化為我們所熟悉的或已解決的或易于解決的問題。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇八

如果三角形三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。

說明:

(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng)a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b。

(1)確定最大邊;

(2)算出最大邊的平方與另兩邊的平方和;

(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。

能夠構(gòu)成直角三角形的三邊長(zhǎng)的三個(gè)正整數(shù)稱為勾股數(shù)。

由直角三角形三邊為邊長(zhǎng)所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。

解決圓柱側(cè)面兩點(diǎn)間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。

有了上文梳理的勾股定理的逆定理知識(shí)點(diǎn)整理,相信大家對(duì)考試充滿了信心,同時(shí)預(yù)祝大家考試取得好成績(jī)。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇九

3、情感態(tài)度與價(jià)值觀:通過剪紙等活動(dòng),培養(yǎng)學(xué)生的實(shí)驗(yàn)意識(shí)和探索精神,使學(xué)生進(jìn)一步認(rèn)識(shí)到數(shù)學(xué)與現(xiàn)實(shí)生活的密切聯(lián)系,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及結(jié)果的確定性。

三、教學(xué)重、難點(diǎn)。

1、重點(diǎn):等腰三角形的性質(zhì)。

2、難點(diǎn):“等邊對(duì)等角”的證明。

四、教學(xué)方法。

動(dòng)手體驗(yàn)、小組、討論、合作、交流、探究驗(yàn)證師生互動(dòng)。

五、教、學(xué)具。

1、教具:長(zhǎng)方形紙,剪刀,幻燈片。

2、學(xué)具:長(zhǎng)方形紙,剪刀。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇十

1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問題。

2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

3.情感態(tài)度與價(jià)值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

一、知識(shí)點(diǎn)講解。

知識(shí)點(diǎn)1:(已知兩邊求第三邊)。

1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為_____________。

2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是______________。

3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長(zhǎng)?

知識(shí)點(diǎn)2:

利用方程求線段長(zhǎng)。

(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?

(2)de與ce的位置關(guān)系。

(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?

利用方程解決翻折問題。

3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點(diǎn)b與點(diǎn)d重合,折痕為ef,求de的長(zhǎng)。

5、折疊矩形abcd的一邊ad,折痕為ae,且使點(diǎn)d落在bc邊上的點(diǎn)f處,已知ab=8cm,bc=10cm,以b點(diǎn)為原點(diǎn),bc為x軸,ba為y軸建立平面直角坐標(biāo)系。求點(diǎn)f和點(diǎn)e坐標(biāo)。

6、邊長(zhǎng)為8和4的矩形oabc的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對(duì)角線ac折疊后,點(diǎn)b落在第四象限b1處,設(shè)b1c交x軸于點(diǎn)d,求(1)三角形adc的面積,(2)點(diǎn)b1的坐標(biāo),(3)ab1所在的直線解析式.

知識(shí)點(diǎn)3:判斷一個(gè)三角形是否為直角三角形間接給出三邊的長(zhǎng)度或比例關(guān)系。

1.(1).若一個(gè)三角形的周長(zhǎng)12cm,一邊長(zhǎng)為3cm,其他兩邊之差為1cm,則這個(gè)三角形是___________。

(2).將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,得到的三角形是____________。

(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。

二、課堂小結(jié)。

談一談你這節(jié)課都有哪些收獲?

三、課堂練習(xí)以上習(xí)題。

四、課后作業(yè)卷子。

本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過程;第二課時(shí)是通過例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過從實(shí)際問題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識(shí)和應(yīng)用能力。

針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):

一、復(fù)習(xí)引入。

對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡(jiǎn)短明了,花費(fèi)時(shí)間短。

二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法。

活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)。

活動(dòng)二:解決例二梯子滑落的問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程。

活動(dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。

二、鞏固練習(xí),熟練新知。

通過測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的經(jīng)驗(yàn)和感受。

在教學(xué)設(shè)計(jì)的實(shí)施中,也存在著一些問題:

1.由于本班學(xué)生能力的差距,本想著通過學(xué)生幫帶活動(dòng),使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對(duì)問題的分析解決所用時(shí)間短,而在整個(gè)環(huán)節(jié)設(shè)計(jì)中轉(zhuǎn)接的快,未給學(xué)困生充分的時(shí)間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來。

2.課堂上質(zhì)疑追問要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。

3.對(duì)學(xué)生課堂展示的評(píng)價(jià)方式應(yīng)體現(xiàn)生評(píng)生,師評(píng)生,及評(píng)價(jià)的針對(duì)性和及時(shí)性。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇十一

在講解勾股定理的結(jié)論時(shí),為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺(tái)演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動(dòng)。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復(fù)演示幾遍,讓學(xué)生自己感覺并最后體會(huì)到勾股定理的結(jié)論。通過動(dòng)畫演示體會(huì)到解決問題的方法是多種多樣,使得這課的重難點(diǎn)輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。學(xué)生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。

在教學(xué)應(yīng)用勾股定理時(shí),老是運(yùn)用公式計(jì)算,學(xué)生感覺比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學(xué)們一看,興趣來了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開放自由的情況下解決了該題,同時(shí)培養(yǎng)了學(xué)生的想像力。

最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的知識(shí)海洋中去尋找知識(shí)寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實(shí)、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會(huì)選擇、整理、重組、再用這些更廣泛的資源。這種對(duì)網(wǎng)絡(luò)資源的重新組織,使學(xué)生對(duì)知識(shí)的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識(shí),還讓他們有了怎樣學(xué)習(xí)知識(shí)的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇十二

1.經(jīng)歷分式方程的概念,能將實(shí)際問題中的等量關(guān)系用分式方程 表示,體會(huì)分式方程的模型作用.

2.經(jīng)歷實(shí)際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。

3.在活動(dòng)中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

將實(shí)際問題中的等量 關(guān)系用分式方程表示

找實(shí)際問題中的等量關(guān)系

有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗(yàn)田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

如果設(shè)第一塊試驗(yàn)田 每公頃的產(chǎn)量為 kg,那么第二塊試驗(yàn)田每公頃的產(chǎn)量是________kg。

根據(jù)題意,可得方程___________________

從甲地到乙地有兩條公路:一條是全長(zhǎng)600 km的普通 公路,另一條是全長(zhǎng)480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時(shí)間 是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車由高速公路從 甲地到乙地所需的時(shí)間。

這 一問題中有哪些等量關(guān)系?

如果設(shè)客車由高速公路從甲地到乙地 所需的時(shí)間為 h,那么它由普通公路從甲地到乙地所需的時(shí)間為_________h。

根據(jù)題意,可得方程_ _____________________。

學(xué)生分組探討、交流,列出方程.

上面所得到的方程有什么共同特點(diǎn)?

分母中含有未知數(shù)的方程叫做分式方程

分式方程與整式方程有什么區(qū)別?

(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

本節(jié)課你學(xué)到了哪些知識(shí)?有什么感想?

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇十三

1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

2.了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。

算術(shù)平方根的概念。

根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

1、提出問題:(書p68頁(yè)的問題)

你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)

這個(gè)問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.

一般地,如果一個(gè)正數(shù)x的平方等于a,即=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

也就是,在等式=a (x0)中,規(guī)定x = .

2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如表示25的算術(shù)平方根。

4、例1求下列各數(shù)的算術(shù)平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69練習(xí)1、2

怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?

方法1:課本中的方法,略;

方法2:

可還有其他方法,鼓勵(lì)學(xué)生探究。

問題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?

大正方形的邊長(zhǎng)是,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?

建議學(xué)生觀察圖形感受的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.

1、這節(jié)課學(xué)習(xí)了什么呢?

2、算術(shù)平方根的具體意義是怎么樣的?

3、怎樣求一個(gè)正數(shù)的算術(shù)平方根

p75習(xí)題13.1活動(dòng)第1、2、3題

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇十四

今后的教學(xué)中:

(1)立足教材,鉆研教學(xué)大綱的要求;試卷中較多題目是根據(jù)課本的題目改編而來,從學(xué)生的考試情況來看課本的題目掌握不理想,這說明在平時(shí)的教學(xué)中對(duì)書本的重視不夠,過多地追求課外題目的訓(xùn)練,但忽略學(xué)生實(shí)實(shí)在在地理解課本知識(shí),提高思維能力。課堂上盡量把課堂還給學(xué)生,讓學(xué)生積極參與到課堂中,多機(jī)會(huì)給學(xué)生展示,表演,講題,把思路和方法講出來,使學(xué)生更清淅地理解題目,提升自己對(duì)數(shù)學(xué)的理解。多點(diǎn)讓學(xué)生獨(dú)立思考,發(fā)現(xiàn)問題,解決問題。

(2)注重培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。

(3)加強(qiáng)例題示范教學(xué),培養(yǎng)學(xué)生解題書寫表達(dá)。

(4)多一些數(shù)學(xué)方法、數(shù)學(xué)思想的滲透,少一些知識(shí)的生搬硬套。

(5)在數(shù)學(xué)教學(xué)過程中,課堂上系統(tǒng)地對(duì)數(shù)學(xué)知識(shí)進(jìn)行整理、歸納、溝通知識(shí)間的內(nèi)在聯(lián)系,形成縱向、橫向知識(shí)鏈,從知識(shí)的聯(lián)系和整體上把握基礎(chǔ)知識(shí)。

(6)針對(duì)學(xué)生的兩極分化,加強(qiáng)課外作業(yè)布置的針對(duì)性。讓每個(gè)學(xué)生課外有適合的作業(yè)做,對(duì)不同層次的學(xué)生布置不同難度的作業(yè),提高課外學(xué)習(xí)的效率,減輕學(xué)生課外作業(yè)的負(fù)擔(dān)。正確看待學(xué)生學(xué)習(xí)數(shù)學(xué)的差異,克服兩極分化。數(shù)學(xué)課堂上多考慮、關(guān)照中下生,讓他們?cè)跀?shù)學(xué)課堂上聽得進(jìn),肯用手。

(7)教師在平時(shí)的課堂教學(xué)中必須致力于改變教師的教學(xué)行為和學(xué)生的學(xué)習(xí)方式,加強(qiáng)學(xué)法指導(dǎo),提高學(xué)生的閱讀能力,平時(shí)培養(yǎng)學(xué)生的自學(xué)能力,使學(xué)生實(shí)實(shí)在在地理解課本知識(shí),提高思維能力。平時(shí)要關(guān)注課本、關(guān)注運(yùn)算能力、關(guān)注教學(xué)中的薄弱環(huán)節(jié)。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇十五

《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實(shí)現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動(dòng)方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢(shì),為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具?!苯處熯\(yùn)用現(xiàn)代多媒體信息技術(shù)對(duì)教學(xué)活動(dòng)進(jìn)行創(chuàng)造性設(shè)計(jì),發(fā)揮計(jì)算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實(shí)質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。

本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識(shí)結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時(shí)知道身在何處,使知識(shí)體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。

本班經(jīng)歷了一年多課改實(shí)踐,學(xué)生對(duì)運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫板》這一工具進(jìn)行簡(jiǎn)單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動(dòng)與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識(shí)于實(shí)踐的過程。

本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺(tái)電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實(shí)驗(yàn)室,以研究電動(dòng)門的機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測(cè)量、搜集、分析、整理特殊四邊形的邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機(jī)對(duì)話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯?dòng)態(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動(dòng)地探究新知識(shí)的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等多方面得到發(fā)展。

1、初步理解特殊四邊形性質(zhì);

2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;

1、了解特殊四邊形性質(zhì)的形成過程;

2、初步了解探究新知識(shí)的一些方法;

1、了解特殊四邊形在日常生活中的應(yīng)用;

2、學(xué)生在觀察、歸納、類比及實(shí)驗(yàn)教學(xué)活動(dòng)中,體會(huì)成功后的喜悅;

3、初步具有感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。

教學(xué)環(huán)境:

多媒體計(jì)算機(jī)網(wǎng)絡(luò)教室。

教學(xué)課型:

試驗(yàn)探究式。

教學(xué)重點(diǎn):

特殊四邊形性質(zhì)。

教學(xué)難點(diǎn):

特殊四邊形性質(zhì)的發(fā)現(xiàn)。

一、設(shè)置情景,提出問題。

提出問題:

1、電動(dòng)門的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?

2、在開(關(guān))門過程中這些四邊形是如何變化的?

3、你還發(fā)現(xiàn)了什么?

解決問題:

學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

當(dāng)我們學(xué)習(xí)完本節(jié)知識(shí)后,其他問題就容易解決了。

(意圖:用《幾何畫板》的動(dòng)態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)。

二、整體了解,形成系統(tǒng)。

本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個(gè)體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。

提出問題:

1、本章主要研究哪些特殊四邊形?

2、從哪幾方面研究這些特殊四邊形?

解決問題:

學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個(gè)別指導(dǎo)。

1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。

3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。

(意圖:學(xué)生自主觀察、分組討論了解本章知識(shí)結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識(shí))。

三、個(gè)體研究、總結(jié)性質(zhì)。

1、平行四邊形性質(zhì)。

提出問題:

在平行四邊形的形狀、位置、大小變化過程中,請(qǐng)觀察數(shù)據(jù)并找出邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度相對(duì)不變的性質(zhì)。

解決問題:

教師引導(dǎo)學(xué)生拖動(dòng)b點(diǎn)(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對(duì)不變的要素。

在圖形變化過程中,

(1)對(duì)邊相等;

(2)對(duì)角相等;

(3)通過ao=co、bo=do,可得對(duì)角線互相平分;

(4)通過鄰角互補(bǔ),可得對(duì)邊平行;

(5)內(nèi)外角和都等于360度;

(6)鄰角互補(bǔ);

……。

指導(dǎo)學(xué)生填表:

平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。

菱形性質(zhì)。

梯形性質(zhì)等腰梯形性質(zhì)。

直角梯形性質(zhì)。

(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。

按照平行四邊形性質(zhì)的探索思路,分別研究:

2、矩形性質(zhì);

3、菱形性質(zhì);

4、正方形性質(zhì);

5、梯形性質(zhì);

6、等腰梯形性質(zhì);

7、直角梯形的性質(zhì)。

(意圖:學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗(yàn)到科學(xué)探索的樂趣。)。

教師總結(jié):

(意圖:掌握畫箭頭的方法,使學(xué)生了解事物個(gè)體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時(shí)間。)。

四、聯(lián)系生活,解決問題。

解決問題:

學(xué)生操作電腦,觀察圖形、分組討論,教師個(gè)別指導(dǎo)。

學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度的變化引起四邊形的形狀、大小、位置的變化。

四邊形具有不穩(wěn)定性,而三角形沒有這個(gè)特點(diǎn)……。

(意圖:使學(xué)生體會(huì)到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問題的能力,體會(huì)成功后的喜悅。)。

五、小結(jié)。

1.研究問題從整體到局部的方法;

2.主要從邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度三方面研究特殊四邊形性質(zhì)。

六、作業(yè)。

1.平行四邊形內(nèi)角中,既有兩個(gè)相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

2.觀察實(shí)際生活中的電動(dòng)門,在開(關(guān))門過程中特殊四邊形的變化。

針對(duì)教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計(jì)方案,預(yù)計(jì)下列學(xué)習(xí)效果:

利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過學(xué)生自主測(cè)量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。

在問題引入、了解整體、測(cè)量個(gè)體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識(shí)規(guī)律及探究新知識(shí)的一般方法,初步形成感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。

由于個(gè)體差異,針對(duì)教學(xué)目標(biāo)難以達(dá)到的個(gè)別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對(duì)話交流及時(shí)指導(dǎo),使教學(xué)目標(biāo)得以實(shí)現(xiàn)。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇十六

2、范例講解。

(學(xué)生嘗試練習(xí)后,教師講評(píng))。

例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):

1、怎樣確定最簡(jiǎn)公分母?(先將各分母因式分解)。

2、解分式方程的步驟、

鞏固練習(xí):p1471t,2t、

課堂小結(jié):解分式方程的一般步驟。

布置作業(yè):見作業(yè)本。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇十七

一、本節(jié)課的成功之處:。

本節(jié)課以活動(dòng)為主線,通過從估算到實(shí)驗(yàn)活動(dòng)結(jié)果的產(chǎn)生讓學(xué)生總結(jié)過程,最后回到解決生活中實(shí)際問題,思路清晰,脈絡(luò)明了。

例如:活動(dòng)1問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長(zhǎng)蠅打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié),4個(gè)結(jié)、5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角.

這個(gè)問題意味著,如果圍成的三角形的三邊分別為3、4、5.有下面的`關(guān)系“32+42=52”.那么圍成的三角形是直角三角形.

2、體現(xiàn)了“數(shù)學(xué)源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考意義讓學(xué)生概括,結(jié)論讓學(xué)生驗(yàn)證,難點(diǎn)讓學(xué)生突破,以學(xué)生為主體”的教學(xué)思路。例如:命題2如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2那么這個(gè)三角形是直角三角形.

如下圖,欲過基線mn上的一點(diǎn)c作它的垂線,可由三名工人操作:一人手拿布尺或測(cè)繩的0和12尺處,固定在c點(diǎn);另一人拿4尺處,把尺拉直,在mn上定出a點(diǎn),再由一人拿9尺處,把尺拉直,定出b點(diǎn),于是連結(jié)bc,就是mn的垂線.

建筑工人用了3,4,5作出了一個(gè)直角,能不能用其他的整數(shù)組作出直角呢?

生:可以,例如7,24,25;8,15,17等.

3、在本節(jié)教學(xué)活動(dòng)過程中,我經(jīng)常走下講臺(tái),到學(xué)生中去,以學(xué)生身份和學(xué)生一起探討問題。用一切可能的方式,激勵(lì)回答問題的學(xué)生,激發(fā)學(xué)生的求知欲,使師生在和諧的教學(xué)環(huán)境中零距離的接觸。課堂上學(xué)生們的思維空前活躍,發(fā)言的人數(shù)不斷增多,學(xué)生能從多角度認(rèn)識(shí)問題,爭(zhēng)先恐后地交流不同的意見和方法,收到比較好的效果。這是本節(jié)課的特色。

二、本節(jié)課的不足之處及改進(jìn)方法:。

1、本節(jié)課我沒有利用多媒體輔助教學(xué),如學(xué)習(xí)目標(biāo)的發(fā)展、習(xí)題訓(xùn)練內(nèi)容的展示、學(xué)生活動(dòng)的要求、作業(yè)布置等,這些內(nèi)容都是為教學(xué)服務(wù)的。如果用多媒體課件的展示,可以增大了教學(xué)密度,使學(xué)生的雙基訓(xùn)練得到了加強(qiáng),使傳統(tǒng)的課堂走向了開放,使學(xué)生真正感受到學(xué)習(xí)方式在發(fā)生變化。在以后的教學(xué)中我應(yīng)加強(qiáng)。

八年級(jí)數(shù)學(xué)下勾股定理的證明二教案篇十八

1.理解分式的基本性質(zhì).

2.會(huì)用分式的基本性質(zhì)將分式變形.

二、重點(diǎn)、難點(diǎn)。

1.重點(diǎn):理解分式的基本性質(zhì).

2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.

3.認(rèn)知難點(diǎn)與突破方法。

教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

三、例、習(xí)題的意圖分析。

1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。

2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。

3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。

“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

四、課堂引入。

1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).

五、例題講解。

p7例2.填空:

[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.

p11例3.約分:

[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.

p11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.

(補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).

[分析]每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.

解:=,=,=,=,=。

六、隨堂練習(xí)。

1.填空:

(1)=(2)=。

(3)=(4)=。

2.約分:

3.通分:

(1)和(2)和。

(3)和(4)和。

4.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).

七、課后練習(xí)。

1.判斷下列約分是否正確:

(1)=(2)=。

(3)=0。

2.通分:

(1)和(2)和。

3.不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2.(1)(2)(3)(4)-2(x-y)2。

3.通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

【本文地址:http://mlvmservice.com/zuowen/17168891.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔