一次函數(shù)與二元一次方程課教學(xué)設(shè)計(優(yōu)質(zhì)17篇)

格式:DOC 上傳日期:2023-11-24 22:06:21
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(優(yōu)質(zhì)17篇)
時間:2023-11-24 22:06:21     小編:雁落霞

總結(jié)是反思和總結(jié)過程的產(chǎn)物,它是對過去的回顧,對未來的展望。發(fā)展個人興趣愛好和培養(yǎng)藝術(shù)素養(yǎng)對于豐富個人生活非常重要。在這里,小編為大家準(zhǔn)備了一些優(yōu)秀的總結(jié)范文,供大家參考。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇一

作為一位杰出的教職工,編寫教學(xué)設(shè)計是必不可少的,教學(xué)設(shè)計是把教學(xué)原理轉(zhuǎn)化為教學(xué)材料和教學(xué)活動的計劃。那么優(yōu)秀的教學(xué)設(shè)計是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數(shù)教學(xué)設(shè)計,歡迎閱讀與收藏。

2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。

1、用作圖像法求二元一次方程組的近似值。

1、做圖像時要標(biāo)準(zhǔn)、精確,近似值才接近。

先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。

問題1、

(1)方程x+y=5的解有多少組?寫出其中的幾組解。

(3)在一次函數(shù)y=5—x的圖像上任取一點,它們的坐標(biāo)適合方程x+y=5嗎?

(5)由以上的探究過程,你發(fā)現(xiàn)了什么?

問題2、

(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標(biāo)。

合作探究:

(1)用做圖像的方法解方程組。

(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇二

(2)通過“做一做”引入例1,進一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力。

(1)在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。

(2)在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力。

(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系。

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識。

教具:多媒體課件、三角板。

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。

第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識)。

內(nèi)容:

1.方程x+y=5的解有多少個?是這個方程的解嗎?

2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3.在一次函數(shù)y=的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

(1)以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。

內(nèi)容:

1.解方程組。

2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的圖像。

(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);

(2)求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解。

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。

注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。

第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨立解決)。

探究方程與函數(shù)的相互轉(zhuǎn)化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點坐標(biāo)是。

第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。

內(nèi)容:

1.已知一次函數(shù)與的圖像的交點為,則。

2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。

(a)4(b)5(c)6(d)7。

3.求兩條直線與和軸所圍成的三角形面積。

4.如圖,兩條直線與的交點坐標(biāo)可以看作哪個方程組的解?

第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。

內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:

1.二元一次方程和一次函數(shù)的。圖像的關(guān)系;

(1)以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;

2.方程組和對應(yīng)的兩條直線的關(guān)系:

(1)方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);

(2)兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;

(1)代入消元法;

(2)加減消元法;

(3)圖像法。要強調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。

第六環(huán)節(jié)作業(yè)布置。

習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇三

過程與方法。

(2)通過“做一做”引入例1,進一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力。

情感與態(tài)度。

(1)在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。

(2)在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力。

教學(xué)重點。

教學(xué)難點。

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識。

教學(xué)準(zhǔn)備。

教具:多媒體課件、三角板。

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。

教學(xué)過程。

第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識)。

內(nèi)容:

1.方程x+y=5的解有多少個?是這個方程的解嗎?

2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3.在一次函數(shù)y=的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

(2)一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程。

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。

內(nèi)容:

1.解方程組。

2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的圖像。

(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);

(2)求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解。

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。

注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。

第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨立解決)。

探究方程與函數(shù)的相互轉(zhuǎn)化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點坐標(biāo)是。

第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。

內(nèi)容:

1.已知一次函數(shù)與的圖像的交點為,則。

2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。

(a)4(b)5(c)6(d)7。

3.求兩條直線與和軸所圍成的三角形面積。

4.如圖,兩條直線與的交點坐標(biāo)可以看作哪個方程組的解?

第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。

內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:

(2)一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程。

2.方程組和對應(yīng)的兩條直線的關(guān)系:

(1)方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);

(2)兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;

(1)代入消元法;

(2)加減消元法;

(3)圖像法。要強調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。

第六環(huán)節(jié)作業(yè)布置。

習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇四

本節(jié)課是在學(xué)生已經(jīng)學(xué)會從單個一次函數(shù)的圖象分析獲取信息,進而解決有關(guān)實際問題的基礎(chǔ)上展開的。因此,本節(jié)課的重點應(yīng)該放在怎樣從兩個函數(shù)圖象的比較、分析中提取有用信息,弄清兩者之間的聯(lián)系,從而提高學(xué)生的識圖能力與解決實際問題的能力。難點在于怎樣抓住有用的特征去分析、比較。于是,本節(jié)課的基本思路是以學(xué)生熟悉的一次函數(shù)的圖象及性質(zhì)為鋪墊,以學(xué)生感興趣的現(xiàn)實問題作素材,以交流合作為主要形式展開學(xué)習(xí)活動。

例1:某種摩托車的油箱最多可儲油10升,加滿油后,油箱中的剩余油量y(升)與摩托車行駛路程x(千米)之間的關(guān)系引伸的問題帶來了挑戰(zhàn)性的懸念。只有讓學(xué)生在探索問題之中學(xué)會提出問題,才能最終體驗到數(shù)學(xué)的抽象,形成穩(wěn)定的學(xué)習(xí)興趣。

2、本節(jié)課充分體現(xiàn)了學(xué)生在自主探索與合作交流中學(xué)會學(xué)習(xí)這一理念,學(xué)生有足夠的自主探索時間,有與同學(xué)合作互動的空間,有與老師交流表達的機會。學(xué)生不是從老師那里獲取知識,而是在數(shù)學(xué)活動的過程中發(fā)現(xiàn)規(guī)律、體驗成功。

3、本節(jié)課通過函數(shù)圖象獲取信息,解決實際問題,培養(yǎng)學(xué)生的形象思維及數(shù)學(xué)應(yīng)用能力,同時培養(yǎng)學(xué)生良好的環(huán)保意識和熱愛生活的意識及利用函數(shù)圖象解決簡單的實際問題通過方程與函數(shù)關(guān)系的研究,建立良好的知識聯(lián)系。

1、個別差生的積極性還未調(diào)動起來,還須探索出關(guān)注差生的方法來提高教學(xué)及格率。

2、在分析一次函數(shù)表達式時,在課本上用的“數(shù)形結(jié)合”方法可另外用“待定系數(shù)法”分析;以便學(xué)生能拓展思維。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇五

2、了解二元一次方程和二元一次方程組的解并會檢驗一對數(shù)值是不是二元一次方程(組)的解。

重點:二元一次方程(組)的含義及檢驗一對數(shù)是否是某個二元一次方程(組)的解。

1、知識回顧:

(1)方程的概念;

(2)一元一次方程的概念;

(3)什么是方程的解?

(4)一元一次方程的解如何表示?

2、合作學(xué)習(xí):

如果設(shè)需要票額為6角的郵票x張,需要票額為8角的郵票y張,你能列出方程嗎?

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇六

一.教學(xué)目標(biāo):

1.認知目標(biāo):

2)理解二元一次方程組的解的概念。

3)會用列表嘗試的方法找二元一次方程組的解。

2.能力目標(biāo):

1)滲透把實際問題抽象成數(shù)學(xué)模型的思想。

2)通過嘗試求解,培養(yǎng)學(xué)生的探索能力。

3.情感目標(biāo):

1)培養(yǎng)學(xué)生細致,認真的學(xué)習(xí)習(xí)慣。

2)在積極的教學(xué)評價中,促進師生的情感交流。

二.教學(xué)重難點。

難點:用列表嘗試的方法求出方程組的解。

三.教學(xué)過程。

(一)創(chuàng)設(shè)情景,引入課題。

1.本班共有40人,請問能確定男*各幾人嗎?為什么?

(1)如果設(shè)本班男生x人,*y人,用方程如何表示?(x+y=40)。

(2)這是什么方程?根據(jù)什么?

2.男生比*多了2人。設(shè)男生x人,*y人。方程如何表示?x,y的值是多少?

3.本班男生比*多2人且男*共40人。設(shè)該班男生x人,*y人。方程如何表示?

兩個方程中的x表示什么?類似的兩個方程中的y都表示?

象這樣,同一個未知數(shù)表示相同的量,我們就應(yīng)用大括號把它們連起來組成一個方程組。

[設(shè)計意圖:從學(xué)生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學(xué)]。

(二)探究新知,練習(xí)鞏固。

(1)請同學(xué)們看課本,了解二元一次方程組的的概念,并找出關(guān)鍵詞由教師板書。

[讓學(xué)生看書,引起他們對教材重視。找關(guān)鍵詞,加深他們對概念的了解。]。

x+y=3,x+y=200,。

2x-3=7,3x+4y=3。

y+z=5,x=y+10,。

2y+1=5,4x-y2=2。

學(xué)生作出判斷并要說明理由。

(1)由學(xué)生給出引例的答案,教師指出這就是此方程組的解。

(2)練習(xí):把下列各組數(shù)的題序填入圖中適當(dāng)?shù)奈恢茫?/p>

x=1;x=-2;x=;-x=。

y=0;y=2;y=1;y=。

方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。

2x+3y=2。

(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。

(4)練習(xí):已知x=0是方程組x-b=y的解,求a,b的值。

y=0.55x+2a=2y。

(三)合作探索,嘗試求解。

現(xiàn)在我們一起來探索如何尋找方程組的解呢?

1.已知兩個整數(shù)x,y,試找出方程組3x+y=8的解。

2x+3y=10。

學(xué)生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學(xué)生利用實物投影,講明自己的解題思路。

提煉方法:列表嘗試法。

一般思路:由一個方程取適當(dāng)?shù)膞y的值,代到另一個方程嘗試。

2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學(xué)一共買了4盒,剛好有15個球。

(1)設(shè)該同學(xué)“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關(guān)于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。

由學(xué)生獨立完成,并分析講解。

(四)課堂小結(jié),布置作業(yè)。

1.這節(jié)課學(xué)哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)。

2.你還有什么問題或想法需要和大家交流?

3.作業(yè)本。

教學(xué)設(shè)計說明:

1.本課設(shè)計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學(xué)生從看書理解二元一次方程組的概念到學(xué)會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。

2.“讓學(xué)生成為課堂的真正主體”是本課設(shè)計的主要理念。由學(xué)生給出數(shù)據(jù),得出結(jié)果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學(xué)生,相信他們能在已有的知識上進一步學(xué)習(xí)提高,教師只是點播和引導(dǎo)者。

3.本課在設(shè)計時對教材也進行了適當(dāng)改動。例題方面考慮到數(shù)*時代,學(xué)生對膠卷已漸失興趣,所以改為學(xué)生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習(xí)的作用,為知識的落實打下軋實的基礎(chǔ),為學(xué)生今后的進一步學(xué)習(xí)做好鋪墊。

2022初中語文優(yōu)秀教師教案范文-語文優(yōu)秀教案模板范文。

標(biāo)準(zhǔn)教案范文精選。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇七

(3)通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識和能力。

2.情感態(tài)度價值觀目標(biāo)。

通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強新舊知識的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗數(shù)學(xué)活動充滿探索與創(chuàng)造。

前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識的綜合運用。強化了部分與整體的內(nèi)在聯(lián)系,知識與知識的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。

學(xué)生操作——————自主探索的方法。

學(xué)生通過自己操作和思考,結(jié)合新舊知識的聯(lián)系,自主探索出方程與圖象之間的對應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時也建立了“數(shù)”————二元一次方程組和“形”————函數(shù)的圖象(直線)之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。

一.故事引入。

迪卡兒的故事——————蜘蛛給予的啟示。

在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。

二.嘗試探疑。

1、y=x+1。

你們把我叫一次函數(shù),我也是二元一次方程啊!這是怎么回事,你知道嗎?

學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。

2、函數(shù)y=x+1上的任意一點的坐標(biāo)是否滿足方程x—y=—1?

學(xué)生會迫不及待地拿起筆來計算。從函數(shù)y=x+1圖象上找?guī)讉€點看它們的坐標(biāo)是否滿足方程x—y=—1。結(jié)果都滿足。然后學(xué)生就會自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點滿足不滿足方程x—y=—1。結(jié)果也都滿足。這樣他們就會搭成共識:函數(shù)y=x+1上的任意一點的坐標(biāo)都滿足方程x—y=—1。

然后學(xué)生會用同樣的方法得出另一個結(jié)論:以方程x—y=—1的解為坐標(biāo)的點一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x—y=—1到底有何關(guān)系呢?通過交流自動得出結(jié)論:以方程x—y=—1的解為坐標(biāo)的點組成的圖象與一次函數(shù)y=x+1的圖象相同。

3。在同一坐標(biāo)系下,化出y=x+1與y=4x—2的圖象,他們的交點坐標(biāo)是什么?

方程組y=x+1的解是什么?二者有何關(guān)系?

y=4x—2。

y=x+1的解。

y=4x—2。

教師作最后總結(jié):因為函數(shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。

解方程組x—2y=—2。

2x—y=2。

學(xué)生會很快的用消元法解出來。

老師發(fā)問:誰還有其他的方法?如果有,鼓勵學(xué)生大膽提出。并給予口頭表揚。如果沒有人用其他的方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學(xué)生就會去探索新的思路、方法。

一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個方程變形得到的兩個函數(shù)圖象的交點坐標(biāo)嗎?學(xué)生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:

1。把兩個方程都化成函數(shù)表達式的形式。

2。畫出兩個函數(shù)的圖象。

3。畫出交點坐標(biāo),交點坐標(biāo)即為方程組的解。

問題又出來了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2。1y=2。1。

y=1。9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。

老師提問:你能說一下用圖象法解方程組的不足嗎?

學(xué)生爭先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問:既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!

教師解釋一下:在現(xiàn)實生活和生產(chǎn)中,我們會遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點坐標(biāo)。教師可以用z+z智能教育平臺演示一下。

[點評]用作圖象的方法解方程組,這體現(xiàn)了兩個知識點的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識,探索知識點之間的聯(lián)系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學(xué)生學(xué)會這種學(xué)習(xí)新知識的技巧。

四.引申。

方程組x+y=2。

x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?

學(xué)生用消元法開始解方程組,結(jié)果無解,怎么回事呢?學(xué)生會嘗試運用方程組的圖象解法。畫出兩個函數(shù)圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。

[點評]因為有了上面的用作圖象法解方程組,在這里,學(xué)生就會自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結(jié)合的意識和能力。

五.課后小結(jié)。

本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時也建立了“數(shù)”————二元一次方程與“形”——————函數(shù)圖象之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力。

六.作業(yè)。

1。用作圖象法解方程組2x+y=4。

2x—3y=12。

2。如圖,直線l、l相交于點a,試求出a點坐標(biāo)。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇八

本節(jié)課通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點坐標(biāo)之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應(yīng)關(guān)系,進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力.因此確定本節(jié)課的教學(xué)目標(biāo)為:

3.發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)模型間的聯(lián)系.。

教學(xué)重點。

教學(xué)難點。

通過對數(shù)學(xué)模型關(guān)系的探究發(fā)展學(xué)生數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.。

1.教法學(xué)法。

啟發(fā)引導(dǎo)與自主探索相結(jié)合.。

2.課前準(zhǔn)備。

教具:多媒體課件、三角板.。

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.。

1.某水箱有5噸水,若用水管向外排水,每小時排水1噸,則x小時后還剩余y噸水.

(1)請找出自變量和因變量。

(2)你能列出x,y的關(guān)系式嗎。

(3)x,y的取值范圍是什么。

(4)在平面直角坐標(biāo)系中畫出這個函數(shù)的圖形.(注意xy的取值范圍).

2.(1)方程x+y=5的解有多少個?你能寫出這個方程的幾個解嗎?

(3).在一次函數(shù)y=x5的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?

x+y=5與y=x5表示的關(guān)系相同。

1.兩個一次函數(shù)圖象的交點坐標(biāo)是相應(yīng)的二元。

(2)兩個函數(shù)的交點坐標(biāo)適合哪個方程?

xy5(3).解方程組驗證一下你的發(fā)現(xiàn)。2xy1。

練習(xí):隨堂練習(xí)1。鞏固由一次函數(shù)的交點坐標(biāo)找相應(yīng)的二元一次方程組的解。

xy2(1)解。

2xy5(2)以方程x+y=2。

(3)以方程2x+y=5(4)方程組的解為坐標(biāo)的點在圖象上是哪個點?

練習(xí):知識技能1。鞏固由方程組的解求相應(yīng)的一次函數(shù)的交點坐標(biāo)。更深入的體會二元一次方程組的解與一次函數(shù)交點坐標(biāo)之間的對應(yīng)關(guān)系。

第三環(huán)節(jié)模型應(yīng)用。

1.某公司要印制產(chǎn)品宣傳材料.

印刷廠的費用。

(1)請分別表示出兩個印刷廠費用與x的關(guān)系式。

(2)在同一直角坐標(biāo)系中畫出函數(shù)的圖象。

(3)如何根據(jù)印刷材料的份數(shù)選擇印刷廠比較合算?

第四環(huán)節(jié)模型特例。

想一想。

么?

(1)觀察發(fā)現(xiàn)直線平行無交點;

(2)小組研究計算發(fā)現(xiàn)方程組無解;

(3)從側(cè)面驗證了兩直線有交點,對應(yīng)的方程組有解,反之也成立;

(4)歸納小結(jié):兩平行直線的k相等;方程組中兩方程未知數(shù)的系數(shù)對應(yīng)成比例方程組無解。

進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.進一步挖掘出兩直線平行與k的關(guān)系。

第五環(huán)節(jié)課堂小結(jié)。

內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:

一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.。

2.方程組和對應(yīng)的兩條直線的關(guān)系:

方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);

兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;

第六環(huán)節(jié)作業(yè)布置。

習(xí)題5.7。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇九

3、會將一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。

情感與態(tài)度目標(biāo)。

2、通過對實際問題的分析,培養(yǎng)關(guān)注生活,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識。

重點:二元一次方程的概念及二元一次方程的解的概念。

難點。

1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無數(shù)個,但不是任意的兩個數(shù)是它的解。

2、把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。

1、通過創(chuàng)設(shè)問題情境,讓學(xué)生在尋求問題解決的過程中認識二元一次方程,了解二元一次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。

2、通過觀察、思考、交流等活動,激發(fā)學(xué)習(xí)情緒,營造學(xué)習(xí)氣氛,給學(xué)生一定的時間和空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。

3、通過學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時鞏固所學(xué)知識。

創(chuàng)設(shè)情境導(dǎo)入新課。

1、一個數(shù)的3倍比這個數(shù)大6,這個數(shù)是多少?

師生互動探索新知。

1、發(fā)現(xiàn)新知。

根據(jù)它們的共同特征,你認為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數(shù),且含有未知數(shù)的項的次數(shù)都是一次的方程叫做二元一次方程。)。

2、鞏固新知。

相同點:方程兩邊都是整式,含有未知數(shù)的項的次數(shù)都是一次。

如果一個方程含有兩個未知數(shù),并且所含未知項都為1次方,那么這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。

它山之石可以攻玉,以上就是為大家?guī)淼?篇《一次函數(shù)與二元一次方程課教學(xué)設(shè)計》,您可以復(fù)制其中的精彩段落、語句,也可以下載doc格式的文檔以便編輯使用。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十

知識目標(biāo):了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。

能力目標(biāo):通過討論和練習(xí),進一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。

情感目標(biāo):通過對實際問題的分析,使學(xué)生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。

判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。

一、引入、實物投影。

2、請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)。

這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。

師:同學(xué)們能用方程的。方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的項的次數(shù)是多少?(含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)。

師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十一

二元一次方程組是新人教版七年級數(shù)學(xué)(下)第八章第一節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了一元一次方程,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容主要學(xué)習(xí)和二元一次方程組有關(guān)的四個概念。本節(jié)內(nèi)容既是前面知識的深化和應(yīng)用,又是今后用二元一次方程組解決生活中的實際問題的預(yù)備知識,占據(jù)重要的地位,是學(xué)生新的方程建模的基礎(chǔ)課,為今后學(xué)習(xí)一次函數(shù)以及其他學(xué)科(如:物理)的學(xué)習(xí)奠定基礎(chǔ),同時建模的思想方法對學(xué)生今后的發(fā)展有引導(dǎo)作用,因此本節(jié)課具有承上啟下的作用。

2.教學(xué)目標(biāo)。

[知識技能]。

掌握二元一次方程、二元一次方程組及它們的解的概念,通過實例認識二元一次方程和二元一次方程組也是反映數(shù)量關(guān)系的重要數(shù)學(xué)模型。

[數(shù)學(xué)思考]。

體會實際問題中二元一次方程組是反映現(xiàn)實世界多個量之間相等關(guān)系的一種有效的數(shù)學(xué)模型,能感受二元一次方程(組)的重要作用。

[解決問題]。

通過對本節(jié)知識點的學(xué)習(xí),提高分析問題、解決問題和邏輯思維能力。

[情感態(tài)度]。

引導(dǎo)學(xué)生對情境問題的觀察、思考,激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。

3.教學(xué)重點與難點。

按照《課程標(biāo)準(zhǔn)》的要求,根據(jù)上述地位與作用的分析及教學(xué)目標(biāo),本節(jié)課中相關(guān)概念的掌握是教學(xué)重點。

七年級學(xué)生思維活躍,好奇心強,希望平等交流研討,厭煩空洞的說教。因此,在教學(xué)過程中,積極采用形象生動、形式多樣的教學(xué)方法和學(xué)生廣泛的、積極主動參與的學(xué)習(xí)方式,激發(fā)他們的興趣。一方面通過學(xué)案與課件,使他們的注意力始終集中在課堂上;另一方面創(chuàng)造條件和機會,讓學(xué)生自主練習(xí),合作交流,培養(yǎng)學(xué)生學(xué)習(xí)的主動性、與人合作的精神,激發(fā)學(xué)生的興趣和求知欲,感受成功的樂趣。

1.教法。

數(shù)學(xué)課程標(biāo)準(zhǔn)明確指出:有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。所以我在教學(xué)中不只傳授知識,更要激發(fā)學(xué)生的創(chuàng)造思維,引導(dǎo)學(xué)生探究,發(fā)現(xiàn)結(jié)論的方法。正所謂“教是為了不教”。所以我采用引導(dǎo)發(fā)現(xiàn)法為主,情景問答法、討論法、活動競賽法、利用多媒體課件輔助教學(xué)等完成本節(jié)的教學(xué),真正做到教師的主導(dǎo)地位。

2.學(xué)法。

學(xué)生是學(xué)習(xí)的主體,所以本節(jié)教學(xué)中,引導(dǎo)學(xué)生自主探究、歸納總結(jié),運用自主探索與合作交流開拓自己的創(chuàng)造思維。這樣調(diào)動學(xué)生的積極性,激發(fā)學(xué)生興趣,使學(xué)生由被動學(xué)習(xí)變?yōu)榉e極主動的探究,這也符合數(shù)學(xué)的直觀性和形象性。

為了達到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程設(shè)計為五個環(huán)節(jié):

1、創(chuàng)設(shè)情境,引入概念。

nba籃球聯(lián)賽情景再現(xiàn),利用世界男籃亞裔球星林書豪激勵學(xué)生相信自已能夠創(chuàng)造奇跡的勵志教育,感受數(shù)學(xué)來源于生活,調(diào)動學(xué)生順利引入新課。

2、觀察歸納,形成概念。

概念的教學(xué),不糾纏于其語言本身,而是通過類比整合形成新的概念。由于學(xué)生對一元一次方程概念已經(jīng)很了解,我主要采用了類比的方法,弱化概念的教學(xué),強化對概念的正確理解,通過學(xué)案與課件相結(jié)合的方式,以題組形式分層漸進式訓(xùn)練,讓學(xué)生明晰概念,鞏固概念,強化概念,提升能力。

3、拓展延伸,深入概念。

知識的掌握,能力的提升是一個不斷循序上升的過程,而教學(xué)過程更是一個生動活沷,主動和富有個性的過程,讓學(xué)生認真聽講、積極思考,動腦動口,自主探索,合作交流。

4、當(dāng)堂檢測,強化概念。

通過課堂隨機選題的形式答題,通過合作小組交流,全班展示交流,使學(xué)生互相學(xué)習(xí)、互相促進、互相競爭,將小組的認知成果轉(zhuǎn)化為全班同學(xué)的共同認知成果,從而營造寬松、民主、競爭、快樂的學(xué)習(xí)氛圍,讓學(xué)生體驗到學(xué)習(xí)的快樂,成功的喜悅,從而充分體現(xiàn)數(shù)學(xué)教學(xué)主要是學(xué)生數(shù)學(xué)活動教學(xué)的基本理念。

5、反思小結(jié),回歸概念。

知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,培養(yǎng)學(xué)生形成完整的知識體系,養(yǎng)成及時反思的習(xí)慣。

美國國家研究委員會在《人人關(guān)心數(shù)學(xué)教育的未來》的報告中指出“沒有一個人能教好數(shù)學(xué),好的教師不是在教數(shù)學(xué),而是在激發(fā)學(xué)生自已去學(xué)數(shù)學(xué)”。只有學(xué)生通過自已的思考建立對數(shù)學(xué)的理解力,才能真正的學(xué)好數(shù)學(xué)。本節(jié)課,我致力于讓學(xué)生自已去發(fā)現(xiàn)數(shù)學(xué),研究數(shù)學(xué),加強數(shù)學(xué)思想、方法及科學(xué)研究方法的指導(dǎo),引導(dǎo)學(xué)生不斷從“學(xué)會數(shù)學(xué)”到“會學(xué)數(shù)學(xué)”,但教無止境,課堂仍然留有遺憾,在今后的教學(xué)中,我將從這樣的三個方面加強對課堂的研究:一是加強對學(xué)法研究、學(xué)情研究,讓教學(xué)方式與內(nèi)容更符合學(xué)生認知規(guī)律,更貼近學(xué)生實際;二是重視學(xué)生課堂的學(xué)習(xí)感受,營造民主、開放、合作、競爭的學(xué)習(xí)氛圍;;三是提高教學(xué)機智、不斷創(chuàng)新優(yōu)化教學(xué)方法,科學(xué)、合理、靈活地處理課堂上生成的問題。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十二

1.知識與能力目標(biāo)。

(3)通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識和能力。

2.情感態(tài)度價值觀目標(biāo)。

通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強新舊知識的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗數(shù)學(xué)活動充滿探索與創(chuàng)造。

教材分析。

前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識的綜合運用。強化了部分與整體的內(nèi)在聯(lián)系,知識與知識的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。

教學(xué)重點。

教學(xué)難點。

方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。

教學(xué)方法。

學(xué)生操作------自主探索的方法。

學(xué)生通過自己操作和思考,結(jié)合新舊知識的聯(lián)系,自主探索出方程與圖象之間的對應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程組和“形”----函數(shù)的圖象(直線)之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。

教學(xué)過程。

一、故事引入。

迪卡兒的故事------蜘蛛給予的啟示。

在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。

二、嘗試探疑。

1、y=x+1。

你們把我叫一次函數(shù),我也是二元一次方程??!這是怎么回事,你知道嗎?

學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。

2、函數(shù)y=x+1上的任意一點的坐標(biāo)是否滿足方程x-y=-1?

學(xué)生會迫不及待地拿起筆來計算。從函數(shù)y=x+1圖象上找?guī)讉€點看它們的坐標(biāo)是否滿足方程x-y=-1。結(jié)果都滿足。然后學(xué)生就會自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點滿足不滿足方程x-y=-1。結(jié)果也都滿足。這樣他們就會搭成共識:函數(shù)y=x+1上的任意一點的坐標(biāo)都滿足方程x-y=-1。

然后學(xué)生會用同樣的方法得出另一個結(jié)論:以方程x-y=-1的解為坐標(biāo)的點一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x-y=-1到底有何關(guān)系呢?通過交流自動得出結(jié)論:以方程x-y=-1的解為坐標(biāo)的點組成的圖象與一次函數(shù)y=x+1的圖象相同。

3.在同一坐標(biāo)系下,化出y=x+1與y=4x-2的圖象,他們的交點坐標(biāo)是什么?

方程組y=x+1的解是什么?二者有何關(guān)系?

y=4x-2。

y=x+1的解。

y=4x-2。

教師作最后總結(jié):因為函數(shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。

解方程組x-2y=-2。

2x-y=2。

學(xué)生會很快的用消元法解出來。

老師發(fā)問:誰還有其他的方法?如果有,鼓勵學(xué)生大膽提出。并給予口頭表揚。如果沒有人用其他的`方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學(xué)生就會去探索新的思路、方法。

一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個方程變形得到的兩個函數(shù)圖象的交點坐標(biāo)嗎?學(xué)生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:

1.把兩個方程都化成函數(shù)表達式的形式。

2.畫出兩個函數(shù)的圖象。

3.畫出交點坐標(biāo),交點坐標(biāo)即為方程組的解。

問題又出來了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2.1y=2.1。

y=1.9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。

老師提問:你能說一下用圖象法解方程組的不足嗎?

學(xué)生爭先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問:既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!

教師解釋一下:在現(xiàn)實生活和生產(chǎn)中,我們會遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點坐標(biāo)。教師可以用z+z智能教育平臺演示一下。

用作圖象的方法解方程組,這體現(xiàn)了兩個知識點的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識,探索知識點之間的聯(lián)系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學(xué)生學(xué)會這種學(xué)習(xí)新知識的技巧。

四、引申。

方程組x+y=2。

x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?

學(xué)生用消元法開始解方程組,結(jié)果無解,怎么回事呢?學(xué)生會嘗試運用方程組的圖象解法。畫出兩個函數(shù)圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。

因為有了上面的用作圖象法解方程組,在這里,學(xué)生就會自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結(jié)合的意識和能力。

五、課后小結(jié)。

本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程與“形”------函數(shù)圖象之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力。

六、作業(yè)。

1.用作圖象法解方程組2x+y=4。

2x-3y=12。

2.如圖,直線l、l相交于點a,試求出a點坐標(biāo)。

教學(xué)反思。

這節(jié)課由故事引入,激發(fā)了學(xué)生極大的學(xué)習(xí)興趣。然后提出了三個尖銳的問題,讓學(xué)生嘗試探索,在探索中既體會到了探索的艱辛,又體會到了成功的喜悅。在應(yīng)用和引申過程中,盡量讓學(xué)生自主的發(fā)現(xiàn)問題,自主的解決問題。學(xué)生在緊張、愉快中完成了這節(jié)課的學(xué)習(xí)。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十三

這節(jié)課,是一節(jié)平時課堂,學(xué)生進入錄播教室有些拘謹,回答問題不積極,并且因為學(xué)生的基礎(chǔ)問題,所以課堂有些不夠活躍,思路不夠開闊。盡管每節(jié)課認真準(zhǔn)備充分,但是感覺這節(jié)課還是存在問題。

總體而言,在教學(xué)設(shè)計上我認為存在兩點不足,第一是在導(dǎo)入新課時,沒有很好的激發(fā)學(xué)生學(xué)習(xí)的積極性,學(xué)生學(xué)起來很平淡,第二就是在介紹數(shù)形結(jié)合思想時,是一筆帶過,而數(shù)形結(jié)合對于以后的解題和數(shù)學(xué)學(xué)習(xí)都是比較重要的思想方法,所以應(yīng)該多花點時間在這個上面。

在教學(xué)過程中,特別是學(xué)生解二元一次方程組,本來說很簡單的,但很多學(xué)生計算都出現(xiàn)了問題,所以在后面的教學(xué)中,要加強學(xué)生的計算能力。但是對于數(shù)學(xué)課堂用好課件,非常好,能提高課堂容量,學(xué)生基本能求出,會找兩個點;對于利用表格信息確定函數(shù)解析式,學(xué)生不知道是求函數(shù)的解析式;利用點的坐標(biāo)求函數(shù)解析式,可以借助圖形加以理解,所以基本達到教學(xué)目標(biāo)。但是整體有待于優(yōu)化課堂設(shè)計。

將本文的word文檔下載到電腦,方便收藏和打印。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十四

3、學(xué)會開放性地尋求設(shè)計方案,培養(yǎng)分析。

教學(xué)難點用方程組刻畫和解決實際問題的過程。

知識重點經(jīng)歷和體驗用方程組解決實際問題的過程。

教學(xué)過程(師生活動)設(shè)計理念。

(出示問題)據(jù)以往的統(tǒng)計資料,甲、乙兩種作物的單位面積產(chǎn)量的比是1:1:5,現(xiàn)要在一塊長200m,寬100m的長方形土地上種植這兩種作物,怎樣把這塊地分為兩個長方形,使甲、乙兩種作物的總產(chǎn)量的比是3:4(結(jié)果取整數(shù))?以學(xué)生身邊的實際問題展開學(xué)習(xí),突出數(shù)學(xué)與現(xiàn)實的聯(lián)系,培養(yǎng)學(xué)生用數(shù)學(xué)的意識。

探索分析。

研究策略以上問題有哪些解法?

學(xué)生自主探索,合作交流,整理思路:

(2)先求兩個小長方形的面積比,再計算分割線的位置.。

(3)設(shè)未知數(shù),列方程組求解.。

……。

學(xué)生經(jīng)討論后發(fā)現(xiàn)列方程組求解較為方便.多角度分析問題,多策略解決問題,提高思維的發(fā)散性。

合作交流。

解決問題引導(dǎo)學(xué)生回顧列方程解決實際問題的基本思路。

(1)設(shè)未知數(shù)。

(2)找相等關(guān)系。

(3)列方程組。

(4)檢驗并作答。

解這個方程組得。

過長方形土地的長邊上離一端約106m處,把這塊地分。

為兩個長方形.較大一塊地種甲作物,較小一塊地種乙作物.。

你還能設(shè)計別的種植方案嗎?

用類似的方法,可沿平行于線段ab的方向分割長。

方形.。

教師巡視、指導(dǎo),師生共同講評.。

比較分析,加深對方程組的認識。

畫圖,數(shù)形結(jié)合,輔助學(xué)生分析。

進一步滲透模型化的思想。

引發(fā)學(xué)生思考,尋求解決途徑。

拓展探究。

按以下步驟展開問題的討論:

(l)學(xué)生獨立思考,構(gòu)建數(shù)學(xué)模型.。

(2)小組討論達成共識.。

(3)學(xué)生板書講解.。

(4)對方程組的解進行探究和討論,從而得到實際問題的結(jié)果.。

(5)針對以上結(jié)論,你能再提出幾個探索性問題嗎?以學(xué)生學(xué)習(xí)生活中遇到的。

問題展開討論,鞏固用二元一次。

小結(jié)與作業(yè)。

小結(jié)提高提問:通過本節(jié)課的討論,你對用方程解決實際的方法又有何新的`認識?

學(xué)生思考后回答、整理.。

布置作業(yè)12、必做題:教科書116頁習(xí)題8.3第1(2)、4題。

13、選做題:教科書117頁習(xí)題8.3第7題。

14、備15、選題:

(3)解方程組。

小彬看見了,說:“我來試一試.”結(jié)果小彬七拼八湊,拼成如圖2那樣的正方形.咳,怎么中間還留下一個洞,恰好是邊長2mm的小正方形!

你能幫他們解開其中的奧秘嗎?

提示學(xué)生先動手實踐,再分析討論.。

分層次布1作業(yè).其中“必。

做題”面向全體學(xué)生,鞏固知識、

方法,加深理解廠選做題”面向。

部分學(xué)有余力的學(xué)生,給他們一。

定的時間和空間,相互合作,自主探究,增強實踐能力.備選通供教師參考.。

本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)。

本課所提供的例題、練習(xí)題、作業(yè)題突出體現(xiàn)以下特點:

2、探索性.問題解決的策略不易獲得,問題中的數(shù)量關(guān)系不易發(fā)現(xiàn),問題中的未知數(shù)不。

易設(shè)定,這為學(xué)生開展探究活動提供了機會.。

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十五

把具有相同未知數(shù)的兩個二元一次方程合在一起,就組成了一個二元一次方程組.

此外,組成方程組的各個方程也不必同時含有兩個未知數(shù).

二.會檢驗一組數(shù)是不是某個二元一次方程組的解;。

滿足每一個方程,只有這組數(shù)滿足方程組中的所有方程時,該組數(shù)才是原方程組的解,否則不是。

三.會用代入法和加減法解二元一次方程組,了解代入消元法和加減消元法的基本思想;。

代入法消元:

1.代入消元法是解方程組的兩種基本方法之一。代入消元法就是把方程組其中一個方程的某個未知數(shù)用含另一個未知數(shù)的代數(shù)式表示,然后代入另一個方程,消去一個未知數(shù),將二元一次方程組轉(zhuǎn)化為一元一次方程來解。這種解二元一次方程組的方法叫代入消元法,簡稱代入法。

(2)將變形后的這個關(guān)系式代入另一個方程,消去一個未知數(shù),得到一個一元一次方程;。

(3)解這個一元一次方程,求出一個未知數(shù)的值;。

(4)將求得的這個未知數(shù)的值代入變形后的關(guān)系式中,求出另一個未知數(shù)的值;。

加減法消元:

1.加減消元法是解二元一次方程組的基本方法之一,加減消元法是通過將兩個方程相加(或相減)消去一個未知數(shù),將二元一次方程組轉(zhuǎn)化為一元一次方程來解,這種解法叫做加減消元法,簡稱加減法。

(3)解這個一元一次方程,求得其中一個未知數(shù)的值;。

4.能夠根據(jù)題目特點熟練選用代入法或加減法解二元一次方程組;。

5.能借助二元一次方程組解決一些實際問題,使用代數(shù)方法去反應(yīng)現(xiàn)實生活中的等量關(guān)系,體會代數(shù)方法的優(yōu)越性.

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十六

本課內(nèi)容是在學(xué)生掌握了二元一次方程組有關(guān)概念之后的學(xué)習(xí)內(nèi)容,用代入消元法解二元一次方程組是學(xué)生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現(xiàn)了“化未知為已知”的重要思想,它是學(xué)習(xí)本章的重點和難點。學(xué)完以后可以幫助我們解決一些實際的問題,也是為了今后學(xué)習(xí)函數(shù)、線性方程組及高次方程組奠定了基礎(chǔ)。

2.理解代入消元法的基本思想;了解化“未知為已知”的轉(zhuǎn)化過程,體會化歸思想。

三、教學(xué)重難點。

2.難點:在“消元”的過程中能夠判斷消去哪個未知數(shù),使得解方程組的運算轉(zhuǎn)為較簡便的過程。

四、教學(xué)過程。

(1)復(fù)習(xí)引入。

設(shè)計意圖:讓學(xué)生復(fù)習(xí)鞏固二元一次方程組和二元一次方程組解的概念,追問其他一個拋磚引玉的效果,激起學(xué)生的學(xué)習(xí)興趣,引出課題。

(2)探究新知。

此過程通過播放洋蔥視頻中的代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點擊暫停,先讓學(xué)生考慮想清楚兩個問題。

一個問題是為什么能用一元一次方程解決的實際問題我們要用二元一次方程組來解決?第二個問題觀察二元一次方程組和一元一次方程組之間有何異同?學(xué)生想清楚這兩個問題后,滲透消元的思想,然后繼續(xù)播放視頻讓學(xué)生知道二元一次方程組完整的解題過程,并在每一步做出相應(yīng)的解釋,怎么變化而來。

播放視頻完后先讓學(xué)生自主總結(jié)歸納解二元一次方程組的基本步驟,教師引導(dǎo)總結(jié)。接著完成配套的3個習(xí)題,強化訓(xùn)練。

(3)例題講解。

讓學(xué)生嘗試解答。

設(shè)計意圖:讓學(xué)生通過例1和例2的對比,引出如何選擇變化有利于計算的問題。

預(yù)想大部分學(xué)生例2會存在這樣的問題到底選擇哪個方程變形,當(dāng)學(xué)生做出例1,猶豫例2時,提出這樣兩個問題:

(1)在解二元一次方程組的步驟中變形的過程我們應(yīng)當(dāng)如何變形?把一個方程變形為用含x的式子表示y(或含y的式子表示x)。

(2)選擇哪個方程變形比較簡便呢?

再一次激起學(xué)生的學(xué)習(xí)興趣,接著播放洋蔥視頻繼續(xù)代入消元法片段視頻,讓學(xué)生清楚的知道在不同的二元一次方程組中在變形的過程選擇那一個方程,選擇那一個未知數(shù)變形能簡便的進行運算。

五、課堂小結(jié)。

1.這節(jié)課你學(xué)到了哪些知識和方法?

2.你還有什么問題或想法需要和大家交流分享?

一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十七

(1)給出一個實際問題請同學(xué)們來分析題目,設(shè)出未知數(shù),尋找相等關(guān)系,列出方程,當(dāng)然前提是設(shè)兩個未知數(shù),得到一個二元一次方程組,然后給出概念,提醒學(xué)生要注意概念中是含有兩個未知數(shù)的兩個一次方程所組成的,接下來就給出幾個判斷鞏固定義。

(3)做書本上的習(xí)題。這次備這節(jié)課時,我就想到以前上這課很沒有意思,學(xué)生覺得內(nèi)容很簡單很枯燥,根據(jù)簡單的實際問題來列方程組對他們而言也不是難事。在備課時我就從學(xué)生的角度去看教材,既然內(nèi)容簡單那就讓學(xué)生自學(xué)為主。所以我今天上課的流程變成先出事兩個問題情境(列二元一次方程組解決),然后直接給出本堂課的內(nèi)容:二元一次方程、二元一次方程的解、二元一次方程組以及二元一次方程組的解的概念,請同學(xué)們根據(jù)名稱思考,并舉例說明。給他們幾分鐘時間思考以后,就請學(xué)生來當(dāng)小老師,上黑板來講,也有同學(xué)覺得小老師講的不夠清楚,又上來重講的,一共請了3名同學(xué),有同學(xué)提出的問題很簡單,也有同學(xué)提出了一個引起大家爭議的問題,就是x=3,x+y=4這樣的方程組是不是二元一次方程組,在大家爭論以后我給出了正確答案以及這個概念中的注意點。最后在請學(xué)生來總結(jié)今天所學(xué)到的主要內(nèi)容和注意點。

【本文地址:http://mlvmservice.com/zuowen/14779593.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔