二次函數(shù)數(shù)學(xué)教案(優(yōu)質(zhì)18篇)

格式:DOC 上傳日期:2023-11-24 17:39:10
二次函數(shù)數(shù)學(xué)教案(優(yōu)質(zhì)18篇)
時(shí)間:2023-11-24 17:39:10     小編:飛雪

教案是教師進(jìn)行教學(xué)設(shè)計(jì)和組織教學(xué)活動(dòng)的重要依據(jù)。那么我們?cè)撊绾尉帉懸环輧?yōu)秀的教案呢?首先,需要明確教學(xué)目標(biāo),確定教學(xué)重點(diǎn)和難點(diǎn)。接著,根據(jù)學(xué)生的特點(diǎn)和實(shí)際情況選擇適合的教學(xué)方法和教學(xué)資源。此外,合理設(shè)計(jì)教學(xué)步驟和任務(wù),確保教學(xué)過程的連貫性和可操作性。同時(shí),要注重培養(yǎng)學(xué)生的綜合能力,促進(jìn)學(xué)生的主動(dòng)參與和自主學(xué)習(xí)。最后,在教學(xué)結(jié)束后及時(shí)反思總結(jié),不斷完善教案,提高教學(xué)質(zhì)量。掌握好教案編寫的基本原則和方法,對(duì)教師的教學(xué)改革和提高有著重要的意義。

二次函數(shù)數(shù)學(xué)教案篇一

一、教材分析:

《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書《數(shù)學(xué)》(冀教版)九年級(jí)上冊(cè)第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個(gè)問題,這三個(gè)問題對(duì)應(yīng)了一元二次方程有兩個(gè)不等實(shí)根、有兩個(gè)相等實(shí)根、沒有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問題實(shí)際意義就能對(duì)二次函數(shù)與一元二次方程的關(guān)系有很好的體會(huì);從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識(shí)與實(shí)際問題的聯(lián)系。

本節(jié)教學(xué)時(shí)間安排1課時(shí)。

二、教學(xué)目標(biāo):

知識(shí)技能:

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.

2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

數(shù)學(xué)思考:

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.

2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).

3.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。

解決問題:

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。

2.通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。

情感態(tài)度:

1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。

2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí)。

三、教學(xué)重點(diǎn)、難點(diǎn):

教學(xué)重點(diǎn):

1.體會(huì)方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

教學(xué)難點(diǎn):

1.探索方程與函數(shù)之間關(guān)系的過程。

2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。

四、教學(xué)方法:?jiǎn)l(fā)引導(dǎo)合作交流。

五:教具、學(xué)具:課件。

六、教學(xué)過程:

[活動(dòng)1]檢查預(yù)習(xí)引出課題。

預(yù)習(xí)作業(yè):

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。

教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來,2題的格式要規(guī)范。

設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識(shí)類比探究本課新知識(shí)。

[活動(dòng)2]創(chuàng)設(shè)情境探究新知。

問題。

1.課本p94問題.

3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。

師生行為:教師提出問題1,給學(xué)生獨(dú)立思考的時(shí)間,教師可適當(dāng)引導(dǎo),對(duì)學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個(gè)問題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。

教師重點(diǎn)關(guān)注:

1.學(xué)生能否把實(shí)際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;。

2.學(xué)生在思考問題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;。

3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。

設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。

[活動(dòng)3]例題學(xué)習(xí)鞏固提高。

問題。

例利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).

師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。

教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。

設(shè)計(jì)意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識(shí)中尋找到新知識(shí)的生長(zhǎng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。

[活動(dòng)4]練習(xí)反饋鞏固新知。

二次函數(shù)數(shù)學(xué)教案篇二

(1)其圖象叫拋物線;(2)拋物線y=x2的對(duì)稱軸是y軸,開口向上,頂點(diǎn)是原點(diǎn)。

補(bǔ)充例題。

下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作業(yè):p122中a組1,2,3。

四、教學(xué)注意問題。

1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對(duì)立統(tǒng)一的觀點(diǎn)。

2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:

(1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對(duì)稱性。)。

(2)如何判斷y=x2的圖象有上面所說的特點(diǎn)?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)。

二次函數(shù)數(shù)學(xué)教案篇三

(1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。

重點(diǎn)難點(diǎn):

能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

一、試一試。

ab長(zhǎng)x(m)123456789。

bc長(zhǎng)(m)12。

面積y(m2)48。

2.x的值是否可以任意取?有限定范圍嗎?

對(duì)于1.,可讓學(xué)生根據(jù)表中給出的ab的長(zhǎng),填出相應(yīng)的bc的長(zhǎng)和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:

(1)從所填表格中,你能發(fā)現(xiàn)什么?

(2)對(duì)前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識(shí):當(dāng)ab的長(zhǎng)為5cm,bc的長(zhǎng)為10m時(shí),圍成的矩形面積最大;最大面積為50m2。

二次函數(shù)數(shù)學(xué)教案篇四

二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對(duì)題目的重組。

三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果.

四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要.因此,我們?cè)谑谡n的過程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感.這樣他們才會(huì)更有興趣的學(xué)習(xí)下去.

二次函數(shù)數(shù)學(xué)教案篇五

在整個(gè)中學(xué)數(shù)學(xué)知識(shí)體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識(shí)的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。

一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。

四、要多了解學(xué)生。你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。

二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海。教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對(duì)題目的重組。

三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果。

四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要。因此,我們?cè)谑谡n的過程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感。這樣他們才會(huì)更有興趣的學(xué)習(xí)下去。

1、質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問難。教師要?jiǎng)?chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、提問、爭(zhēng)辯,甚至提出與教師不同的看法。

2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。

3、學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng)?,F(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。

4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問題。

1、教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。

2、教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。

4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。

二次函數(shù)數(shù)學(xué)教案篇六

1.質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問難。教師要?jiǎng)?chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、提問、爭(zhēng)辯,甚至提出與教師不同的看法。

2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。

3.學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng)。現(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。

4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問題。

二次函數(shù)數(shù)學(xué)教案篇七

二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,在初中的學(xué)習(xí)中已經(jīng)給出了二次函數(shù)的圖象及性質(zhì),學(xué)生已經(jīng)基本掌握了二次函數(shù)的圖象及一些性質(zhì),只是研究函數(shù)的方法都是按照函數(shù)解析式---定義域----圖象----性質(zhì)的方法進(jìn)行的,基于這種情況,我認(rèn)為本節(jié)課的作用是讓學(xué)生借助于熟悉的函數(shù)來進(jìn)一步學(xué)習(xí)研究函數(shù)的更一般的方法,即:利用解析式分析性質(zhì)來推斷函數(shù)圖象。它可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念與性質(zhì)的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,站在新的高度研究函數(shù)的性質(zhì)與圖象。因此,本節(jié)課的內(nèi)容十分重要。

2、教學(xué)的重點(diǎn)和難點(diǎn)。

教學(xué)重點(diǎn):使學(xué)生掌握二次函數(shù)的概念、性質(zhì)和圖象;從函數(shù)的性質(zhì)推斷圖象的方法。

教學(xué)難點(diǎn):掌握從函數(shù)的性質(zhì)推斷圖象的方法。

按照新課標(biāo)指出三維目標(biāo),根據(jù)任教班級(jí)學(xué)生的實(shí)際情況,本節(jié)課我確定的教學(xué)目標(biāo)是:

1、知識(shí)與技能:掌握二次函數(shù)的性質(zhì)與圖象,能夠借助于具體的二次函數(shù),理解和掌握從函數(shù)的性質(zhì)推斷圖象的方研究法。

2、過程與方法:通過老師的引導(dǎo)、點(diǎn)撥,讓學(xué)生在分組合作、積極探索的氛圍中,掌握從函數(shù)解析式、性質(zhì)出發(fā)去認(rèn)識(shí)函數(shù)圖象的高度理解和研究函數(shù)的方法。

3、情感、態(tài)度、價(jià)值觀:讓學(xué)生感受數(shù)學(xué)思想方法之美、體會(huì)數(shù)學(xué)思想方法之重要;培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)、合作交流的意識(shí)等。

遵循“教師的主導(dǎo)作用和學(xué)生的主體地位相統(tǒng)一的教學(xué)規(guī)律”,從教師的角色突出體現(xiàn)教師是設(shè)計(jì)者、組織者、引導(dǎo)者、合作者,經(jīng)過教師對(duì)教材的分析理解,在教師的組織引導(dǎo)和師生互動(dòng)過程中以問題為載體實(shí)施整個(gè)教學(xué)過程;在學(xué)生這方面,通過自主探索、合作交流、歸納方法等一系列活動(dòng)為主線,感受知識(shí)的形成過程,拓展和完善自己的認(rèn)知結(jié)構(gòu),進(jìn)而體現(xiàn)出教學(xué)過程中教師與學(xué)生的雙主體作用。

根據(jù)新課標(biāo)的理念,我把整個(gè)的教學(xué)過程分為六個(gè)階段,即:創(chuàng)設(shè)情景、提出問題。

師生互動(dòng)、探究新知。

獨(dú)立探究,鞏固方法。

強(qiáng)化訓(xùn)練,加深理解。

小結(jié)歸納,拓展深化。

布置作業(yè),提高升華。

的圖象。目的是充分暴露學(xué)生在作圖時(shí)不能很好的結(jié)合函數(shù)的性質(zhì)而出現(xiàn)的錯(cuò)誤或偏差問題,突出本節(jié)課的重要性。在學(xué)生總結(jié)交流的基礎(chǔ)上教師指出學(xué)生的錯(cuò)誤并以設(shè)問的方式提出本節(jié)課的目標(biāo):如何利用函數(shù)性質(zhì)的研究來推斷出較為準(zhǔn)確的函數(shù)圖象,進(jìn)而引導(dǎo)學(xué)生進(jìn)入師生互動(dòng)、探究新知階段。

在這個(gè)階段,我引用課本所給的例題1請(qǐng)同學(xué)們以學(xué)習(xí)小組為單位嘗試完成并作出總結(jié)發(fā)言。目的是:讓學(xué)生充分參與,在合作探究中讓學(xué)生最大限度地突破目標(biāo)或暴露出在嘗試研究過程中出現(xiàn)的分析障礙,即不能很好的把握函數(shù)的性質(zhì)對(duì)圖象的影響,不能把抽象的性質(zhì)與直觀的圖象融會(huì)貫通,這樣便于教師在與學(xué)生互動(dòng)的過程中準(zhǔn)確把握難點(diǎn),各個(gè)擊破,最終形成知識(shí)的遷移。在學(xué)生探討后,教師選小組代表做總結(jié)發(fā)言,其他小組作出補(bǔ)充,教師引導(dǎo)從逐步完善函數(shù)性質(zhì)的分析。其中,學(xué)生對(duì)于對(duì)稱軸的確定、單調(diào)區(qū)間及單調(diào)性的分析闡述等可能存在困難。這時(shí)教師可以利用對(duì)解析式的分析結(jié)合多媒體演示引導(dǎo)學(xué)生得到分析的思路和解決的方法,在師生互動(dòng)的過程中把函數(shù)的性質(zhì)完善。之后進(jìn)入環(huán)節(jié)3:再次讓學(xué)生利用二次函數(shù)的性質(zhì)推斷出二次函數(shù)的圖象,強(qiáng)化用二次函數(shù)的性質(zhì)推斷圖象的關(guān)鍵。進(jìn)而突破教學(xué)難點(diǎn)。讓學(xué)生真正實(shí)現(xiàn)知識(shí)的遷移,完成整個(gè)探究過程,形成較為完整的新的認(rèn)知體系。當(dāng)然,在這個(gè)過程中可能會(huì)有學(xué)生提出圖象為什么是曲線而不是直線等問題,為了消除學(xué)生的疑惑,進(jìn)入第4個(gè)環(huán)節(jié):教師要簡(jiǎn)單說明這是研究函數(shù)要考慮的一個(gè)重要的性質(zhì),是函數(shù)的凹凸性,后面我們將要給大家介紹,同學(xué)們可以閱讀課本第110頁的探索與研究。這樣也給學(xué)生留下一個(gè)思考與探索的空間,培養(yǎng)學(xué)生課外閱讀、自主研究的能力,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

在以上環(huán)節(jié)完成后,進(jìn)入第5個(gè)環(huán)節(jié):讓學(xué)生對(duì)利用解析式分析性質(zhì)然后推斷函數(shù)圖象的研究過程進(jìn)行梳理并加以提煉、抽象、概括,得出研究函數(shù)的具體操作過程,使問題得以升華,拓寬學(xué)生的思維,將新知識(shí)內(nèi)化到自己的認(rèn)知結(jié)構(gòu)中去。最終尋求到解決問題的方法。

教學(xué)的最終目標(biāo)應(yīng)該落實(shí)到每一個(gè)學(xué)生個(gè)體的內(nèi)化與發(fā)展,由此讓引導(dǎo)學(xué)生進(jìn)入獨(dú)立探究,鞏固方法的階段。例2在題目的設(shè)置上變換二次函數(shù)的開口方向,目的是一方面使學(xué)生加深對(duì)知識(shí)的理解,完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力。學(xué)生在例1的基礎(chǔ)上將會(huì)目標(biāo)明確地進(jìn)行函數(shù)性質(zhì)的研究,然后推斷出比較準(zhǔn)確的函數(shù)圖象,使新知得到有效鞏固。

通過前面三個(gè)階段的學(xué)習(xí),學(xué)生應(yīng)該基本掌握了本節(jié)課的相關(guān)知識(shí)。但對(duì)二次函數(shù)中系數(shù)a、b、c的對(duì)二次函數(shù)的影響還有待提高,為此我把課本中的例3進(jìn)行改編,引導(dǎo)學(xué)生進(jìn)入強(qiáng)化訓(xùn)練,加深理解階段。一方面可以解決學(xué)生對(duì)奇偶性的質(zhì)疑,另一方面也可以把學(xué)生對(duì)二次函數(shù)的認(rèn)識(shí)提到新的高度。

第五個(gè)階段:小結(jié)歸納,拓展深化。為了讓學(xué)生能夠站在更高的角度認(rèn)識(shí)二次函數(shù)和掌握函數(shù)的一般研究方法,教師引導(dǎo)學(xué)生從兩個(gè)方面總結(jié)。在你對(duì)函數(shù)圖象與性質(zhì)的關(guān)系有怎樣的理解方面教師要引導(dǎo)、拓展,明確今天所學(xué)習(xí)的方法實(shí)際上是研究函數(shù)性質(zhì)圖象的一般方法,對(duì)于一些陌生的或較為復(fù)雜的函數(shù)只要借助于適當(dāng)?shù)姆椒ǖ玫较嚓P(guān)的性質(zhì)就可以推斷出函數(shù)的圖象,從而把學(xué)生的認(rèn)知水平定格在一個(gè)新的高度去理解和認(rèn)識(shí)函數(shù)問題。

最后一個(gè)階段是布置作業(yè),提高升華,作業(yè)的設(shè)置是分層落實(shí)。鞏固題讓學(xué)生復(fù)習(xí)解題思路,準(zhǔn)確應(yīng)用,以便舉一反三。探究題通過對(duì)教材例題的改編,供學(xué)有余力的學(xué)生自主探索,提高他們分析問題、解決問題的能力。

以上六個(gè)階段環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過動(dòng)手操作,動(dòng)眼觀察,動(dòng)腦思考,親身經(jīng)歷了知識(shí)的形成和發(fā)展過程,并得以遷移內(nèi)化。而最終的探究作業(yè)又將激發(fā)學(xué)生興趣,帶領(lǐng)學(xué)生進(jìn)入對(duì)二次函數(shù)更進(jìn)一步的思考和研究之中,從而達(dá)到知識(shí)在課堂以外的延伸。總之,這節(jié)課是本著“授之以漁”而非“授之以魚”的理念來設(shè)計(jì)的。

二次函數(shù)數(shù)學(xué)教案篇八

二次函數(shù)的最大值,最小值及增減性的理解和求法·。

三、解答題。

7·(1)請(qǐng)?jiān)谧鴺?biāo)系中畫出二次函數(shù)y=x2—2x的大致圖象;

(3)觀察圖象,直接寫出方程x2—2x=1的根(精確到0·1)·。

(1)當(dāng)t=3時(shí),求足球距離地面的高度;

(2)當(dāng)足球距離地面的高度為10米時(shí),求t;

二次函數(shù)數(shù)學(xué)教案篇九

1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn)。

2.能夠利用描點(diǎn)法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達(dá)式與圖象之間的聯(lián)系。

3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(zhì)(開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo))。

教學(xué)重點(diǎn):二次函數(shù)y=ax2的圖象的作法和性質(zhì)。

教學(xué)難點(diǎn):建立二次函數(shù)表達(dá)式與圖象之間的聯(lián)系。

教學(xué)方法:自主探索,數(shù)形結(jié)合。

利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質(zhì)時(shí),應(yīng)盡可能多地運(yùn)用小組活動(dòng)的形式,通過學(xué)生之間的合作與交流,進(jìn)行圖象和圖象之間的比較,表達(dá)式和表達(dá)式之間的比較,建立圖象和表達(dá)式之間的聯(lián)系,以達(dá)到學(xué)生對(duì)二次函數(shù)性質(zhì)的真正理解。

一、認(rèn)知準(zhǔn)備:

1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?

2.畫函數(shù)圖象的方法和步驟是什么?(學(xué)生口答)。

你會(huì)作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質(zhì)嗎?本節(jié)課我們一起探索。

二、新授:

(一)動(dòng)手實(shí)踐:作二次函數(shù)y=x2和y=-x2的圖象。

(同桌二人,南邊作二次函數(shù)y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學(xué)生黑板完成)。

(二)對(duì)照黑板圖象議一議:(先由學(xué)生獨(dú)立思考,再小組交流)。

1.你能描述該圖象的形狀嗎?

2.該圖象與x軸有公共點(diǎn)嗎?如果有公共點(diǎn)坐標(biāo)是什么?

3.當(dāng)x0時(shí),隨著x的增大,y如何變化?當(dāng)x0時(shí)呢?

4.當(dāng)x取什么值時(shí),y值最小?最小值是什么?你是如何知道的?

5.該圖象是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?請(qǐng)你找出幾對(duì)對(duì)稱點(diǎn)。

(三)學(xué)生交流:

1.交流上面的五個(gè)問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點(diǎn))。

2.二次函數(shù)y=x2和y=-x2的圖象有哪些相同點(diǎn)和不同點(diǎn)?

3.教師出示同一直角坐標(biāo)系中的兩個(gè)函數(shù)y=x2和y=-x2圖象,根據(jù)圖象回答:

(1)二次函數(shù)y=x2和y=-x2的圖象關(guān)于哪條直線對(duì)稱?

(2)兩個(gè)圖象關(guān)于哪個(gè)點(diǎn)對(duì)稱?

(3)由y=x2的圖象如何得到y(tǒng)=-x2的圖象?

(四)動(dòng)手做一做:

1.作出函數(shù)y=2x2和y=-2x2的圖象。

(同桌二人,南邊作二次函數(shù)y=-2x2的圖象,北邊作二次函數(shù)y=2x2的圖象,兩名學(xué)生黑板完成)。

2.對(duì)照黑板圖象,數(shù)形結(jié)合,研討性質(zhì):

(1)你能說出二次函數(shù)y=2x2具有哪些性質(zhì)嗎?

(2)你能說出二次函數(shù)y=-2x2具有哪些性質(zhì)嗎?

(3)你能發(fā)現(xiàn)二次函數(shù)y=ax2的圖象有什么性質(zhì)嗎?

(學(xué)生分小組活動(dòng),交流各自的發(fā)現(xiàn))。

3.師生歸納總結(jié)二次函數(shù)y=ax2的圖象及性質(zhì):

(2)性質(zhì)。

a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下[。

b:頂點(diǎn)坐標(biāo)是(0,0)。

c:對(duì)稱軸是y軸。

d:最值:a0,當(dāng)x=0時(shí),y的最小值=0,a〈0,當(dāng)x=0時(shí),y的最大值=0。

e:增減性:a0時(shí),在對(duì)稱軸的左側(cè)(x0),y隨x的增大而減小,在對(duì)稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時(shí),在對(duì)稱軸的左側(cè)(x0),y隨x的增大而增大,在對(duì)稱軸的右側(cè)(x0),y隨x的增大而減小。

4.應(yīng)用:(1)說出二次函數(shù)y=1/3x2和y=-5x2有哪些性質(zhì)。

(2)說出二次函數(shù)y=4x2和y=-1/4x2有哪些相同點(diǎn)和不同點(diǎn)?

三、小結(jié):

通過本節(jié)課學(xué)習(xí),你有哪些收獲?(學(xué)生小結(jié))。

1.會(huì)畫二次函數(shù)y=ax2的圖象,知道它的圖象是一條拋物線。

2.知道二次函數(shù)y=ax2的性質(zhì):

a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下。

b:頂點(diǎn)坐標(biāo)是(0,0)。

c:對(duì)稱軸是y軸。

d:最值:a0,當(dāng)x=0時(shí),y的最小值=0,a〈0,當(dāng)x=0時(shí),y的最大值=0。

e:增減性:a0時(shí),在對(duì)稱軸的左側(cè)(x0=,y隨x的增大而減小,在對(duì)稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時(shí),在對(duì)稱軸的左側(cè)(x0),y隨x的增大而增大,在對(duì)稱軸的右側(cè)(x0),y隨x的增大而減小。

二次函數(shù)數(shù)學(xué)教案篇十

數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。

二、重視每一個(gè)學(xué)生。

三、做好課外與學(xué)生的溝通。

四、要多了解學(xué)生。

你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。

二次函數(shù)數(shù)學(xué)教案篇十一

按照描點(diǎn)法分三步畫圖:

(2)描點(diǎn)按照表中所列出的函數(shù)對(duì)應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個(gè)點(diǎn);

(3)邊線用平滑曲線順次連接各點(diǎn),即得所求y=x2的圖象。

注意兩點(diǎn):

(1)由于我們只描出了7個(gè)點(diǎn),但自礦業(yè)量取值范圍是實(shí)數(shù),故我們只畫出了實(shí)際圖象的一部分,即畫出了在原點(diǎn)附近、自變量在-3到3這個(gè)區(qū)間的一部分。而圖象在x3或x-3的`區(qū)間是無限延伸的。

(2)所畫的圖象是近似的。

3.在原點(diǎn)附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?――我們c1與1之間每隔0.2的間距取x值表和圖13-14。按課本p118內(nèi)容講解。

4.引入拋物線的概念。

關(guān)于拋物線的頂點(diǎn)應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點(diǎn)是最低點(diǎn);一是從解析式y(tǒng)=x2看,當(dāng)x=0時(shí),y=x2取得最小值0,故拋物線y=x2的頂點(diǎn)是(0,0)。

小結(jié)。

(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。

二次函數(shù)數(shù)學(xué)教案篇十二

老師講課認(rèn)真聽講,不會(huì)的問題及時(shí)標(biāo)記。在課堂上,做一個(gè)好學(xué)生,認(rèn)真聽講,對(duì)于老師講的問題及時(shí)記錄,進(jìn)行相應(yīng)的標(biāo)記,在下課的時(shí)候,及時(shí)詢問老師,早日解決問題。

一定要課前預(yù)習(xí)一下知識(shí)點(diǎn)。在上課前或平時(shí)閑暇時(shí)間,一定要注意課下多多預(yù)習(xí),預(yù)習(xí)比復(fù)習(xí)更加重要,真的很重要,關(guān)乎到課堂的思維能力的轉(zhuǎn)變,多多看看,對(duì)自己的理解有幫助。

課上要學(xué)會(huì)學(xué)習(xí),記筆記,也要記住老師講的知識(shí)點(diǎn)。課堂上,自己要活躍一點(diǎn),帶給老師感覺,讓老師對(duì)你有印象,便于日后學(xué)習(xí)高中數(shù)學(xué),與老師探討學(xué)習(xí)方法,記筆記,記住講的重點(diǎn)。

多做一些比較普通而又常出的問題,來熟悉自己學(xué)的知識(shí)。在課下的時(shí)候,自己找出適合自己做的題,在做題中找出適合自己的題目,來進(jìn)行做和學(xué),總有一份題目適合自己做,便會(huì)更熟悉自己學(xué)的知識(shí)。

學(xué)會(huì)總結(jié)本節(jié)課的知識(shí)點(diǎn),重點(diǎn),做一個(gè)學(xué)會(huì)學(xué)習(xí)的人。及時(shí)總結(jié)所學(xué)的知識(shí)點(diǎn),做一個(gè)學(xué)好習(xí)的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。

建立一個(gè)記錯(cuò)本,錯(cuò)誤的題記錄到本子上。將自己以前做過的錯(cuò)題,及時(shí)的整理出來,并且能夠及時(shí)的回顧,便于日后在本子上學(xué)習(xí)到知識(shí),能夠復(fù)習(xí)到自己以前錯(cuò)過的題。

與老師經(jīng)常交流學(xué)習(xí)方法,總有一個(gè)適合你。多多的與老師交流,給老師留下一個(gè)好印象,便于自己和老師更深入的交流學(xué)習(xí),及時(shí)的詢問一下高中數(shù)學(xué)的學(xué)習(xí)方法,總有一個(gè)適合自己。

二次函數(shù)數(shù)學(xué)教案篇十三

分組復(fù)習(xí)舊知。

探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的圖象中,你能得到哪些信息?

可引導(dǎo)學(xué)生從幾個(gè)方面進(jìn)行討論:

(1)如何畫圖。

(2)頂點(diǎn)、圖象與坐標(biāo)軸的交點(diǎn)。

(3)所形成的三角形以及四邊形的面積。

(4)對(duì)稱軸。

從上面的問題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。

二次函數(shù)數(shù)學(xué)教案篇十四

本節(jié)內(nèi)容是人民教育出版社出版的九年級(jí)《數(shù)學(xué)》下第26章第一節(jié)第二課時(shí)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了二次函數(shù)的概念,對(duì)于函數(shù)的積累知識(shí)有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對(duì)二次函數(shù)圖像及其性質(zhì)的學(xué)習(xí),是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。

本節(jié)課中的教學(xué)重點(diǎn)利用描點(diǎn)法畫出二次函數(shù)的圖像,建構(gòu)符合學(xué)生認(rèn)知結(jié)構(gòu)的知識(shí)體系,教學(xué)難點(diǎn)是運(yùn)用數(shù)形結(jié)合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)?;谝陨蠈?duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,制定如下的教學(xué)目標(biāo)。

【知識(shí)與能力】:

會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象。

知道拋物線的有關(guān)概念。

會(huì)根據(jù)公式確定拋物線的頂點(diǎn)坐標(biāo)、開口方向、對(duì)稱軸以及拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo)。

【過程與方法】:

1、通過二次函數(shù)的教學(xué)進(jìn)一步體會(huì)研究函數(shù)的一般方法,加深對(duì)于數(shù)形結(jié)合思想的認(rèn)識(shí)。

2.綜合運(yùn)用所學(xué)知識(shí)、方法去解決數(shù)學(xué)問題,培養(yǎng)學(xué)生提出、分析、解決、歸納問題的數(shù)學(xué)能力,改善學(xué)生的數(shù)學(xué)思維品質(zhì)。

【情感與態(tài)度目標(biāo)】:

在數(shù)學(xué)教學(xué)中滲透美的教育,讓學(xué)生感受二次函數(shù)圖像的對(duì)2。

稱之美,激發(fā)學(xué)生的學(xué)習(xí)興趣。認(rèn)識(shí)到數(shù)學(xué)源于生活,用于生活的辯證觀點(diǎn)。

教法選擇與教學(xué)手段:基于本節(jié)課的特點(diǎn)是學(xué)習(xí)新知及其綜合運(yùn)用,應(yīng)著重采用復(fù)習(xí)與總結(jié)的教學(xué)方法與手段,先從一次函數(shù)、反比例函數(shù)的圖像復(fù)習(xí)入手,通過提問思考、歸納總結(jié)、綜合運(yùn)用等形式對(duì)二次函數(shù)圖像及其性質(zhì)進(jìn)行有針對(duì)性的、系統(tǒng)性的教學(xué)。教學(xué)的模式為學(xué)生思考,討論,教師分析,演示、師生共同總結(jié)歸納。

利用白板的動(dòng)態(tài)畫板功能,畫出不同的二次函數(shù)圖像,進(jìn)行分析比較和歸納。

學(xué)法指導(dǎo):讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

最后,我來具體談一談本節(jié)課的教學(xué)過程。

(一)為對(duì)二次函數(shù)圖像及其性質(zhì)的相關(guān)知識(shí)進(jìn)行重構(gòu)做準(zhǔn)備。通過回憶復(fù)習(xí)一次函數(shù)和反比例函數(shù)圖像及其性質(zhì)等相關(guān)知識(shí)引入新課。利用描點(diǎn)法畫出二次函數(shù)的圖象,總結(jié)規(guī)律,會(huì)根據(jù)公式確定拋物線的頂點(diǎn)坐標(biāo)、開口方向、對(duì)稱軸。說出a為何值時(shí)y隨x增大而增大(增大而減?。?,引導(dǎo)學(xué)生掌握用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識(shí)二次函數(shù)的性質(zhì)。運(yùn)用聯(lián)想、概括方法對(duì)二次函數(shù)圖像及其性質(zhì)的相關(guān)知識(shí)進(jìn)行梳理,領(lǐng)悟數(shù)形結(jié)合的思想方法,發(fā)展學(xué)生的化歸遷移的數(shù)學(xué)思維,培養(yǎng)學(xué)生的轉(zhuǎn)化能力。

(二)通過對(duì)二次函數(shù)圖像及其性質(zhì)的學(xué)習(xí),采用學(xué)生思考,教師分析,解題小結(jié)三個(gè)環(huán)節(jié)構(gòu)成的練習(xí)題講解模式,鞏固二次函數(shù)圖像及其性質(zhì)的基本題目的一般解題方法,并進(jìn)一步研究二次函數(shù)圖像及其性質(zhì)的應(yīng)用。

(三)反思概括,方法總結(jié)。

總結(jié)本節(jié)課的知識(shí)點(diǎn)、重點(diǎn)和難點(diǎn),著重理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識(shí)和基本解題方法,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想方法,學(xué)會(huì)用化歸思想,解決實(shí)際問題。培養(yǎng)學(xué)生由題及法,由法及類的數(shù)學(xué)總結(jié)歸納方法。

(四)作業(yè)。

課后通過練習(xí)來鞏固本節(jié)課所復(fù)習(xí)的知識(shí)點(diǎn)、重點(diǎn)和難點(diǎn),強(qiáng)化教學(xué)目標(biāo)。

各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂上是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的靈性發(fā)揮而隨機(jī)生成的,預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。本說課一定存在諸多不足,懇請(qǐng)各位老師提出寶貴意見,謝謝!

二次函數(shù)數(shù)學(xué)教案篇十五

教學(xué)目標(biāo):

知識(shí)與技能。

1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。

過程與方法。

1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感與價(jià)值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過程,體會(huì)函數(shù)的模型思想。

2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

教學(xué)重點(diǎn):

1、掌握函數(shù)概念。

2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

3、能把實(shí)際問題抽象概括為函數(shù)問題。

教學(xué)難點(diǎn):

1、理解函數(shù)的概念。

2、能把實(shí)際問題抽象概括為函數(shù)問題。

教學(xué)過程設(shè)計(jì):

一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。

『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?

二次函數(shù)數(shù)學(xué)教案篇十六

學(xué)習(xí)目標(biāo):

1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。

3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學(xué)生的運(yùn)用能力。

學(xué)習(xí)重點(diǎn):

能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。

學(xué)習(xí)難點(diǎn):

能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

學(xué)習(xí)過程:

一、學(xué)前準(zhǔn)備。

函數(shù)的三種表示方式,即表格、表達(dá)式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價(jià)與購買數(shù)量之間的關(guān)系如下:

x(千克)00。511。522。53。

y(元)0123456。

二、探究活動(dòng)。

(一)合作探究:

交流完成:

(1)一邊長(zhǎng)為xcm,則另一邊長(zhǎng)為cm,所以面積為:用函數(shù)表達(dá)式表示:=________________________________。

(2)表格表示:

123456789。

10—。

(3)畫出圖象。

(二)議一議。

(1)在上述問題中,自變量x的取值范圍是什么?

(2)當(dāng)x取何值時(shí),長(zhǎng)方形的面積最大?它的最大面積是多少?你是怎樣得到的?請(qǐng)你描述一下y隨x的變化而變化的情況。

點(diǎn)撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請(qǐng)大家互相交流。

(1)因?yàn)閤是邊長(zhǎng),所以x應(yīng)取數(shù),即x0,又另一邊長(zhǎng)(10—x)也應(yīng)大于,即10—x0,所以x10,這兩個(gè)條件應(yīng)該同時(shí)滿足,所以x的取值范圍是。

(2)當(dāng)x取何值時(shí),長(zhǎng)方形的面積最大,就是求自變量取何值時(shí),函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點(diǎn)式。當(dāng)x=—時(shí),函數(shù)y有最大值y最大=。當(dāng)x=時(shí),長(zhǎng)方形的面積最大,最大面積是25cm2。

可以通過觀察圖象得知。也可以代入頂點(diǎn)坐標(biāo)公式中求得。。

(三)做一做:學(xué)生獨(dú)立思考完成p62,p63的函數(shù)表達(dá)式,表格,圖象問題。

(1)用函數(shù)表達(dá)式表示:y=________。

(2)用表格表示:

(3)用圖象表示:

三、學(xué)習(xí)體會(huì)。

本節(jié)課你有哪些收獲?你還有哪些疑問?

四、自我測(cè)試。

1、把長(zhǎng)1。6米的鐵絲圍成長(zhǎng)方形abcd,設(shè)寬為x(m),面積為y(m2)。則當(dāng)最大時(shí),所取的值是()。

a0。5b0。4c0。3d0。6。

2、兩個(gè)數(shù)的和為6,這兩個(gè)數(shù)的積最大可能達(dá)到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。

二次函數(shù)數(shù)學(xué)教案篇十七

1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對(duì)立統(tǒng)一的觀點(diǎn)。

2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:

(1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對(duì)稱性。)。

(2)如何判斷y=x2的圖象有上面所說的特點(diǎn)?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)。

二次函數(shù)數(shù)學(xué)教案篇十八

在函數(shù)教學(xué)中,我們不僅要在教會(huì)函數(shù)知識(shí)上下功夫,而且還應(yīng)該追求解決問題的“常規(guī)方法”——基本函數(shù)知識(shí)中所蘊(yùn)含的思想方法,要從數(shù)學(xué)思想方法的高度進(jìn)行函數(shù)教學(xué)。在函數(shù)的教學(xué)中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。

2.注重“數(shù)學(xué)結(jié)合”的教學(xué)。

數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對(duì)應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個(gè)方面,利用它可使復(fù)雜問題簡(jiǎn)單化,抽象問題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長(zhǎng)。

(1)讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過程。

(2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡(jiǎn)單畫法。

(3)注意讓學(xué)生體會(huì)研究具體函數(shù)圖象規(guī)律的方法。

目標(biāo)。

1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。

2、會(huì)選擇兩個(gè)合適的點(diǎn)畫出一次函數(shù)的圖象;

3、掌握一次函數(shù)的性質(zhì).

過程與方法目標(biāo)。

2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。

2、在探究一次函數(shù)的圖象和性質(zhì)的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神。

一次函數(shù)的圖象和性質(zhì)。

由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對(duì)性質(zhì)的理解。

【本文地址:http://mlvmservice.com/zuowen/14704937.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔