教案是教師教學的重要依據(jù)和工作記錄。在教案中選擇適當?shù)慕虒W方法和教學媒體,提高教學效果和吸引學生的興趣。以下是小編為大家收集的教案范文,希望對大家有所借鑒。請注意,這些范文僅供參考,具體教案的制定需根據(jù)教學內(nèi)容和學生實際情況進行靈活調(diào)整。教案的質(zhì)量直接關(guān)系到教學質(zhì)量,希望大家能夠認真對待,制定出高質(zhì)量的教案。
華師大七年級數(shù)學教案設(shè)計篇一
1,掌握相反數(shù)的概念,進一步理解數(shù)軸上的點與數(shù)的對應關(guān)系;。
2,通過歸納相反數(shù)在數(shù)軸上所表示的點的特征,培養(yǎng)歸納能力;。
3,體驗數(shù)形結(jié)合的思想。
教學難點歸納相反數(shù)在數(shù)軸上表示的點的特征。
知識重點相反數(shù)的概念。
教學過程(師生活動)設(shè)計理念。
設(shè)置情境。
引入課題問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類。
4,-2,-5,+2。
允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當?shù)囊龑В饾u得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導學生觀察與原點的距離)。
思考結(jié)論:教科書第13頁的思考。
再換2個類似的數(shù)試一試。
培養(yǎng)學生的觀察與歸納能力,滲透數(shù)形思想。
深化主題提煉定義給出相反數(shù)的定義。
學生思考討論交流,教師歸納總結(jié)。
規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a。
思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關(guān)系?
練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準備。
深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。
強化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義。
給出規(guī)律。
解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
學生交流。
分別表示+5和-5的相反數(shù)是-5和+5。
練一練:教科書第14頁第二個練習利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法。
小結(jié)與作業(yè)。
1,相反數(shù)的定義。
2,互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征。
3,怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)?
本課作業(yè)1,必做題教科書第18頁習題1.2第3題。
2,選做題教師自行安排。
本課教育評注(課堂設(shè)計理念,實際教學效果及改進設(shè)想)。
1,相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的特征.這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質(zhì)均有廣泛的應用.所以本教學設(shè)計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結(jié)合的思想.
2,教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復習數(shù)軸知識的同時,滲透了數(shù)形結(jié)合的數(shù)學方法,數(shù)與形的相互轉(zhuǎn)化也能加深對相反數(shù)概念的理解;問題2能幫助學生準確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法.
3,本教學設(shè)計體現(xiàn)了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地.
華師大七年級數(shù)學教案設(shè)計篇二
以小組討論的形式在教師的指導下通過回顧與反思前三章所學內(nèi)容,領(lǐng)悟新舊知識之間的內(nèi)在聯(lián)系,總結(jié)知識結(jié)構(gòu)及主要知識點,側(cè)重對重點知識內(nèi)容、數(shù)學思想和方法、思維策略的總結(jié)與反思,再通過練習鞏固這些知識點。
知識與技能。
對前三章所學知識作一次系統(tǒng)整理,系統(tǒng)地把握這三章的知識要點;。
通過回顧與反思這三章所學內(nèi)容,領(lǐng)悟新舊知識之間的內(nèi)在聯(lián)系;。
通過練習,對所學知識的認識深化一步,以有利于掌握;。
發(fā)展觀察問題、分析問題、解決問題的能力;。
提高對所學知識的概括整理能力;。
進一步發(fā)展有條理地思考和表達的能力。
在老師的引導下逐張復習每張的知識要點,通過練習來鞏固這些知識點。
情感態(tài)度價值觀。
進一步體會知識點之間的聯(lián)系;。
進一步感受數(shù)形結(jié)合的思想。
重點是這三章的重點內(nèi)容;。
難點是能靈活利用這三章的知識來解決問題。
教學方法。
引導、小組討論。
課時安排。
3課時。
教具學具準備。
多媒體。
教學過程設(shè)計。
通過每一章的知識結(jié)構(gòu)及一些相關(guān)問題引導學生總結(jié)出每一章的知識點。
華師大七年級數(shù)學教案設(shè)計篇三
2.了解倒數(shù)概念,會求給定有理數(shù)的倒數(shù);。
3.通過將除法運算轉(zhuǎn)化為乘法運算,培養(yǎng)學生的轉(zhuǎn)化的思想;通過運算,培養(yǎng)學生的運算能力。
教學建議。
(一)重點、難點分析。
本節(jié)教學的重點是熟練進行運算,教學難點是理解法則。
1.有理數(shù)除法有兩種法則。法則1:除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。是把除法轉(zhuǎn)化為乘法來解決問題。法則2是把有理數(shù)除法納入有理數(shù)運算的統(tǒng)一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。
2.對于除法的兩個法則,在計算時可根據(jù)具體的情況選用,一般在不能整除的情況下應用第一法則。如;在有整除的情況下,應用第二個法則比較方便,如;在能整除的情況下,應用第二個法則比較方便,如,如寫成就麻煩了。
(二)知識結(jié)構(gòu)。
(三)教法建議。
1.學生實際運算時,老師要強調(diào)先確定商的符號,然后在根據(jù)不同情況采取適當?shù)姆椒ㄇ笊痰慕^對值,求商的絕對值時,可以直接除,也可以乘以除數(shù)的倒數(shù)。
2.關(guān)于0不能做除數(shù)的問題,讓學生結(jié)合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數(shù)的理由。
3.理解倒數(shù)的概念。
(1)根據(jù)定義乘積為1的兩個數(shù)互為倒數(shù),即:,則互為倒數(shù)。如:,則2與,-2與互為倒數(shù)。
(2)由倒數(shù)的定義,我們可以得到求已知數(shù)倒數(shù)的一種基本方法:即用1除以已知數(shù),所得商就是已知數(shù)的倒數(shù)。如:求的倒數(shù):計算,-2就是的倒數(shù)。一般我們求已知數(shù)的倒數(shù)很少用這種方法,實際應用時我們常把已知數(shù)看作分數(shù)形式,然后把分子、分母顛倒位置,所得新數(shù)就是原數(shù)的倒數(shù)。如-2可以看作,分子、分母顛倒位置后為,就是的倒數(shù)。
(3)倒數(shù)與相反數(shù)這兩個概念很容易混淆。要注意區(qū)分。首先倒數(shù)是指乘積為1的兩個數(shù),而相反數(shù)是指和為0的兩個數(shù)。如:,2與互為倒數(shù),2與-2互為相反數(shù)。其次互為倒數(shù)的兩個數(shù)符號相同,而互為相反數(shù)符號相反。如:-2的倒數(shù)是,-2的相反數(shù)是+2;另外0沒有倒數(shù),而0的相反數(shù)是0。
4.關(guān)于倒數(shù)的求法要注意:
(1)求分數(shù)的倒數(shù),只要把這個分數(shù)的分子、分母顛倒位置即可.
(2)正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)仍是負數(shù).
(3)負倒數(shù)的定義:乘積是-1的兩個數(shù)互為負倒數(shù).
華師大七年級數(shù)學教案設(shè)計篇四
一、注重預習,指導自學。
我個人認為,預習應該來說在初中階段還是占有比較重要的地位的,而在小學階段一般不那么重視,因此,到了初一大多數(shù)學生不會預習,即使預習了,也只是將課文從頭到尾讀一遍。在指導學生預習時應要求學生做到:一粗讀,首先大致瀏覽教材的有關(guān)內(nèi)容,掌握本節(jié)知識的概貌。二細讀,對重要概念、公式、法則、定理反復閱讀、體會、思考,注意知識的形成過程,對難以理解的概念作出記號,多問些“為什么”,以便帶著疑問去聽課。方法上可采用隨課預習或單元預習。預習前教師先布置預習提綱,使學生有的放矢。課堂上帶著自己的問題聽老師講課,這樣可以有目的的學習,提高課堂的有效時間。
二、認真聽講,會記筆記。
課堂聽講很重要,認真聽課可以事半功倍。由于課前進行了充分復習,對本節(jié)課還有不理解的地方,那么在老師的講課過程中,看老師是如何講解這個知識點的,對比一下自己在預習過程自己存在的障礙。
對于自己已經(jīng)理解的知識點也要認真聽課,加深記憶,看老師有什么獨到之處,對老師強調(diào)的地方更應該引起自己的注意。初一學生一般不會合理記筆記,通常是教師黑板上寫什么學生就抄什么,往往是用“記”
代替“聽”和“思”。有的筆記雖然記得很全,但收效甚微。因此在作筆記時注意:記筆記服從聽講,要掌握記錄時機;記要點、記疑問、記解題思路和方法;記小結(jié)、記課后思考題。記筆記是為了更好地總結(jié)和復習,切忌在課堂上一味抄寫老師的板書。
三、先復習后做作業(yè)。
首先應樹立正確的作業(yè)觀,不要為完成作業(yè)而完成作業(yè),作業(yè)是為了學生更好地掌握知識,讓老師了解學生存在的問題。而許多同學做作業(yè)時,通常是拿起題就做,一旦遇到困難了,才又回過頭來翻書、查筆記,這是一種不良的習慣。做作業(yè)的第一步應是先復習有關(guān)的知識。復習時可以采取“過電影”的方式,在頭腦中搜索一下課堂上老師所講解的知識,努力將所學知識回憶起來。若實在回憶不起來,再翻開課本或筆記閱讀對照,通過這種方式將所學知識溫習一遍,做到心中有數(shù)后再去做作業(yè)。做完題后,應該從頭到尾仔細瀏覽一遍,檢查一下解題的步驟、思路是否正卻。
華師大七年級數(shù)學教案設(shè)計篇五
分析:要求現(xiàn)在汽車從甲地到乙地需要多少小時,那么先要求出汽車現(xiàn)在的速度,而汽車現(xiàn)在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據(jù)`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時',可以求出汽車原來的速度。
學生寫出解答過程:汽車原來的速度:352÷1=32(千米);汽車現(xiàn)在的速度:32×2.5=80(千米)。
現(xiàn)在的時間:352÷80=4.4(小時)。
問:用比例的思路該怎么樣理解這道題目呢?
2.5倍。即:11÷2.5=4.4(小時)。
這樣解答使得`甲乙兩地公路全長352千米'成了多余條件,但是又不影響解答問題。
在解答應用題時要善于應用不同的思路和技巧,巧解問題。
華師大七年級數(shù)學教案設(shè)計篇六
根據(jù)上述教材結(jié)構(gòu)特點與教學重、難點,考慮到學生已有的認知結(jié)構(gòu)、心理特征,結(jié)合新課改理念,特制定如下教學目標:
1.知識目標。
(1)、掌握了什么樣的項是同類項的基礎(chǔ)上,通過具體情境探究得出同類項可以合并,并形成合并同類項的法則。
(2)、能運用合并同類項的法則進行合并同類項。
2.能力目標。
(1)、通過具體情境的觀察、思考、類比、探索、交流和反思等數(shù)學活動培養(yǎng)學生創(chuàng)新意識和分類思想,使學生掌握研究問題的方法,從而學會學習。
(2)、通過具體情境貼近學生生活,讓學生在生活中挖掘數(shù)學問題,解決數(shù)學問題,使數(shù)學生活化,生活數(shù)學化。會利用合并同類項的知識解決一些實際問題。
(3)、通過知識梳理,培養(yǎng)學生的概括能力、表達能力和邏輯思維能力。
3.德育目標。
(1)、通過由數(shù)的加減推廣到同類項的合并,可以培養(yǎng)學生由特殊到一般的思維認知規(guī)律。
(2)、通過具體情境的探索、交流等數(shù)學活動培養(yǎng)學生的團體合作精神和積極參與、勤于思考意識。
4.美育目標。
通過合并同類項,學生們能明顯地感覺到數(shù)學的形式美、簡潔美,感悟到學數(shù)學是一種美的享受,愛學、樂學數(shù)學。
1.教學設(shè)想。
突出以學生的“數(shù)學活動”為主線,激發(fā)學生學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想與方法,獲得廣泛的數(shù)學活動經(jīng)驗。
2.教學方法。
利用引導發(fā)現(xiàn)法、討論法,引導學生從具體生活情境及已有的知識和生活經(jīng)驗出發(fā),提出問題與學生共同探索、學生與學生共同探索,以調(diào)動學生求知欲望,培養(yǎng)探索能力、創(chuàng)新意識。
3.教學手段。
利用多媒體創(chuàng)設(shè)教學情境,引導學生觀察、探索、發(fā)現(xiàn)、歸納來激發(fā)學生學習興趣、激活學生思維,以利于突破教學重點和難點,提高課堂教學效益。新課標提倡教學中要重視現(xiàn)代教育技術(shù)、要引導學生獨立思考、自主探索與合作交流,讓學生掌握知識的發(fā)生發(fā)展過程,主動去獲得新的知識,學會獲取知識的方法,因而在教學中創(chuàng)設(shè)情境讓學生樂意并全身心投入到現(xiàn)實的、探索性的數(shù)學活動中去。
華師大七年級數(shù)學教案設(shè)計篇七
1:教材所處的地位和作用:
以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學內(nèi)容起到奠基作用。
2:教育教學目標:
(1)知識目標:
(a)通過教學使學生了解應用題的一個重要步驟是根據(jù)題意找出相等關(guān)系,然后列出方程,關(guān)鍵在于分析已知未知量之間關(guān)系及尋找相等關(guān)系。
(b)。
通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數(shù),其余字母表示已知數(shù)的情況下,列出一元一次方程解簡單的應用題。
(2)能力目標:
通過教學初步培養(yǎng)學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯(lián)系實際的能力。
(3)思想目標:
通過對一元一次方程應用題的教學,讓學生初步認識體會到代數(shù)方法的優(yōu)越性,同時滲透把未知轉(zhuǎn)化為已知的辯證思想,介紹我國古代數(shù)學家對一元一次方程的研究成果,激發(fā)學生熱愛中國共產(chǎn)黨,熱愛社會主義,決心為實現(xiàn)社會主義四個現(xiàn)代化而學好數(shù)學的思想;同時,通過理論聯(lián)系實際的方式,通過知識的應用,培養(yǎng)學生唯物主義的思想觀點。
3:重點,難點以及確定的依據(jù):
根據(jù)題意尋找和;差;倍;分問題的相等關(guān)系是本課的重點,根據(jù)題意列出一元一次方程是本課的難點,其理論依據(jù)是關(guān)鍵讓學生找出相等關(guān)系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯(lián)系實際的問題的理解難度大。
1:學生初學列方程解應用題時,往往弄不清解題步驟,不設(shè)未知數(shù)就直接進行列方程或在設(shè)未知數(shù)時,有單位卻忘記寫單位等。
2:學生在列方程解應用題時,可能存在三個方面的困難:
(1)抓不準相等關(guān)系;。
(2)找出相等關(guān)系后不會列方程;。
(3)習慣于用小學算術(shù)解法,得用代數(shù)方法分析應用題不適應,不知道要抓怎樣的相等關(guān)系。
3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。
4:學生在學習中可能習慣于用算術(shù)方法分析已知數(shù)與未知數(shù),未知數(shù)與已知數(shù)之間的關(guān)系,對于較為復雜的應用題無法找出等量關(guān)系,隨便行事,亂列式子。
5:學生在學習過程中可能不重視分析等量關(guān)系,而習慣于套題型,找解題模式。
如何突出重點,突破難點,從而實現(xiàn)教學目標。我在教學過程中擬計劃進行如下操作:
1:“讀(看)——議——講”結(jié)合法。
2:圖表分析法。
3:教學過程中堅持啟發(fā)式教學的原則。
教學的理論依據(jù)是:
1:必須先明確根據(jù)應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關(guān)鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關(guān)系,并列出代數(shù)式表示這相等關(guān)系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。
2:在教學過程中要求學生仔細審題,認真閱讀例題的內(nèi)容提要,弄清題意,找出能夠表。
示應用題全部含義的一個相等關(guān)系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設(shè)未知數(shù),再根據(jù)相等關(guān)系列出需要的代數(shù)式,再把相等關(guān)系表示成方程形式,然后解這個方程,并寫出答案,在設(shè)未知數(shù)時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設(shè)原來有x千克面粉”寫成“設(shè)原來有x”。另外,在列方程中,各代數(shù)式的單位應該是相同的,如例1中,代數(shù)式“x”“—15%x”“42500”的單位都是千克。在本例教學中,關(guān)鍵在于找出這個相等關(guān)系,將其中涉及待求的某個數(shù)設(shè)為未知數(shù),其余的數(shù)用已知數(shù)或含有已知數(shù)與未知數(shù)的代數(shù)式表示,從而列出方程。在例1中的相等關(guān)系比較簡單明顯,可通過啟發(fā)式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關(guān)鍵步驟。
華師大七年級數(shù)學教案設(shè)計篇八
1,掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;。
2,了解分類的標準與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;。
3,體驗分類是數(shù)學上的常用處理問題的方法。
教學難點正確理解分類的標準和按照一定的標準進行分類。
知識重點正確理解有理數(shù)的概念。
教學過程(師生活動)設(shè)計理念。
探索新知在前兩個學段,我們已經(jīng)學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個的數(shù),稱為“正分數(shù),,.??…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))。
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會。
練一練1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.
2,教科書第10頁練習.
此練習中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應該加上省略號.
思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學生進行判斷。
集合的概念不必深入展開。
創(chuàng)新探究問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學時,要讓學生總結(jié)已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇В鸩降玫饺缦碌姆诸惐怼?/p>
有理數(shù)這個分類可視學生的程度確定是否有必要教學。
小結(jié)與作業(yè)。
課堂小結(jié)到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。
本課作業(yè)1,必做題:教科書第18頁習題1.2第1題。
2,教師自行準備。
本課教育評注(課堂設(shè)計理念,實際教學效果及改進設(shè)想)。
1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概。
念.分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進。
行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視.關(guān)于分類標準與分。
類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
華師大七年級數(shù)學教案設(shè)計篇九
能判斷一個數(shù)是正數(shù)還是負數(shù),能用正數(shù)或負數(shù)表示生活中具有相反意義的量.
借助生活中的實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應用的廣泛性.
培養(yǎng)學生積極思考,合作交流的意識和能力.
1.重點:正確理解負數(shù)的意義,掌握判斷一個數(shù)是正數(shù)還是負數(shù)的方法.
2.難點:正確理解負數(shù)的概念.
3.關(guān)鍵:創(chuàng)設(shè)情境,充分利用學生身邊熟悉的事物,加深對負數(shù)意義的理解.
教具準備。
投影儀.
教學過程。
我們知道,數(shù)是人們在實際生活和生活需要中產(chǎn)生,并不斷擴充的.人們由記數(shù)、排序、產(chǎn)生數(shù)1,2,3,…;為了表示“沒有物體”、“空位”引進了數(shù)“0”,測量和分配有時不能得到整數(shù)的結(jié)果,為此產(chǎn)生了分數(shù)和小數(shù).
在生活、生產(chǎn)、科研中經(jīng)常遇到數(shù)的表示與數(shù)的運算的問題,例如課本第2頁至第3頁中提到的四個問題,這里出現(xiàn)的.新數(shù):-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%.
(1)、像-3,-2,-2.7%這樣的數(shù)(即在以前學過的0以外的數(shù)前面加上負號“-”的數(shù))叫做負數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學過的0以外的數(shù))叫做正數(shù),有時在正數(shù)前面也加上“+”(正)號,例如,+3,+2,+0.5,+,…就是3,2,0.5,,…一個數(shù)前面的“+”、“-”號叫做它的符號,這種符號叫做性質(zhì)符號.
(2)、中國古代用算籌(表示數(shù)的工具)進行計算,紅色算籌表示正數(shù),黑色算籌表示負數(shù).
(3)、數(shù)0既不是正數(shù),也不是負數(shù),但0是正數(shù)與負數(shù)的分界數(shù).
(4)、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度.
用正負數(shù)表示具有相反意義的量。
(5)、把0以外的數(shù)分為正數(shù)和負數(shù),起源于表示兩種相反意義的量.正數(shù)和負數(shù)在許多方面被廣泛地應用.在地形圖上表示某地高度時,需要以海平面為基準,通常用正數(shù)表示高于海平面的某地的海拔高度,負數(shù)表示低于海平面的某地的海拔高度.例如:珠穆朗瑪峰的海拔高度為8844m,吐魯番盆地的海拔高度為-155m.記錄賬目時,通常用正數(shù)表示收入款額,負數(shù)表示支出款額.
(6)、請學生解釋課本中圖1.1-2,圖1.1-3中的正數(shù)和負數(shù)的含義.
(7)、你能再舉一些用正負數(shù)表示數(shù)量的實際例子嗎?
(8)、例如,通常用正數(shù)表示汽車向東行駛的路程,用負數(shù)表示汽車向西行駛的路程;用正數(shù)表示水位升高的高度,用負數(shù)表示水位下降的高度;用正數(shù)表示買進東西的數(shù)量,用負數(shù)表示賣出東西的數(shù)量.
課本第3頁,練習1、2、3、4題.
為了表示現(xiàn)實生活中的具有相反意義的量,我們引進了負數(shù).正數(shù)就是我們過去學過的數(shù)(除0外),在正數(shù)前放上“-”號,就是負數(shù),但不能說:“帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù)”,在一個數(shù)前面添上負號,它表示的是原數(shù)意義相反的數(shù).如果原數(shù)是一個負數(shù),那么前面放上“-”號后所表示的數(shù)反而是正數(shù)了,另外應注意“0”既不是正數(shù),也不是負數(shù).
1.課本第5頁習題1.1復習鞏固第1、2、3題.
華師大七年級數(shù)學教案設(shè)計篇十
知識與技能:
理解移項法則,會解形如ax+b=cx+d的方程,體會等式變形中的化歸思想.
過程與方法:
1、能夠從實際問題中列出一元一次方程,進一步體會方程模型思想的作用及應用價值.
2、經(jīng)歷探索移項法則法的過程,發(fā)展觀察、歸納、猜測、驗證的能力。
情感、態(tài)度與價值觀:
結(jié)合實際問題,探索用移項法則解一元一次方程的方法,進一步認識數(shù)學來源于生活,并為生活服務(wù),從而學生學習數(shù)學的興趣和學好數(shù)學的信心。
教學重點。
確定實際問題中的相等關(guān)系,建立形如ax+b=cx+d的方程,并利用移項和合并同類項的方法解一元一次方程.
教學難點。
確定相等關(guān)系并列出一元一次方程,正確地進行移項并解出方程。
教學過程。
一、情景引入:
二、自主學習:
1.解方程:
3x+20=4x-25。
觀察上列一元一次方程,與上題的類型有什么區(qū)別?
3.新知學習請運用等式的性質(zhì)解下列方程:
(1)4x-15=9;(2)2x=5x-21。
你有什么發(fā)現(xiàn)?
三、精講點撥。
問題2你能說說由方程到方程的變形過程中有什么變化嗎?
移項的定義:一般地,把方程中的某些項改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。
移項的依據(jù)及注意事項:移項實際上是利用等式的性質(zhì)1.注意:移項一定要變號。
例1解下列方程:
解:移項,得3x+2x=32-7。
合并同類項,得5x=25。
系數(shù)化為1,得x=5。
移項時需要移哪些項?為什么?
針對訓練:解下列方程:
(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x.
四、合作探究。
列方程解決問題。
思考:如何設(shè)未知數(shù)?
你能找到等量關(guān)系嗎?
五、當堂鞏固。
1.對方程7x=6+4x進行移項,得___________,合并同類項,得_________,系數(shù)化為1,得________.
2.小新出生時父親28歲,現(xiàn)在父親的年齡比小新年齡的3倍小2歲.求小新現(xiàn)在的年齡.
六、課堂小結(jié)。
1.本節(jié)課主要學習了解一元一次方程的方法:移項,移項的根據(jù)是等式的性質(zhì)1。
2.本節(jié)的實際問題的相等關(guān)系的依據(jù):表示同一個量的兩個式子相等。
3.列方程解實際問題的基本思路。
七、作業(yè)布置。
1.必做題:教科書第91頁習題3.2第3(3),(4),11題。
2.選做題:
八、板書設(shè)計。
華師大七年級數(shù)學教案設(shè)計篇十一
本節(jié)教學的重點是掌握單項式與多項式相乘的法則.難點是正確、迅速地進行單項式與多項式相乘的計算.本節(jié)知識是進一步學習多項式乘法,以及乘法公式等后續(xù)知識的基礎(chǔ)。
1.單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,即。
其中,可以表示一個數(shù)、一個字母,也可以是一個代數(shù)式.。
2.利用法則進行單項式和多項式運算時要注意:
3根據(jù)去括號法則和多項式中每一項包含它前面的符號,來確定乘積每一項的`符號;
設(shè)m=-4x2,a=2x2,b=3x,c=-1,
∴(-4x2)·(2x2+3x-1)。
=m(a+b+c)。
=ma+mb+mc。
=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。
=-8x4-12x3+4x2.。
這樣過渡較自然,同時也滲透了一些代換的思想.。
教學設(shè)計示例。
一、教學目標。
1.理解和掌握單項式與多項式乘法法則及推導.。
2.熟練運用法則進行單項式與多項式的乘法計算.。
3.培養(yǎng)靈活運用知識的能力,通過用文字概括法則,提高學生數(shù)學表達能力.。
4.通過反饋練習,培養(yǎng)學生計算能力和綜合運用知識的能力.。
5.滲透公式恒等變形的數(shù)學美.。
二、學法引導。
1.教學方法:講授法、練習法.。
類項,故在學習中應充分利用這種方法去解題.。
三、重點·難點·疑點及解決辦法。
(一)重點。
單項式與多項式乘法法則及其應用.。
(二)難點。
單項式與多項式相乘時結(jié)果的符號的確定.。
(三)解決辦法。
復習單項式與單項式的乘法法則,并注意在解題過程中將單項式乘多項式轉(zhuǎn)化為單項。
式乘單項式后符號確定的問題.。
四、課時安排。
一課時.。
五、教具學具準備。
投影儀、膠片.。
六、師生互動活動設(shè)計。
(一)明確目標。
本節(jié)課重點學習單項式與多項式的乘法法則及其應用.。
(二)整體感知。
(三)教學過程。
1.復習導入。
復習:
(1)敘述單項式乘法法則.。
(單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.)。
(2)什么叫多項式?說出多項式的項和各項系數(shù).
2.探索新知,講授新課。
簡便計算:
由該等式,你能說出單項式與多項式相乘的法則嗎?單項式與多項式乘法法則:單項式。
與多項式相乘,就是用單項式乘多項式的每一項,再把所得的積相加.。
例1計算:
例2化簡:
練習:錯例辨析。
(2)錯在單項式與多項式的每一項相乘之后沒有添上加號,故正確答案為。
(四)總結(jié)、擴展。
(99,河北)下列運算中,不正確的為()。
a.b.。
c.d.。
八、布置作業(yè)。
參考答案:
略
華師大七年級數(shù)學教案設(shè)計篇十二
(一)基礎(chǔ)知識目標:
1.理解方程的概念,掌握如何判斷方程。
2.理解用字母表示數(shù)的好處。
(二)能力目標。
體會字母表示數(shù)的好處,畫示意圖有利于分析問題,找相等關(guān)系是列方程的重要一步,從算式到方程(從算術(shù)到代數(shù))是數(shù)學的一大進步。
(三)情感目標。
增強用數(shù)學的意識,激發(fā)學習數(shù)學的熱情。
二、教學重點。
知道什么是方程、一元一次方程,找相等關(guān)系列方程。
三、教學難點。
如何找相等關(guān)系列方程。
四、教學過程。
(一)創(chuàng)設(shè)情景,引入新課。
由學生已有的知識出發(fā),結(jié)合章前圖提出的問題,激發(fā)學生進一步探究的欲望。
為了回答上述這幾個問題,我們來看下面這個例題.。
(二)提出問題。
你會用算術(shù)方法解決這個實際問題么?不妨試一下。
如果設(shè)王家莊到翠湖的路程為x千米,你能列出方程嗎?
根據(jù)題意畫出示意圖。
由圖可以用含x的式子表示關(guān)于路程的數(shù)量,
王家莊距青山千米,王家莊距秀水千米,
由時間表可以得出關(guān)于路程的'數(shù)量,
從王家莊到青山行車小時,王家莊到秀水小時,
汽車勻速行駛,各路段車速相等,于是列出方程:
各表示的意義是什么?
以后我們將學習如何解出x,從而得到結(jié)果。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).。
例2環(huán)行跑道一周長400米,沿跑道跑多少周,可以跑3000米?
五、課堂小結(jié)。
用算術(shù)方法解題時,列出的算式表示用算術(shù)方法解題的計算過程,其中只能用到已知數(shù),而方程是根據(jù)問題中的等量關(guān)系列出的等式,其中有已知數(shù),又有未知數(shù),有了方程后人們解決很多問題就方便了,通過今后的學習,你會逐步認識,從算式到方程是數(shù)學的進步。
六、作業(yè)布置。
習題3.1第1,2兩題。
華師大七年級數(shù)學教案設(shè)計篇十三
2.初步培養(yǎng)學生觀察、分析及概括的能力;。
3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議。
一、教學重點、難點。
重點:通過具體例子了解公式、應用公式.
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析。
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結(jié)構(gòu)。
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議。
1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關(guān)系,在具體例子的基礎(chǔ)上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導新公式。
3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
教學設(shè)計示例。
公式。
五、教具學具準備。
投影儀,自制膠片。
六、師生互動活動設(shè)計。
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結(jié)求圖形面積的公式.
華師大七年級數(shù)學教案設(shè)計篇十四
4通過平行公理推論的推理,培養(yǎng)學生的邏輯思維能力和進行推理的能力
1教師教法:嘗試法、引導法、發(fā)現(xiàn)法
2學生學法:在教師的引導下,嘗試發(fā)現(xiàn)新知,造就成就感
(一)重點
平行公理及推論
(二)難點
平行線概念的理解
(三)解決辦法
通過引導學生嘗試發(fā)現(xiàn)新知、練習鞏固的方法來解決
投影儀、三角板、自制膠片
1通過投影片和適當問題創(chuàng)設(shè)情境,引入新課
2通過教師引導,學生積極思維,進行反饋練習,完成新授
3學生自己完成本課小結(jié)
(-)明確目標
(二)整體感知
(三)教學過程
創(chuàng)設(shè)情境,引出課題
學生齊聲答:不是
師:因此,平面內(nèi)的兩條直線除了相交以外,還有不相交的情形,這就是我們本節(jié)所要研究的內(nèi)容(板書課題)
[板書]24平行線及平行公理
探究新知,講授新課
師:在我們生活的周圍,平面內(nèi)不相交的情形還有許多,你能舉例說明嗎?
學生:窗戶相對的棱,桌面的對邊,書的對邊……
師:我們把它們向兩方無限延伸,得到的直線總也不會相交我們把這樣的直線叫做平行線
[板書]在同一平面內(nèi),不相交的兩條直線叫做平行線
教師出示投影片(課本第74頁圖2?17)
師:請同學們觀察,長方體的棱與無論怎樣延長,它們會不會相交?
學生:不會相交
師:那么它們是平行線嗎?
學生:不是
師:也就是說平行線的定義必須有怎樣的'前提條件?
學生:在同一平面內(nèi)
師:誰能說為什么要有這個前提條件?
學生:因為空間里,不相交的直線不一定平行
教師在黑板上給出課本第73頁圖2
學生:兩種相交和平行
由此師生共同小結(jié):在同一平面內(nèi),兩條直線的位置關(guān)系只有相交、平行兩種
嘗試反饋,鞏固練習(出示投影)
1判斷正誤
(1)兩條不相交的直線叫做平行線()
(2)有且只有一個公共點的兩直線是相交直線()
(3)在同一平面內(nèi),不相交的兩條直線一定平行()
(4)一個平面內(nèi)的兩條直線,必把這個平面分為四部分()
2下列說法中正確的是()
a在同一平面內(nèi),兩條直線的位置關(guān)系有相交、垂直、平行三種
b在同一平面內(nèi),不垂直的兩直線必平行
c在同一平面內(nèi),不平行的兩直線必垂直
d在同一平面內(nèi),不相交的兩直線一定不垂直
學生活動:學生回答,并簡要說明理由
師:我們很容易畫出兩條相交直線,而對于平行線的畫法,我們在小學就學過用直尺和三角板畫,下面清同學在練習本上完成下面題目(投影顯示)
已知直線和外一點,過點畫直線
師:請根據(jù)語句,自己畫出已知圖形
學生活動:學生在練習本上畫出圖形
師:下面請你們按要求畫出直線
注意:(1)在推動三角尺時,直尺不要動;
(2)畫平行線必須用直尺三角板,不能徒手畫
嘗試反饋,鞏固練習(出示投影)
1畫線段,畫任意射線,在上取、、三點,使,連結(jié),用三角板畫,,分別交于、,量出、、的長(精確到)
2讀下列語句,并畫圖形
(1)點是直線外的一點,直線經(jīng)過點,且與直線平行
(2)直線、是相交直線,點是直線、外的一點,直線經(jīng)過點與直線平行與直線相交于
(3)過點畫,交的延長線于
學生活動:學生思考并回答,能畫,而且只能畫一條
師:我們把這個結(jié)論叫平行公理,教師板書
【板書】平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
學生:思考后,立即回答,能畫無數(shù)條
師:請同學們在練習本上完成
(出示投影)
已知直線,分別畫直線、,使,
學生活動:學生在練習本上完成
師:請同學們觀察,直線、能不能相交?
學生活動:觀察,回答:不相交,也就是說
師:為什么呢?同桌可以討論
學生活動:學生積極討論,各抒己見
學生活動:教師讓學生積極發(fā)表意見,然后給出正確的引導
師:我們觀察圖形,如果直線與相交,設(shè)交點為,那么會產(chǎn)生什么問題呢?請同學們討論
學生活動:學生在教師的啟發(fā)引導下思考、討論,得出結(jié)論
[板書]如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行
學生活動:學生思考,回答:不對,給出反例圖形,
例如:如圖1所示,射線與就不相交,也不平行
師:同學們想一想,當我們說兩條射線或線段平行時,實際上是什么平行才可以呢?
生:它們所在的直線平行
嘗試反饋,鞏固練習(投影)
華師大七年級數(shù)學教案設(shè)計篇十五
1、知識與技能:
理解相交線、垂線的定義,在具體的情景中了解同位角、內(nèi)錯角和同旁內(nèi)角的定義,能找到圖形中的同位角、內(nèi)錯角和同旁內(nèi)角以及對頂角。
2、過程與方法:
能夠通過觀察推斷等方法準確找到圖形中的鄰補角、對頂角,能夠進一步發(fā)展空間觀念。
3、情感態(tài)度價值觀:
培養(yǎng)識圖能力,發(fā)展空間想象能力,和邏輯推理能力。
1、重點:鄰補角、對頂角的概念,對頂角的性質(zhì)與應用,以及對同位角、內(nèi)錯角和同旁內(nèi)角的概念和應用的理解。
2、難點:理解對頂角相等的性質(zhì)的探索。
1、創(chuàng)設(shè)情景:通過多媒體展示自然界中的相交線的圖形,和同學們探討自然界中還存在哪些相交線的圖形,幫助同學們理解數(shù)學和生活的緊密關(guān)系。
3、抽象圖形:抽象出具體的圖形,和同學們一起給出相交線的定義。
5、嘗試反饋:在和同學們的探討中和同學們一起給出鄰補角和對頂角的定義。
6、在相交線的模型中,如果兩條相交線形成的四個角為直角,介紹垂線的定義。
7、進一步研究:在研究了一條直線與另一條直線之間的關(guān)系之后進一步研究一條直線與兩條直線分別相交時,討論沒有公共頂點的兩個角之間的關(guān)系,理解同位角、內(nèi)錯角和同旁內(nèi)角的定義。
引導同學們一起進行總結(jié)本節(jié)課學習的內(nèi)容,并強調(diào)對頂角的概念和性質(zhì)的理解。
第七頁,第二題,第六題,第十題。
華師大七年級數(shù)學教案設(shè)計篇十六
這節(jié)課的內(nèi)容是一元一次方程第一課時。課后,我對本節(jié)課從四方面進行了如下反思:
一:對選擇引例的反思。
在小學學生已接觸過方程,但沒有過多的研究。而本節(jié)課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節(jié)課既要讓學生認識到方程是更方便、更有力的數(shù)學工具,又要讓學生體驗到從算術(shù)方法到代數(shù)方法是數(shù)學的進步,這些目標的實現(xiàn)談何容易!課本上的例題雖然能很好的體現(xiàn)方程的優(yōu)越性,但難度較高。學生很少有利用方程解應用題的經(jīng)歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個題既簡單又能明顯地承載著從算術(shù)到方程的進步呢?幾乎翻閱了所有的有關(guān)資料,無獨有偶,在新課標教案126頁的一道數(shù)學名題“啊哈,它的全部,它的一半,其和等于19?!弊屛已矍耙涣?,我為自己好不容易找到一個例題而興奮不已,立刻拿去和我們數(shù)學組經(jīng)驗豐富的老教師交流一下我的想法,他們覺得這個例子倒挺好的,可是也提出了一個讓我深思的問題,這個題不是能夠很好地體現(xiàn)出從算術(shù)到方程的進步,因為題很簡單,方程的優(yōu)越性體現(xiàn)的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點醒了我,如果實在找不到合適的例題,不妨就用這個題,通過這個題從語言和方法上突破它,可以先讓學生感知方程的優(yōu)越性,后面學習中再不斷地滲透方程的優(yōu)越性。聽完陳老師的一席見解,我頓時豁然開朗,增加了以這個題作為引例的信心。事實證明,這個引例既富有創(chuàng)新又能激發(fā)學生的興趣,既符合學生的已有經(jīng)驗和知識水平,又符合學生的認知規(guī)律。
二:對選題的反思。
我在備課中【活動3】最初選用的題是:
修改后的題是:
判斷下列各式是方程的有:
(1)(2)(3)(4)(5)。
考慮到學生初對方程概念的研究,不在數(shù)字上人為的設(shè)置障礙,因為是否是方程與數(shù)字的大小根本無關(guān),于是把數(shù)字全部統(tǒng)一成了6、2、8三個數(shù),利于學生從未知數(shù)和等號的角度進一步理解方程的概念。最初選用的題數(shù)字太多,顯得題很多且條理性不強,容易分散學生對概念本質(zhì)的把握。改進后的題目更利于學生觀察方程的特征,從而更深刻地掌握概念的本質(zhì)。需要特別說明的是,如果說前5個小題是為了讓學生抓住方程的兩個要點,那么后3個小題則是對概念本質(zhì)的提升,即:是否是方程與未知數(shù)所在的位置、未知數(shù)的個數(shù)、未知數(shù)的次數(shù)等均無關(guān)。
三:對課堂實踐的反思。
本節(jié)課的設(shè)計思路:首先以“名題欣賞”導入,引入概念,通過四組練習讓學生深刻理解方程和一元一次方程的概念,最后由學生自己歸納小結(jié)。
當環(huán)節(jié)進行到【活動3】時,我讓學生寫出一個或幾個方程,在給學生判斷點評時,我發(fā)現(xiàn)學生在黑板上寫的全部都是未知數(shù)在等號左邊的方程,這時我突然意識到學生在模仿我前面呈現(xiàn)的方程,不禁暗自責怪自己考慮不周,怎么沒出一個等號兩邊都含有未知數(shù)的方程呢?它給我敲響了一個警鐘。正當我想寫一個等號兩邊都含有未知數(shù)的方程來彌補設(shè)計上的不足時,我忽然發(fā)現(xiàn)最后一排的一位男生已經(jīng)高高地舉起了手,他提出問題:“老師:等號兩邊都含有未知數(shù)的式子是不是方程,例如:2y-1=3y”?我為有學生能提出這樣的問題而感到慶幸,一是因為它及時彌補了我備課中的不足;二是由學生提出問題要比我提出問題更有價值。這可以反映出該生善于思考,同時也反映出了學生真實的疑惑。為了提高學生的探究能力,我并沒有急于解釋,而是把問題拋給學生,讓學生來解決。我立刻提出:“誰能解決這位同學提出的`問題呢?”這時我看到后面幾位學生已經(jīng)高高地舉起了手。我隨機點了一名學生,這位同學回答到:“判斷一個式子是不是方程只要看是否含有未知數(shù)和等號就ok了,與未知數(shù)的位置無關(guān)!”他精彩的回答引起聽課教師一陣喝彩!我也頓時驚喜萬分,他說的太好了,不管是語言表達還是準確性上都無可挑剔。我為敢于給學生這樣一個機會又一次感到慶幸;通過這個同學精彩的回答,我深深地感受到:“教師給學生一個機會,學生就會還你一個驚喜?!?/p>
四:教后整體反思。
成功之處:
1.引例、練習題的選擇都很恰當。
2.思路清晰,重點突出,注意到了學生的自主探索,節(jié)奏把握較好。
3.數(shù)學文化的滲透比較自然。
4.“寫一個或幾個一元一次方程”此環(huán)節(jié)的設(shè)計體現(xiàn)了從理論到實踐的過程,使學生的能力得到提升,學習效果得到落實。
5.語言簡練,教態(tài)大方,師生互動比較熱烈,充分調(diào)動了學生的積極性。
6.板書設(shè)計較為合理。本節(jié)課的主要內(nèi)容都以提煉的方式呈現(xiàn)出來。
不足之處:
1.在處理三道實際背景題時留給學生的思考時間偏少,顯得倉促。
2.在后面兩組題環(huán)節(jié)之間的過渡語言不是很自然。
3.授課語言仍需加強錘煉。
這節(jié)課的準備和每個環(huán)節(jié)的設(shè)計我頗費了一些心思,上完課之后總的感覺是達到了我預期的目標。非常感謝評委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學中,我將揚長避短,力爭做的更好!
華師大七年級數(shù)學教案設(shè)計篇十七
比較正數(shù)和負數(shù)的大小。
1、借助數(shù)軸初步學會比較正數(shù)、0和負數(shù)之間的大小。
2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結(jié)構(gòu)的初步構(gòu)建。
負數(shù)與負數(shù)的比較。
一、復習:
1、讀數(shù),指出哪些是正數(shù),哪些是負數(shù)?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教學例3:
1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數(shù)表示這些學生和大樹的相對位置關(guān)系?(讓學生把直線上的點和正負數(shù)對應起來。
(4)學生回答,教師在相應點的下方標出對應的數(shù),再讓學生說說直線上其他幾個點代表的數(shù),讓學生對數(shù)軸上的點表示的正負數(shù)形成相對完整的認識。
(5)總結(jié):我們可以像這樣在直線上表示出正數(shù)、0和負數(shù),像這樣的直線我們叫數(shù)軸。
(6)引導學生觀察:
a、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?
(7)練習:做一做的第1、2題。
(二)教學例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”
5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數(shù)比較大小時,絕對值大的負數(shù)反而小。
6、總結(jié):負數(shù)比0小,所有的負數(shù)都在0的'左邊,也就是負數(shù)都比0小,而正數(shù)比0大,負數(shù)比正數(shù)小。
7、練習:做一做第3題。
三、鞏固練習。
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。
四、全課總結(jié)。
(1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
(2)負數(shù)比0小,正數(shù)比0大,負數(shù)比正數(shù)小。
第二課教學反思:
許多教師認為“負數(shù)”這個單元的內(nèi)容很簡單,不需要花過多精力學生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現(xiàn)還有不少值得挖掘的內(nèi)容可以向?qū)W生補充介紹。
例3——兩個不同層面的拓展:
1、在數(shù)軸上表示數(shù)要求的拓展。
數(shù)軸除了可以表示整數(shù),還可以表示小數(shù)和分數(shù)。教材例3只表示出正、負整數(shù),最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發(fā)現(xiàn)兩個數(shù)離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數(shù)軸上表示分數(shù),如—1/3、—3/2等,提升學生數(shù)形結(jié)合能力,為例4的教學打下夯實的基礎(chǔ)。
2、滲透負數(shù)加減法。
教材中所呈現(xiàn)的數(shù)軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數(shù)軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設(shè)計對于學生初中進一步學習代數(shù)知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數(shù)大小比較的三種類型(正數(shù)和負數(shù)、0和負數(shù)、負數(shù)和負數(shù))。
例4教材只提出一個大的問題“比較它們的大小”,這些數(shù)的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數(shù)軸從左到右的順序就是數(shù)從小到大的順序基礎(chǔ)上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數(shù)軸上左邊的數(shù)比右邊的數(shù)小?!奔词褂袑W生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數(shù)軸相關(guān)。因為當絕對值越大時,表示離原點的距離越遠,那么在數(shù)軸上表示的點也就在原點左邊越遠,數(shù)也就越小。所以,抓住精髓就能以不變應萬變。
在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。
華師大七年級數(shù)學教案設(shè)計篇十八
3、滲透分類討論思想?
重點:有理數(shù)乘方的運算?
難點:有理數(shù)乘方運算的符號法則?
1、求n個相同因數(shù)的積的運算叫做乘方?
2、乘方的結(jié)果叫做冪,相同的因數(shù)叫做底數(shù),相同因數(shù)的個數(shù)叫做指數(shù)?
一般地,在an中,a取任意有理數(shù),n取正整數(shù)?
應當注意,乘方是一種運算,冪是乘方運算的結(jié)果?當an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。
例1計算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教師指出:2就是21,指數(shù)1通常不寫?讓三個學生在黑板上計算?
引導學生觀察、比較、分析這三組計算題中,底數(shù)、指數(shù)和冪之間有什么關(guān)系?
(1)模向觀察。
正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),偶次冪是正數(shù);零的任何次冪都是零?
(2)縱向觀察。
互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等?
(3)任何一個數(shù)的偶次冪都是什么數(shù)?
任何一個數(shù)的偶次冪都是非負數(shù)?
你能把上述的結(jié)論用數(shù)學符號語言表示嗎?
當a0時,an0(n是正整數(shù));
當a。
當a=0時,an=0(n是正整數(shù))?
(以上為有理數(shù)乘方運算的符號法則)。
a2n=(-a)2n(n是正整數(shù));
=-(-a)2n-1(n是正整數(shù));
a2n0(a是有理數(shù),n是正整數(shù))?
例2計算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
讓三個學生在黑板上計算?
課堂練習。
計算:
(1),,,-,;
(2)(-1)2001,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
讓學生回憶,做出小結(jié):
1、乘方的有關(guān)概念?
2、乘方的符號法則?3?括號的作用?
1、計算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2、填表:
3、a=-3,b=-5,c=4時,求下列各代數(shù)式的值:
4、當a是負數(shù)時,判斷下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5、平方得9的數(shù)有幾個?是什么?有沒有平方得-9的有理數(shù)?為什么?
6、若(a+1)2+|b-2|=0,求a2000b3的值?
華師大七年級數(shù)學教案設(shè)計篇十九
師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).
問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?
請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)。
學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有-的新數(shù)。
華師大七年級數(shù)學教案設(shè)計篇二十
3.進一步感悟“轉(zhuǎn)化”的思想。
把有理數(shù)的加減法混合運算統(tǒng)一為加法運算。
省略負數(shù)前面的加號的有理數(shù)加法,運用運算律交換加數(shù)位置時,符號不變。
根據(jù)有理數(shù)的減法法則,有理數(shù)的加減速混合運算可以統(tǒng)一為加法運算。
1、完成下列計算:
(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
歸納:根據(jù)有理數(shù)的減法法則,有理數(shù)的`加減混合運算可以統(tǒng)一為運算;
省略負數(shù)前面的加號和()后的形式是______________________;
展示交流。
1、把下列運算統(tǒng)一成加法運算:
2、將下列有理數(shù)加法運算中,加號省略:
(1)12+(-8)=________________;
3、將下列運算先統(tǒng)一成加法,再省略加號:
=___[]______________________。
4、仿照本p37例6,完成下列計算:
盤點收獲。
個案補充。
1.計算:
本p39習題2。5第6題(1)、(3)、(5),第7題。
【本文地址:http://mlvmservice.com/zuowen/13722810.html】