高一數(shù)學函數(shù)教案范文(14篇)

格式:DOC 上傳日期:2023-11-15 15:08:10
高一數(shù)學函數(shù)教案范文(14篇)
時間:2023-11-15 15:08:10     小編:夢幻泡

學校和教育部門對于教案的編寫和管理也有一定的要求和規(guī)范。教案的編寫應該注重培養(yǎng)學生的創(chuàng)造思維和解決問題的能力,提高他們的學習效果。教案編寫要注重教學過程的設計和組織,以培養(yǎng)學生的學習興趣和能力。

高一數(shù)學函數(shù)教案篇一

1.復習因式分解的概念,以及提公因式法,運用公式法分解因式的方法,使學生進一步理解有關概念,能靈活運用上述方法分解因式.

2.通過因式分解綜合練習,提高觀察、分析能力;通過應用因式分解方法進行簡便運算,培養(yǎng)學生運用數(shù)學知識解決實際問題的意識.

高一數(shù)學函數(shù)教案篇二

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質的指導下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質.

(3)能利用指數(shù)函數(shù)的性質比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如。

的圖象.

2.通過對指數(shù)函數(shù)的概念圖象性質的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結合的思想方法.

3.通過對指數(shù)函數(shù)的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.

教學建議。

教材分析。

(1)指數(shù)函數(shù)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產實際中有著廣泛的應用,所以指數(shù)函數(shù)應重點研究.

(2)本節(jié)的教學重點是在理解指數(shù)函數(shù)定義的基礎上掌握指數(shù)函數(shù)的圖象和性質.難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是。

的樣子,不能有一點差異,諸如。

(2)對底數(shù)。

的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對指數(shù)函數(shù)的認識及性質的分類討論,還關系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.

關于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.

高一數(shù)學函數(shù)教案篇三

知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。

過程與方法:通過設置問題情境培養(yǎng)學生判斷、推斷的能力。

情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操,通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養(yǎng)學生善于探索的思維品質。

難點:函數(shù)奇偶性的判斷。

學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。

1、復習在初中學習的軸對稱圖形和中心對稱圖形的定義:

2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。

(1)對于函數(shù),其定義域關于原點對稱:

如果______________________________________,那么函數(shù)為偶函數(shù)。

(2)奇函數(shù)的圖象關于__________對稱,偶函數(shù)的圖象關于_________對稱。

(3)奇函數(shù)在對稱區(qū)間的增減性;偶函數(shù)在對稱區(qū)間的增減性。

(1)f(x)=x4;(2)f(x)=x5;。

(3)f(x)=x+(4)f(x)=。

a2、二次函數(shù)()是偶函數(shù),則b=___________。

b3、已知,其中為常數(shù),若,則。

_______。

b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關于()。

(a)軸對稱(b)軸對稱(c)原點對稱(d)以上均不對。

b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。

c6、若函數(shù)是定義在r上的奇函數(shù),且當時,,那么當。

時,=_______。

d7、設是上的奇函數(shù),,當時,,則等于()。

(a)0.5(b)(c)1.5(d)。

d8、定義在上的奇函數(shù),則常數(shù)____,_____。

本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數(shù)的圖象充分理解好單調性和奇偶性這兩個性質。

高一數(shù)學函數(shù)教案篇四

(1)掌握與()型的絕對值不等式的解法.

(2)掌握與()型的絕對值不等式的解法.

(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結合的能力;。

教學重點:型的不等式的解法;。

教學難點:利用絕對值的意義分析、解決問題.

教學過程設計。

教師活動。

學生活動。

設計意圖。

一、導入新課。

【提問】正數(shù)的絕對值什么?負數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?

【概括】。

?

口答。

二、新課。

【提問】如何解絕對值方程?.。

【質疑】?的解集有幾部分?為什么?也是它的解集?

【練習】解下列不等式:

(1)?;

(2)。

【設問】如果在?中的?,也就是?怎樣解?

【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。

所以,原不等式的解集是。

【設問】如果?中的?是?,也就是?怎樣解?

【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。

或?。

由?得。

由?得。

所以,原不等式的解集是。

口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。

畫出數(shù)軸,思考答案。

不等式?的解集表示為。

畫出數(shù)軸。

思考答案。

???不等式?的解集為。

或表示為?,或。

筆答。

(1)。

(2)?,或。

筆答。

筆答。

根據(jù)絕對值的意義自然引出絕對值方程?(?)的解法.。

由淺入深,循序漸進,在?()型絕對值方程的基礎上引出(?)型絕對值方程的解法.。

針對解?(?)絕對值不等式學生常出現(xiàn)的情況,運用數(shù)軸質疑、解惑.。

落實會正確解出?與?(?)絕對值不等式。

高一數(shù)學函數(shù)教案篇五

理解函數(shù)的奇偶性及其幾何意義。

【過程與方法】。

利用指數(shù)函數(shù)的圖像和性質,及單調性來解決問題。

【情感態(tài)度與價值觀】。

體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學生學習數(shù)學的興趣。

【重點】。

【難點】。

(一)導入新課。

取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應問題:

答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關于y軸對稱;

(二)新課教學。

(1)偶函數(shù)(evenfunction)。

(學生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義。

(2)奇函數(shù)(oddfunction)。

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。

2、具有奇偶性的函數(shù)的圖象的特征。

偶函數(shù)的圖象關于y軸對稱;

奇函數(shù)的圖象關于原點對稱。

3、典型例題。

例1.(教材p36例3)應用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。

解:(略)。

總結:利用定義判斷函數(shù)奇偶性的格式步驟:

1首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;

2確定f(-x)與f(x)的關系;

3作出相應結論:

若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。

(三)鞏固提高。

1、教材p46習題1.3b組每1題。

解:(略)。

(教材p41思考題)。

規(guī)律:

偶函數(shù)的圖象關于y軸對稱;

奇函數(shù)的圖象關于原點對稱。

說明:這也可以作為判斷函數(shù)奇偶性的依據(jù)。

(四)小結作業(yè)。

課本p46習題1.3(a組)第9、10題,b組第2題。

三、規(guī)律:

偶函數(shù)的圖象關于y軸對稱;

奇函數(shù)的`圖象關于原點對稱。

高一數(shù)學函數(shù)教案篇六

【過程與方法】。

利用指數(shù)函數(shù)的圖像和性質,及單調性來解決問題。

【情感態(tài)度與價值觀】。

體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學生學習數(shù)學的興趣。

【重點】。

【難點】。

(一)導入新課。

取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應問題:

答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關于y軸對稱;。

(二)新課教學。

(1)偶函數(shù)(evenfunction)。

(學生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義。

(2)奇函數(shù)(oddfunction)。

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;。

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。

2.具有奇偶性的函數(shù)的圖象的特征。

偶函數(shù)的圖象關于y軸對稱;。

奇函數(shù)的圖象關于原點對稱。

3.典型例題。

例1.(教材p36例3)應用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。

解:(略)。

總結:利用定義判斷函數(shù)奇偶性的格式步驟:

1首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;。

2確定f(-x)與f(x)的關系;。

3作出相應結論:

若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。

(三)鞏固提高。

1.教材p46習題1.3b組每1題。

解:(略)。

(教材p41思考題)。

規(guī)律:

偶函數(shù)的圖象關于y軸對稱;。

奇函數(shù)的圖象關于原點對稱。

(四)小結作業(yè)。

課本p46習題1.3(a組)第9、10題,b組第2題。

三、規(guī)律:

偶函數(shù)的圖象關于y軸對稱;。

奇函數(shù)的`圖象關于原點對稱。

高一數(shù)學函數(shù)教案篇七

1、使學生掌握指數(shù)函數(shù)的概念,圖象和性質。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域。

(2)能在基本性質的指導下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質。

(3)能利用指數(shù)函數(shù)的性質比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如。

的圖象。

2、通過對指數(shù)函數(shù)的概念圖象性質的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結合的思想方法。

3、通過對指數(shù)函數(shù)的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣。使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題。

教材分析。

(1)指數(shù)函數(shù)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產實際中有著廣泛的應用,所以指數(shù)函數(shù)應重點研究。

時,函數(shù)值變化情況的區(qū)分。

(3)指數(shù)函數(shù)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是。

的樣子,不能有一點差異,諸如。

(2)對底數(shù)。

的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內容。如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對指數(shù)函數(shù)的認識及性質的分類討論,還關系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。

關于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。

高一數(shù)學函數(shù)教案篇八

1.知識技能:

2.過程與方法。

3.情感、態(tài)度與價值觀。

利用函數(shù)的性質找出零點找到方程的根.二分法求方程的近似解。

學生自主學習、合作探究.。

復習:

1.函數(shù)的零點的判定.

2.二分法求方程的近似解。

例1.偶函數(shù)在區(qū)間[0,a](a0)上是單調函數(shù),且f(0)=f(a)0,則方程在區(qū)間[-a,a]內根的個數(shù)是()。

a.1b.2c.3d.0。

練習:1:已知函數(shù),若實數(shù)是方程的解,且,則的值為()。

a.恒為正值b.等于c.恒為負值d.不大于。

2.已知函數(shù),則函數(shù)的零點是__________。

例2.用“二分法”求方程在區(qū)間內的實根,取區(qū)間中點為,那么下一個有根的區(qū)間是。

練習2:

3.利用函數(shù)圖象判斷下列方程有沒有實數(shù)根,有幾個實數(shù)根:

4借助計算器,用二分法求出在區(qū)間內的近似解(精確到)。

5.設,用二分法求方程內近似解的過程中得則方程的根落在區(qū)間()。

a.b.。

c.d.不能確定。

6直線與函數(shù)的圖象的交點個數(shù)為()。

a.個b.個c.個d.個。

7若方程有兩個實數(shù)解,則的取值范圍是()。

a.b.。

c.d.。

課后作業(yè):復習參考題四a組1?4題。

高一數(shù)學函數(shù)教案篇九

一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

高一數(shù)學函數(shù)教案篇十

(二)能畫出簡單函數(shù)的圖象,會列表、描點、連線;。

(三)能從圖象上由自變量的值求出對應的函數(shù)的近似值。

重點:認識函數(shù)圖象的意義,會對簡單的函數(shù)列表、描點、連線畫出函數(shù)圖象。

難點:對已恬圖象能讀圖、識圖,從圖象解釋函數(shù)變化關系。

1.什么叫函數(shù)?

2.什么叫平面直角坐標系?

3.在坐標平面內,什么叫點的橫坐標?什么叫點的.縱坐標?

4.如果點a的橫坐標為3,縱坐標為5,請用記號表示a(3,5).

5.請在坐標平面內畫出a點。

6.如果已知一個點的坐標,可在坐標平面內畫出幾個點?反過來,如果坐標平面內的一個點確定,這個點的坐標有幾個?這樣的點和坐標的對應關系,叫做什么對應?(答:叫做坐標平面內的點與有序實數(shù)對一一對應)。

我們在前幾節(jié)課已經知道,函數(shù)關系可以用解析式表示,像y=2x+1就表示以x為自變量時,y是x的函數(shù)。

這個函數(shù)關系中,y與x的函數(shù)。

這個函數(shù)關系中,y與x的對應關系,我們還可通知在坐標平面內畫出圖象的方法來表示。

高一數(shù)學函數(shù)教案篇十一

1.使學生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.

2.通過反函數(shù)概念的學習,培養(yǎng)學生分析問題,解決問題的能力及抽象概括的能力.

3.通過反函數(shù)的學習,幫助學生樹立辨證唯物主義的世界觀.

重點是反函數(shù)概念的形成與認識.

難點是掌握求反函數(shù)的方法.

投影儀。

自主學習與啟發(fā)結合法。

一.揭示課題。

今天我們將學習函數(shù)中一個重要的概念----反函數(shù).

(一)反函數(shù)的概念(板書)。

二.講解新課。

教師首先提出這樣一個問題:在函數(shù)中,如果把當作因變量,把當作自變量,能否構成一個函數(shù)呢?(讓學生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在的允許取值范圍內的任一值,按照法則都有唯一的與之相對應.(還可以讓學生畫出函數(shù)的圖象,從形的角度解釋“任一對唯一”)。

學生很快會意識到是的反函數(shù),教師可再引申為與是互為反函數(shù)的.然后利用問題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請舉出例子.在教師啟發(fā)下學生可以舉出象這樣的函數(shù),若將當自變量,當作因變量,在允許取值范圍內一個可能對兩個(可畫圖輔助說明,當時,對應),不能構成函數(shù),說明此函數(shù)沒有反函數(shù).

通過剛才的例子,了解了什么是反函數(shù),把對的反函數(shù)的研究過程一般化,概括起來就可以得到反函數(shù)的定義,但這個數(shù)學的抽象概括,要求比較高,因此我們一起閱讀書上相關的內容.

1.反函數(shù)的定義:(板書)(用投影儀打出反函數(shù)的定義)。

為了幫助學生理解,還可以把定義中的換成某個具體簡單的函數(shù)如解釋每一步驟,如得,再判斷它是個函數(shù),最后改寫為.給出定義后,再對概念作點深入研究.

2.對概念得理解(板書)。

教師先提出問題:反函數(shù)的“反”字應當是相對原來給出的函數(shù)而言,指的是兩者的關系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以與為例來說)。

學生很容易先想到對應法則是“反”過來的,把與的位置換位了,教師再追問它們的互換還會帶來什么變化?啟發(fā)學生找出另兩個要素之間的關系.最后得出結論:的定義域和值域分別由的值域和定義域決定的.再把結論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經確定了.簡記為“三定”.

(1)“三定”(板書)。

最后教師進一步明確“反”實際體現(xiàn)為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.

(2)“三反”(板書)。

此時教師可把問題再次引向深入,提出:如果一個函數(shù)存在反函數(shù),應怎樣求這個反函數(shù)呢?下面我給出兩個函數(shù),請同學們根據(jù)自己對概念的理解來求一下它們的反函數(shù).

例1.求的反函數(shù).(板書)。

(由學生說求解過程,有錯或不規(guī)范之處,暫時不追究,待例2解完之后再一起講評)。

解:由得,所求反函數(shù)為.(板書)。

例2.求,的反函數(shù).(板書)。

解:由得,又得,。

故所求反函數(shù)為.(板書)。

求完后教師請同學們作評價,學生之間可以討論,充分暴露表述中得問題,讓學生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見,指出例2中問題,結果應為,.

教師可先明知故問,與,有什么不同?讓學生明確指出兩個函數(shù)定義域分別是和,所以它們是不同的函數(shù).再追問從何而來呢?讓學生能從三定和三反中找出理由,是從原來函數(shù)的值域而來.

在此基礎上,教師最后明確要求,由于反函數(shù)的定義域必是原來函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來函數(shù)的值域.之后由學生調整剛才的求解過程.

解:由得,又得,。

又的值域是,。

故所求反函數(shù)為,.

(可能有的學生會提出例1中為什么不求原來函數(shù)的值域的問題,此時不妨讓學生去具體算一算,會發(fā)現(xiàn)原來函數(shù)的值域域求出的函數(shù)解析式中所求定義域時一致的,所以使得最后結果沒有出錯.但教師必須指出結論得一致性只是偶然,而不是必然,因此為規(guī)范求解過程要求大家一定先求原來函數(shù)的值域,并且在最后所求結果上注明反函數(shù)的定義域,同時讓學生調整例的表述,將過程補充完整)。

最后讓學生一起概括求反函數(shù)的步驟.

3.求反函數(shù)的步驟(板書)。

(1)反解:。

(2)互換。

(3)改寫:。

對以上環(huán)節(jié)教師可稍作解釋,然后提出再通過下面的練習來檢驗是否真正理解了.

三.鞏固練習。

練習:求下列函數(shù)的反函數(shù).

(1)(2).(由兩名學生上黑板寫)。

解答過程略.

教師可針對學生解答中出現(xiàn)的問題,進行講評.(如正負的選取,值域的計算,符號的使用)。

四.小結。

1.對反函數(shù)概念的認識:。

2.求反函數(shù)的基本步驟:。

五.作業(yè)。

課本第68頁習題2.4第1題中4,6,8,第2題.

六.板書設計。

2.4反函數(shù)例1.練習.

一.反函數(shù)的概念(1)(2)。

1.定義。

2.對概念的理解例2.

(1)三定(2)三反。

3.求反函數(shù)的步驟。

(1)反解(2)互換(3)改寫。

高一數(shù)學函數(shù)教案篇十二

一、教學目標:

知識與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質,培養(yǎng)學生實際應用函數(shù)的能力。

過程與方法:通過觀察圖象,分析、歸納、總結、自主建構指數(shù)函數(shù)的性質。領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)、分析、解決問題的能力。

情感態(tài)度與價值觀:在指數(shù)函數(shù)的學習過程中,體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。

二、教學重點、難點:

教學難點:對底數(shù)的分類,如何由圖象、解析式歸納指數(shù)函數(shù)的性質。

三、教學過程:

(一)創(chuàng)設情景。

學生回答:y與x之間的關系式,可以表示為y=2x。

問題2:一種放射性物質不斷衰變?yōu)槠渌镔|,每經過一年剩留的質量約是原來的84%。求出這種物質的剩留量隨時間(單位:年)變化的函數(shù)關系。設最初的質量為1,時間變量用x表示,剩留量用y表示。

學生回答:y與x之間的關系式,可以表示為y=0.84x。

引導學生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。

問題:指數(shù)函數(shù)定義中,為什么規(guī)定“a?0且a?1”如果不這樣規(guī)定會出現(xiàn)什么情況?

(1)若a0會有什么問題?

x1則在實數(shù)范圍內相應的函數(shù)值不存在)2(2)若a=0會有什么問題?(對于x0,a無意義)。

(3)若a=1又會怎么樣?(1x無論x取何值,它總是1,對它沒有研究的必要。)。

師:為了避免上述各種情況的發(fā)生,所以規(guī)定a?0且a?1。

1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大?。?/p>

設計意圖:這是指數(shù)函數(shù)性質的簡單應用,使學生在解題過程中加深對指數(shù)函數(shù)的圖像及性質的理解和記憶。

(五)課堂小結。

(六)布置作業(yè)。

高一數(shù)學函數(shù)教案篇十三

難點是對函數(shù)抽象符號的認識與使用.

投影儀

自學研究與啟發(fā)討論式.

一、復習與引入

(要求學生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學過的函數(shù)例子)

提問1.是函數(shù)嗎?

(由學生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)

二、新課

現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關的內容,再回答我的問題.(約2-3分鐘或開始提問)

提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.

(板書)2.2函數(shù)

一、函數(shù)的概念

問題3:映射與函數(shù)有何關系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)

引導學生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.

2.本質:函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)

然后讓學生試回答剛才關于是不是函數(shù)的問題,要求從映射的角度解釋.

此時學生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.

教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?

從映射角度看可以是其中定義域是,值域是.

3.函數(shù)的三要素及其作用(板書)

以下關系式表示函數(shù)嗎?為什么?

(1);(2).

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).

(2)由有意義得,解得.定義域為,值域為.

由以上兩題可以看出三要素的作用

(1)判斷一個函數(shù)關系是否存在.(板書)

(1);(2) (3);(4).

解:先認清,它是(定義域)到(值域)的映射,其中

再看(1)定義域為且,是不同的;(2)定義域為,是不同的;

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.

(2)判斷兩個函數(shù)是否相同.(板書)

4.對函數(shù)符號的理解(板書)

已知函數(shù)試求(板書)

分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.

含義1:當自變量取3時,對應的函數(shù)值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應表示原象的象,即.

計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.

三、小結

1.函數(shù)的定義

2.對函數(shù)三要素的認識

3.對函數(shù)符號的認識

四、作業(yè):略

五、

2.2函數(shù)例1.例3.

一.函數(shù)的概念

1.定義

2.本質例2.小結:

3.函數(shù)三要素的認識及作用

4.對函數(shù)符號的理解

答案:

高一數(shù)學函數(shù)教案篇十四

3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關系.

利用誘導公式(二),口答下列三角函數(shù)值.

(1). ;(2). ;(3). .

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

由sin300= 出發(fā),用三角的定義引導學生求出 sin(-300),sin1500值,讓學生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 與 的三角函數(shù)又有什么關系;

2.探究任意角 與 的三角函數(shù)之間又有什么關系.

遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經歷思考問題-觀察發(fā)現(xiàn)-到一般化結論的探索過程,從特殊到一般,數(shù)形結合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產生了師生的默契,師生共同進步.

誘導公式(三)、(四)

給出本節(jié)課的課題

三角函數(shù)誘導公式

標題的后出,讓學生在經歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經輕松掌握,同時也是對本節(jié)課內容的小結.

的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)

設計意圖

簡便記憶公式.

求下列三角函數(shù)的值:(1).sin( ); (2). co.

設計意圖

本練習的設置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.

學生練習

化簡: .

設計意圖

重點加強對三角函數(shù)的誘導公式的綜合應用.

1.小結使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.

2.體會數(shù)形結合、對稱、化歸的思想.

3.“學會”學習的習慣.

1.課本p-27,第1,2,3小題;

2.附加課外題 略.

設計意圖

加強學生對三角函數(shù)的誘導公式的記憶及靈活應用,附加題的設置有利于有能力的同學“更上一樓”.

八.課后反思

對本節(jié)內容在進行教學設計之前,本人反復閱讀了課程標準和教材,針對教材的內容,編排了一系列問題,讓學生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學生的互動交流,關注學生的思維發(fā)展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。

然而還有一些缺憾:對本節(jié)內容,難度不高,本人認為,教師的干預(講解)還是太多。

在以后的教學中,對于一些較簡單的內容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設計課堂教學,關注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。

【本文地址:http://mlvmservice.com/zuowen/12254718.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔