高一數(shù)學(xué)必修一教案(優(yōu)秀21篇)

格式:DOC 上傳日期:2023-11-15 07:07:13
高一數(shù)學(xué)必修一教案(優(yōu)秀21篇)
時間:2023-11-15 07:07:13     小編:HT書生

教案是教師授課的參考依據(jù),有助于提高教學(xué)的有效性和教學(xué)質(zhì)量。教案的編寫應(yīng)該注重合理的教學(xué)安排和教學(xué)步驟。在這里,小編為大家分享一些精選的教案范本,希望能給大家的教學(xué)帶來一些靈感。

高一數(shù)學(xué)必修一教案篇一

對課堂教學(xué)的有效性,我們不僅應(yīng)該有全面衡量的意識,也應(yīng)該有從定性與定量兩方面衡量的意識。就當(dāng)前課堂教學(xué)而言,我們要特別關(guān)注數(shù)學(xué)教學(xué)層次問題。以《平面向量基本定理》為例,采用“一個定理+三項注意”的模式,重點放在學(xué)生接受平面向量的基本定理和例題、習(xí)題的模仿與訓(xùn)練上,是一個層次;告訴學(xué)生平面向量基本定理蘊含著分解、轉(zhuǎn)化思想,重點放在定理的得出和證明的方法上是另一層次;理解平面向量基底的作用與意義,師生共同探討為什么要研究這個問題,怎樣研究這個問題,搞清楚其中體現(xiàn)的數(shù)學(xué)思維是更高的一個層次;如果學(xué)生能由平面向量基本定理體會到“事物是相互聯(lián)系、相互轉(zhuǎn)化的”,“事情是由一定的基本要素構(gòu)成的,可以用構(gòu)成它的基本要素來表示”,“研究事物可轉(zhuǎn)化為對它的基本要素的研究”,有助于養(yǎng)成理性地、有條理地思考和探究問題的習(xí)慣,那就更理想。

高一數(shù)學(xué)必修一教案篇二

本節(jié)課是“空間幾何體的三視圖和直觀圖”的第一課時,主要內(nèi)容是投影和三視圖,這部分知識是立體幾何的基礎(chǔ)之一,一方面它是對上一節(jié)空間幾何體結(jié)構(gòu)特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎(chǔ)和訓(xùn)練學(xué)生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內(nèi)容之一,常常結(jié)合給出的三視圖求給定幾何體的表面積或體積設(shè)置在選擇或填空中。同時,三視圖在工程建設(shè)、機械制造中有著廣泛應(yīng)用,同時也為學(xué)生進入高一層學(xué)府學(xué)習(xí)有很大的幫助。所以在人們的日常生活中有著重要意義。

二、教學(xué)目標(biāo)。

(1)知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結(jié)構(gòu)特征。

(2)過程與方法:通過直觀感知,操作確認(rèn),提高學(xué)生的空間想象能力、幾何直觀能力,培養(yǎng)學(xué)生的應(yīng)用意識。

(3)情感、態(tài)度與價值觀:讓感受數(shù)學(xué)就在身邊,提高學(xué)生學(xué)習(xí)立體幾何的興趣,培養(yǎng)學(xué)生相互交流、相互合作的精神。

三、設(shè)計思路。

本節(jié)課的主要任務(wù)是引導(dǎo)學(xué)生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復(fù)雜過程。直觀感知操作確認(rèn)是新課程幾何課堂的一個突出特點,也是這節(jié)課的設(shè)計思路。通過大量的多媒體直觀,實物直觀使學(xué)生獲得了對三視圖的感性認(rèn)識,通過學(xué)生的觀察思考,動手實踐,操作練習(xí),實現(xiàn)認(rèn)知從感性認(rèn)識上升為理性認(rèn)識。培養(yǎng)學(xué)生的空間想象能力,幾何直觀能力為學(xué)習(xí)立體幾何打下基礎(chǔ)。

教學(xué)的重點、難點。

(一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應(yīng)遵循的“長對正、高平齊、寬相等”的原則。

(二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。

四、學(xué)生現(xiàn)實分析。

本節(jié)首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學(xué)生具有這方面的直接經(jīng)驗和基礎(chǔ)。投影和三視圖雖為高中新增內(nèi)容,但學(xué)生在初中有一定基礎(chǔ),在七年級上冊“從不同方向看”的基礎(chǔ)上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學(xué)習(xí)和認(rèn)識了柱、錐、臺等幾何體的概念后,學(xué)生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側(cè)視圖、俯視圖的概念。這些概念的變化也說明了學(xué)生年齡特點和思維差異。

五、教學(xué)方法。

(1)教學(xué)方法及教學(xué)手段。

針對本節(jié)課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學(xué)法、啟導(dǎo)發(fā)現(xiàn)法。

在教學(xué)中,通過創(chuàng)設(shè)問題情境,充分調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,并引導(dǎo)啟發(fā)學(xué)生動眼、動腦、動手、同時采用多媒體的教學(xué)手段,加強直觀性和啟發(fā)性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。

(2)學(xué)法指導(dǎo)。

力爭在新課程要求的大背景下組織教學(xué),為學(xué)生創(chuàng)設(shè)良好的問題情境,留給學(xué)生充分的思考空間,在學(xué)生的辯證和討論前提下,發(fā)揮教師的概括和引領(lǐng)的作用。

高一數(shù)學(xué)必修一教案篇三

教學(xué)目標(biāo)。

掌握三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

教學(xué)重難點。

利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

教學(xué)過程。

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。

(精確到0.001)。

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習(xí):教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

高一數(shù)學(xué)必修一教案篇四

(1)理解函數(shù)的概念;。

(2)了解區(qū)間的概念;。

2、目標(biāo)解析。

(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。

【教學(xué)過程】。

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。

問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。

問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。

設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

高一數(shù)學(xué)必修一教案篇五

>教學(xué)目標(biāo)

落實情況.

解?絕對值不等式注意不要丟掉?這部分解集.。

五、作業(yè)。

1.閱讀課本?含絕對值不等式解法.。

2.習(xí)題?2、3、4。

課堂教學(xué)設(shè)計說明。

1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).

2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學(xué)生解題能力的目的.

3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習(xí)中糾正這個錯誤,以提高學(xué)生的運算能力.

高一數(shù)學(xué)必修一教案篇六

了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

(2)一元二次不等式。

會從實際情境中抽象出一元二次不等式模型.

通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.

(3)二元一次不等式組與簡單線性規(guī)劃問題。

會從實際情境中抽象出二元一次不等式組.

了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

高一數(shù)學(xué)必修一教案篇七

教學(xué)目標(biāo)。

1、理解平面向量的坐標(biāo)的概念;。

2、掌握平面向量的坐標(biāo)運算;。

3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.

教學(xué)重難點。

教學(xué)重點:平面向量的坐標(biāo)運算。

教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性.

教學(xué)過程。

平面向量基本定理:。

什么叫平面的一組基底?

平面的基底有多少組?

引入:。

1.平面內(nèi)建立了直角坐標(biāo)系,點a可以用什么來。

表示?

2.平面向量是否也有類似的表示呢?

高一數(shù)學(xué)必修一教案篇八

一、教學(xué)目標(biāo):

1、識記消費的不同類型,消費結(jié)構(gòu)的含義以及恩格爾系數(shù)的含義。

2、理解影響消費水平的因素,最主要的是收入水平和物價水平;理解錢貨兩清的消費,貸款消費以及租賃消費時商品所有權(quán)和使用權(quán)的變化。

教學(xué)重難點。

教學(xué)重點、難點:

影響消費水平的因素。

恩格爾系數(shù)的變化的含義。

教學(xué)過程。

教學(xué)內(nèi)容:

(一)情景導(dǎo)入:

學(xué)生活動:就日常生活的體驗得出相應(yīng)的回應(yīng),例如:買文具、食堂吃飯、買零食、買衣服、電話費等日常消費活動。

教師活動:多媒體課件展示豐富多彩的消費活動,其中主要集中于學(xué)生可能并有實際經(jīng)驗的消費內(nèi)容。

所以我們這節(jié)課就影響消費的因素及消費的類型相關(guān)討論。

(二)情景分析:

探究活動一:如何安排生活費?

學(xué)生活動:互相安排并討論各自的消費活動或消費內(nèi)容,發(fā)現(xiàn)其中的區(qū)別。

(1)收入。

教師活動:設(shè)問解疑。

同學(xué)們是否發(fā)現(xiàn)各自的消費有什么不同?而造成這個區(qū)別的原因在此主要是什么?

教師講解:收入是消費的前提與基礎(chǔ)。在其他條件不變的情況下,人們的可支配收入越多,對各種商品和服務(wù)的消費量就越大。收入增長較快的時期,消費增長也較快;反之,當(dāng)收入增長速度下降時,消費增幅也下降。當(dāng)前收入直接影響消費,預(yù)期消費則影響消費信心,當(dāng)預(yù)期消費樂觀時,消費信心就強;預(yù)期消費較低時,消費信心就弱。所以,要提高居民的生活水平,必須保持經(jīng)濟的穩(wěn)定增長,增加居民收入。

(2)物價水平。

教師活動:影響消費的因素除了收入水平還有沒有其他了呢?

學(xué)生活動:就材料進行相應(yīng)的討論,得出初步的結(jié)論,消費活動還受到物價水平的影響。

教師講解:消費品價格的變化會影響人們的購買能力。人們在一定時期的總收入是有限的,如果消費品價格上漲,會引起購買力下降,因而消費需求就降低。反之,則購買力提高,消費需求就增加。因此,物價的穩(wěn)定對保持人們的消費水平,安定生活和穩(wěn)定社會具有重要意義。正是由于這個原因,穩(wěn)定物價才成為國家宏觀調(diào)控的重要目標(biāo)。

教師:雖然我們是用同學(xué)們的消費活動做的說明,但要明白家庭消費的影響因素也是同樣的道理。我們在考察了總體消費狀況的前提下,接著來討論一個具體的消費案例:

探究活動二:小君的苦惱。

(1)按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。

教師活動:按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。

租賃消費也是一種比較常見的消費方式,我們可以通過租賃的方式使商品的所有權(quán)不發(fā)生變更,而獲得該商品在一定期限的使用權(quán)。

貸款消費是一種新興的消費方式,主要用于購買大宗耐用消費品及服務(wù)。因為這些消費品超出消費者當(dāng)前的支付能力,因而預(yù)支自己未來的收入,來滿足當(dāng)前的需要。也就是我們常說的“花明天的錢,園今天的夢”。貸款消費的交易方式,其消費品的所有權(quán)與使用權(quán)沒有完全轉(zhuǎn)移。在消費者按照約定按時還貸的前提下,消費品的所有權(quán)與使用權(quán)逐漸發(fā)生轉(zhuǎn)移,直至還完貸款為止,其所有權(quán)與使用權(quán)才徹底轉(zhuǎn)移到消費者手里。

貸款消費不僅滿足了消費者的生活需要,提高了消費者的生活質(zhì)量,而且促進了經(jīng)濟的發(fā)展,特別是我國經(jīng)濟發(fā)展進入買方市場后,貸款消費對擴大內(nèi)需,拉動經(jīng)濟的增長起來重要的作用。所以,我們要轉(zhuǎn)變傳統(tǒng)的消費觀念,以積極的態(tài)度來對待貸款消費,通過貸款消費滿足來滿足當(dāng)前的需要,通過生活質(zhì)量。當(dāng)然,在貸款消費是也要考慮自己的償還能力,還要講究信用,按時還貸。

學(xué)生活動:就相關(guān)情境進行討論,做出自己的選擇并給出相應(yīng)的解釋理由。

(2)按消費對象分,消費分為有形商品消費和勞務(wù)消費。

教師活動:按消費對象分,消費分為有形商品消費和勞務(wù)消費,有形商品消費消費的是有形的商品,而勞務(wù)消費消費的是無形的服務(wù)。

萬事大吉了!大家知道小君已經(jīng)達到哪種消費層次了嗎?

生存資料消費?發(fā)展資料消費?享受資料消費?

學(xué)生活動:討論并回答相應(yīng)問題,得出享受資料消費的結(jié)論。

(3)按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。

教師活動:按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。其中生存資料消費是最基本的消費,滿足較低層次的衣食住用行的需要;發(fā)展資料消費主要指滿足人們發(fā)展德育、智育等方面需要的消費;享受資料消費滿足人們享受的需要。隨著經(jīng)濟水平的提高,發(fā)展資料和享受資料消費將逐漸增加。

探究活動三:考查自己家里的消費結(jié)構(gòu)。

學(xué)生活動:認(rèn)真閱讀并討論得出結(jié)論家庭消費的不同內(nèi)容體現(xiàn)了不同的消費水平。

(1)消費結(jié)構(gòu)。

教師活動:多媒體展示近幾年社會的消費現(xiàn)狀,例:假日旅游、電子產(chǎn)品、汽車等。引導(dǎo)學(xué)生通過不同層面的直觀感受來了解消費結(jié)構(gòu)的變化。

要了解家庭消費水平先要知道一個概念就是消費結(jié)構(gòu),是指人們各類消費支出在消費總支出中所占的比重。消費結(jié)構(gòu)會隨著經(jīng)濟的發(fā)展、收入的變化而不斷變化,變化的方向遵循由生存需要到發(fā)展需要再到享受需要的順序。

(2)恩格爾系數(shù)。

教師活動:恩格爾系數(shù)指食品支出占家庭總支出的比重,用公式表示:恩格爾系數(shù)=食品支出費用/各項消費總支出費用×100%。一般恩格爾系數(shù)越大,越影響其他消費支出,特別是影響發(fā)展資料和享受資料的增加,限制消費層次和消費質(zhì)量的提高,因此生活水平就越低,相反恩格爾系數(shù)減小,生活水平就提高,消費結(jié)構(gòu)會逐步改善。恩格爾系數(shù)是消費結(jié)構(gòu)研究中的重要概念,在國際上受到普遍承認(rèn)和重視。

國際上甚至用它作為區(qū)分國際間消費結(jié)構(gòu)層次高低的最一般標(biāo)準(zhǔn)。聯(lián)合國糧農(nóng)組織在20世紀(jì)70年代中期提出劃分窮國富國的標(biāo)準(zhǔn):恩格爾系數(shù)在60%以上為絕對貧困國家;50%~59%的國家為勉強度日(我們稱之為溫飽型);在40%~49%為小康水平;在20%~39%為富裕水平;20%以下為極富裕國家。

我國這幾年經(jīng)濟結(jié)構(gòu)有了很大改善,消費水平不斷提高。

(三)情景回歸:

教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進行當(dāng)堂檢測,了解教學(xué)反饋。

將本文的word文檔下載到電腦,方便收藏和打印。

高一數(shù)學(xué)必修一教案篇九

了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).

了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。

(2)等差數(shù)列、等比數(shù)列。

理解等差數(shù)列、等比數(shù)列的概念。

掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式。

能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。

了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。

高一數(shù)學(xué)必修一教案篇十

1.要讀好課本。

有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強自己從課本入手進行研究的意識。

2.要記好筆記。

首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當(dāng)然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。

3.要做好作業(yè)。

在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責(zé)任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。

4.要寫好總結(jié)。

一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高?!安粫偨Y(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗是成功的基石?!弊匀唤邕m者生存的生物進化過程便是最好的例證。學(xué)習(xí)要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。

通過與老師、同學(xué)平時的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個單元的總結(jié))的學(xué)習(xí)習(xí)慣。

1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。

2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。

小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。

3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時間,及時對所學(xué)進行鞏固。

4.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。

5.錯題反復(fù)研究。自己準(zhǔn)備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復(fù)研究,避免再次出錯。

高一數(shù)學(xué)必修一教案篇十一

1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。

2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實踐的辯證關(guān)系,適時滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。

3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。

高一數(shù)學(xué)必修一教案篇十二

1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)確定的。

(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。

(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項。

2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。

3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。

(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。

(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。

(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。

(6)給出一些簡單數(shù)列的通項公式,可以求其項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的。

高一數(shù)學(xué)必修一教案篇十三

教學(xué)目標(biāo)。

掌握三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

教學(xué)重難點。

利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

教學(xué)過程。

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。

(精確到0.001).

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域。

本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習(xí):教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

高一數(shù)學(xué)必修一教案篇十四

(2)了解區(qū)間的概念;。

(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。

問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。

問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。

設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

高一數(shù)學(xué)必修一教案篇十五

1、了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實和判定的基本方法。

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。

(2)能從數(shù)和形兩個角度熟悉單調(diào)性和奇偶性。

(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。

2、通過函數(shù)單調(diào)性的證實,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想。

3、通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。

一、知識結(jié)構(gòu)。

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)。減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)。偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)。偶函數(shù)的圖像。

二、重點難點分析。

(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實。

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫。單調(diào)性的證實是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調(diào)性的證實自然就是教學(xué)中的難點。

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。

(2)函數(shù)單調(diào)性證實的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達式寫出來。經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

高一數(shù)學(xué)必修一教案篇十六

1. 閱讀課本 練習(xí)止.

2. 回答問題

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3. 完成 練習(xí)

4. 小結(jié).

二、方法指導(dǎo)

1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問題

1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1. 試求下列函數(shù)的反函數(shù):

(1) ; (2) ;

(3) ; (4) .

2. 求下列函數(shù)的定義域:

(1) ; (2) ; (3) .

3. 已知 則 = ; 的定義域為 .

1.對數(shù)函數(shù)的'有關(guān)概念

(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);

(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);

(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).

2. 反函數(shù)的概念

在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).

3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:

4. 舉例說明如何求反函數(shù).

一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,

二、課外思考:

1. 求定義域: .

2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.

高一數(shù)學(xué)必修一教案篇十七

1、使學(xué)生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。

2、在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法。

3、在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神。

重點是奇偶性概念的形成與函數(shù)奇偶性的判定。

難點是對概念的熟悉。

投影儀,計算機。

引導(dǎo)發(fā)現(xiàn)法。

一。引入新課。

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì)。從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì)。

(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)。

學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱。最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。

二。講解新課。

2、函數(shù)的奇偶性(板書)。

學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立。最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。

(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù)。(板書)。

(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗一下對概念的初步熟悉)。

提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)。

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。

(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù)。(板書)。

(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。

例1。判定下列函數(shù)的奇偶性(板書)。

(1);(2);

(3);;

(5);(6)。

(要求學(xué)生口答,選出12個題說過程)。

解:(1)是奇函數(shù)。(2)是偶函數(shù)。

(3),是偶函數(shù)。

學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)。

從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。

(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)。

由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。

例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學(xué)生來完成)。

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。

例3。判定下列函數(shù)的奇偶性(板書)。

(1);(2);(3)。

由學(xué)生回答,不完整之處教師補充。

解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù)。

(2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù)。

(3)當(dāng)時,于是,

當(dāng)時,,于是=,

綜上是奇函數(shù)。

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。

三。小結(jié)。

1、奇偶性的概念。

2、判定中注重的問題。

四。作業(yè)略。

五。板書設(shè)計。

2、函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

(3)定義域關(guān)于原點對稱是函數(shù)例2。小結(jié)。

具備奇偶性的必要條件。

(4)函數(shù)按奇偶性分類分四類。

(1)定義域為的任意函數(shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證實之嗎?

(2)判定函數(shù)在上的單調(diào)性,并加以證實。

在此基礎(chǔ)上試?yán)眠@個函數(shù)的單調(diào)性解決下面的問題:

高一數(shù)學(xué)必修一教案篇十八

教學(xué)目標(biāo)。

1、知識與技能。

(1)推廣角的概念、引入大于角和負(fù)角;(2)理解并掌握正角、負(fù)角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹立運動變化觀點,深刻理解推廣后的角的概念;(6)揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣。(7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強化學(xué)生的參與意識。

2、過程與方法。

通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。

3、情態(tài)與價值。

通過本節(jié)的學(xué)習(xí),使同學(xué)們對角的概念有了一個新的認(rèn)識,即有正角、負(fù)角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會運用運動變化的觀點認(rèn)識事物。

教學(xué)重難點。

重點:理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。

難點:終邊相同的角的表示。

教學(xué)工具。

投影儀等。

教學(xué)過程。

【創(chuàng)設(shè)情境】。

思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了1.25。

小時,你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時間校準(zhǔn)以后,分針轉(zhuǎn)了多少度?

[取出一個鐘表,實際操作]我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。

【探究新知】。

1.初中時,我們已學(xué)習(xí)了角的概念,它是如何定義的呢?

[展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置ob,就形成角a.旋轉(zhuǎn)開始時的射線叫做角的始邊,ob叫終邊,射線的端點o叫做叫a的頂點。

[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負(fù)角(negativeangle).如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle).

8.學(xué)習(xí)小結(jié)。

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。

線上的角的集合。

五、評價設(shè)計。

1.作業(yè):習(xí)題1.1a組第1,2,3題。

2.多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,

進一步理解具有相同終邊的角的特點。

課后小結(jié)。

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。

線上的角的集合。

課后習(xí)題。

作業(yè):

1、習(xí)題1.1a組第1,2,3題。

2.多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,

進一步理解具有相同終邊的角的特點。

板書。

高一數(shù)學(xué)必修一教案篇十九

忙碌的日子總是過得很快,轉(zhuǎn)眼間期中考試的時間又到了,我們高一數(shù)學(xué)必修四的教學(xué)也進入了最后的復(fù)習(xí)沖刺階段?;仡櫚雽W(xué)期以來,我對前面的教學(xué)感受頗深。

必修四由三角函數(shù)、平面向量、和三角恒等變換三章構(gòu)成,三角函數(shù)與三角恒等變換是高中數(shù)學(xué)課程的傳統(tǒng)內(nèi)容,平面向量基本上也是,因此,本模塊的內(nèi)容屬于“傳統(tǒng)內(nèi)容”。與以往的教科書相比較,本書在內(nèi)容、要求以及章節(jié)安排、處理方法上都有新的變化。

在內(nèi)容安排上,第一章三角函數(shù)的學(xué)習(xí)為第二章平面向量作了必要的準(zhǔn)備,同時應(yīng)用第二章平面向量的知識推導(dǎo)兩角差的余弦公式,使第三章三角恒等變換可以獨立成章。學(xué)習(xí)完后,心中有幾點體會如下:

高一數(shù)學(xué)必修一教案篇二十

教學(xué)過程:

(20秒以內(nèi))。

內(nèi)容:你好,現(xiàn)在讓我們一起來學(xué)習(xí)《集合的運算——自己探索也能發(fā)現(xiàn)的'數(shù)學(xué)規(guī)律(第二講)》。

第1張ppt。

12秒以內(nèi)。

(4分20秒左右)。

1·引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)。”

那么,這個規(guī)律是偶然的,還是一個恒等式呢?

第2張ppt。

28秒以內(nèi)。

2·規(guī)律的驗證:

第3張ppt。

2分10秒以內(nèi)。

3·抽象概括:通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。

而這個規(guī)律就是180年前著名的英國數(shù)學(xué)家德摩根發(fā)現(xiàn)的。

為了紀(jì)念他,我們將它稱為德摩根律。

原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。

第4張ppt。

30秒以內(nèi)。

第5張ppt。

1分20秒以內(nèi)。

(20秒以內(nèi))。

通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運算問題提供了更為簡便的方法。

希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

第6張ppt。

10秒以內(nèi)。

教學(xué)反思(自我評價)。

高一數(shù)學(xué)必修一教案篇二十一

3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.

教學(xué)重點是通項公式的熟悉;教學(xué)難點是對公式的靈活運用.

實物投影儀,多媒體軟件,電腦.

研探式.

一.復(fù)習(xí)提問

等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應(yīng)用.

二.主體設(shè)計

通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

1.方程思想的運用

(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.

(2)已知等差數(shù)列中,首項,則公差

(3)已知等差數(shù)列中,公差,則首項

這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.

2.基本量方法的使用

(1)已知等差數(shù)列中,求的值.

(2)已知等差數(shù)列中,求.

若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.

教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).

如:已知等差數(shù)列中,…

由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….

類似的還有

(4)已知等差數(shù)列中,求的值.

以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出

3.研究等差數(shù)列的單調(diào)性

4.研究項的符號

這是為研究等差數(shù)列前項和的最值所做的預(yù)備工作.可配備的題目如

(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?

(2)等差數(shù)列從第x項起以后每項均為負(fù)數(shù).

三.小結(jié)

1.用方程思想熟悉等差數(shù)列通項公式;

2.用函數(shù)思想解決等差數(shù)列問題.

四.板書設(shè)計

等差數(shù)列通項公式1.方程思想的運用

2.基本量方法的使用

3.研究等差數(shù)列的單調(diào)性

4.研究項的符號

【本文地址:http://mlvmservice.com/zuowen/12105629.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔