教案的執(zhí)行過程要靈活調(diào)整,根據(jù)學(xué)生的學(xué)習(xí)情況進行及時調(diào)整和改進。編寫一份完美的教案需要考慮多個因素。首先,要明確教學(xué)目標(biāo),確定學(xué)生應(yīng)該達到的知識、能力和情感目標(biāo)。其次,要選擇適當(dāng)?shù)慕虒W(xué)內(nèi)容,確保內(nèi)容與學(xué)生的實際情況和學(xué)習(xí)需求相匹配。此外,還需要靈活運用不同的教學(xué)方法,以激發(fā)學(xué)生的學(xué)習(xí)興趣和主動性。在這里,小編為大家推薦了一些教案模板,希望能對大家的備課工作有所幫助。
多邊形的內(nèi)角和教案四年級篇一
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
五、教具、學(xué)具。
教具:多媒體課件。
學(xué)具:三角板、量角器。
六、教學(xué)媒體:大屏幕、實物投影。
七、教學(xué)過程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思。
師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360?。
接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
學(xué)生先獨立思考每個問題再分組討論。
關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
(2)學(xué)生能否采用不同的方法。
方法1:把五邊形分成三個三角形,3個180?的和是540?。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結(jié)果得540?。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結(jié)果得540?。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結(jié)果得540?。
師:你真聰明!做到了學(xué)以致用。
交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
(二)引申思考,培養(yǎng)創(chuàng)新。
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
學(xué)生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180?的和,五邊形內(nèi)角和是3個180?的'和,六邊形內(nèi)角和是4個180?的和,十邊形內(nèi)角和是8個180?的和。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
(三)實際應(yīng)用,優(yōu)勢互補。
(2)一個多邊形的內(nèi)角和是1440?,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
(四)概括存儲。
學(xué)生自己歸納總結(jié):
2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
3、用數(shù)形結(jié)合的思想解決問題。
(五)作業(yè):練習(xí)冊第93頁1、2、3。
八、教學(xué)反思:
1、教的轉(zhuǎn)變。
本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。
2、學(xué)的轉(zhuǎn)變。
學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變。
整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
多邊形的內(nèi)角和教案四年級篇二
1、知識與技能:
(2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。
2、過程與方法:
(1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
(2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
(3)發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。
3、情感態(tài)度與價值觀:
讓學(xué)生體驗數(shù)學(xué)活動的探索樂趣,通過教學(xué)中的活動體會數(shù)學(xué)的轉(zhuǎn)化思想。
教學(xué)課件、各種三角形。
1、猜謎語:。
形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。
(打一圖形名稱)。
2、猜三角形。
3、引出課題。
師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進數(shù)學(xué)王國,探討三角形的內(nèi)角和的奧秘。(板書課題)。
2、猜一猜。
3、驗證。
4、學(xué)生匯報。
(1)測量。
(2)剪拼。
a、學(xué)生上臺演示。
b、請大家三人小組合作,用剪拼的方法驗證其它三角形。
c、師演示。
(3)折拼。
師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學(xué)們看一看他是怎么折的(課件演示)。
(5)數(shù)學(xué)小知識。
5、鞏固知識。
教師:為什么不是360°?
師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!
1、看圖,求未知角的度數(shù)。
2、判斷。
3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?
(1)我三邊相等。
(2)我是等腰三角形,我的頂角是96°。
(3)我有一個銳角是40°。
4、求四邊形、五邊形內(nèi)角和。
師:這節(jié)課你有什么收獲?
多邊形的內(nèi)角和教案四年級篇三
二、教學(xué)目標(biāo)。
2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標(biāo):通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
三、教學(xué)重、難點。
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
五、教具、學(xué)具。
教具:多媒體課件。
學(xué)具:三角板、量角器。
六、教學(xué)媒體:大屏幕、實物投影。
七、教學(xué)過程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思。
師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?
在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360o。
方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360o。
接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
學(xué)生先獨立思考每個問題再分組討論。
關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
(2)學(xué)生能否采用不同的方法。
方法1:把五邊形分成三個三角形,3個180o的和是540o。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結(jié)果得540o。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結(jié)果得540o。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結(jié)果得540o。
交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。
(二)引申思考,培養(yǎng)創(chuàng)新。
師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
學(xué)生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
(三)實際應(yīng)用,優(yōu)勢互補。
(2)一個多邊形的內(nèi)角和是1440o,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
(四)概括存儲。
學(xué)生自己歸納總結(jié):
2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
3、用數(shù)形結(jié)合的思想解決問題。
(五)作業(yè):練習(xí)冊第93頁1、2、3。
多邊形的內(nèi)角和教案四年級篇四
根據(jù)上面三組實驗分別證明了銳角三角形、直角三角形、鈍角三角形的內(nèi)角和都等于180度。
四、練一練。
請學(xué)生自己畫任意的`三角形,并用剛才老師所講的方法自己來判斷一下三角形的內(nèi)角和。
五、實踐活動:
第1題:用紙剪出一個等邊三角形。
第2題:將等邊三角形兩邊取中點,并向底作垂線,
第3題:把紙沿著虛線對折。
第4題:觀察三個角的內(nèi)角加起來為多少?
多邊形的內(nèi)角和教案四年級篇五
教學(xué)目標(biāo)。
知識與技能。
掌握多邊形內(nèi)角和公式及外角和定理,并能應(yīng)用.
過程與方法。
2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神.
情感態(tài)度價值觀。
通過猜想、推理等數(shù)學(xué)活動,感受數(shù)學(xué)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情.
重點。
多邊形的內(nèi)角和教案四年級篇六
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
教學(xué)目標(biāo):
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
4.講解四邊形的`有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學(xué)重點:
教學(xué)難點:
教學(xué)過程:
(一)復(fù)習(xí)。
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習(xí):課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應(yīng)用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
練習(xí):
1.課本124頁3題.
小結(jié):
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
多邊形的內(nèi)角和教案四年級篇七
過程與方法目標(biāo):通過多邊形內(nèi)角和公式的推導(dǎo)過程,提高邏輯思維能力。
情感態(tài)度與價值觀目標(biāo):養(yǎng)成實事求是的科學(xué)態(tài)度。
教學(xué)重點:多邊形的內(nèi)角和公式
教學(xué)難點:多邊形內(nèi)角和公式
講解法、練習(xí)法、分小組討論法
結(jié)合新課程標(biāo)準(zhǔn)及以上的分析,我將我的教學(xué)過程設(shè)置為以下五個教學(xué)環(huán)節(jié):導(dǎo)入新知、
生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
1. 導(dǎo)入新知
首先是導(dǎo)入新知環(huán)節(jié),我會引導(dǎo)學(xué)生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的
內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學(xué)生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
通過提問的方式幫助學(xué)生回顧舊知識的同時,引導(dǎo)學(xué)生思考,也激發(fā)學(xué)生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學(xué)習(xí)奠定了基礎(chǔ)。
2. 生成新知
接下來,進入生成新知環(huán)節(jié),我會引導(dǎo)學(xué)生將四邊形分成兩個三角形來求內(nèi)角和,由此
得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導(dǎo)學(xué)生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學(xué)生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個小組來回答他們討論的結(jié)果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
驗證:七邊形驗證
在本環(huán)節(jié)中通過學(xué)生自主學(xué)習(xí)歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
3. 深化新知
再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導(dǎo)學(xué)生思考一下有沒有其他的將多邊形分隔求
內(nèi)角和的方法,引導(dǎo)學(xué)生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。
本環(huán)節(jié)的設(shè)計主要是對多變形內(nèi)角和的一個深入了解,給學(xué)生一個內(nèi)化的過程,同時引導(dǎo)學(xué)生不要將知識學(xué)死了,要活學(xué)活用,從多個角度來思考問題,解決問題。
4. 鞏固提高
我們說數(shù)學(xué)是來源于生活,服務(wù)于生活的一門學(xué)科,所以在接下來的鞏固提高環(huán)節(jié),
我講引領(lǐng)學(xué)生用我們所學(xué)過的多邊形的內(nèi)角和公式來解決生活中的實際問題。
我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學(xué)生思考運用我們本節(jié)課所學(xué)習(xí)的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。
5. 小結(jié)作業(yè)
先讓學(xué)生思考一下我們本節(jié)課學(xué)習(xí)了什么知識點,然后找一位同學(xué)來總結(jié)一下我們本節(jié)課所學(xué)習(xí)的知識點。對本節(jié)課學(xué)習(xí)內(nèi)容有了一個回顧之后,讓學(xué)生做一下練習(xí)題1、2題,以此來進一步提升學(xué)生運用知識的能力。
多邊形的內(nèi)角和教案四年級篇八
設(shè)計理念:。
一教材分析:。
從教材的編排上,本節(jié)課作為第三章的第三節(jié)。從三角形的內(nèi)角和到四邊形的內(nèi)角和至多邊形的內(nèi)角和,環(huán)環(huán)相扣。同時,對今后學(xué)習(xí)的鑲嵌,正多邊形和圓等都是非常重要的。知識的聯(lián)系性比較強。因此,本節(jié)課具在承上啟下的作用,符合學(xué)生的認(rèn)知規(guī)律。再從本節(jié)的教學(xué)理念看,編者從簡單的幾何圖形入手,蘊含了把復(fù)雜問題轉(zhuǎn)化為簡單問題,化未知為已知的思想。充分體現(xiàn)了人人學(xué)有價值的數(shù)學(xué),這一新課程標(biāo)準(zhǔn)精神。
二、學(xué)情分析:。
三、教學(xué)目標(biāo)的確定:。
3、通過探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實驗幾何過渡到論證幾何。
四、重難點的確立:。
既然是多邊形內(nèi)角和具有承上啟下的作用。因此確定本節(jié)課的重點是探究多邊形的內(nèi)角和的公式。由于七年級學(xué)生初學(xué)幾何,所以學(xué)生在幾何的邏輯推理上感到有難度。所以我確定本節(jié)課的難點是探究多邊形內(nèi)角和公式推導(dǎo)的基本思想,而解決問題的關(guān)鍵是教師恰當(dāng)?shù)囊龑?dǎo)。
多邊形的內(nèi)角和教案四年級篇九
本節(jié)課的教學(xué)先通過計算三角尺的3個內(nèi)角的度數(shù)的和,激發(fā)學(xué)生的好奇心,進而引發(fā)三角形內(nèi)角和是180度的猜想,再通過組織操作活動驗證猜想,得出結(jié)論。
1、讓學(xué)生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內(nèi)角和是180。
2、讓學(xué)生學(xué)會根據(jù)三角形的內(nèi)角和是180°這一知識求三角形中一個未知角的度數(shù)。
3、激發(fā)學(xué)生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。
三角板,量角器、點子圖、自制的三種三角形紙片等。
看了這2個算式你有什么猜想?
(三角形的三個角加起來等于180度)。
1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。
老師注意巡視和指導(dǎo)。交流各自加得的結(jié)果,說說你的發(fā)現(xiàn)。
2、折、拼:學(xué)生用自己事先剪好的圖形,折一折。
指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。
繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。
直角三角形的折法有不同嗎?
通過交流使學(xué)生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數(shù)和也是180度。
3、撕、拼:可能有個別學(xué)生對折的方法感到有困難。那么還可以用撕的方法。
在撕之前要分別在三個角上標(biāo)好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。
小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180。
4、試一試。
三角形中,角1=75,角2=39,角3=()。
算一算,量一量,結(jié)果相同嗎?
1、算出下面每個三角形中未知角的度數(shù)。
在交流的時候可以分別學(xué)生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。
指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。
可先猜想:兩個三角形拼在一起,會不會它的內(nèi)角和變成1802=360°呢?為什么?
然后再分別算一算圖上的這三個三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180°。
3、用一張正方形紙折一折,填一填。
4、說理:一個直角三角形中最多有幾個直角?為什么?
一個鈍角三角形中最多有幾個直角?為什么?
第4、5題。
多邊形的內(nèi)角和教案四年級篇十
上完這節(jié)課后,自我感覺良好,學(xué)生在課堂上也積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。
首先我先復(fù)習(xí)相關(guān)知識,引出新的問題,明確指出雖然采用的分割方法不同,但是目標(biāo)是一致的,都是通過添加輔助線,把未知的多邊形的內(nèi)角和轉(zhuǎn)化為一些三角形的內(nèi)角和,向?qū)W生滲透了“轉(zhuǎn)化”這種數(shù)學(xué)思想方法。在此教學(xué)中,只須真正實施民主的開放式教學(xué),創(chuàng)設(shè)平等、民主、寬松的教學(xué)氛圍,使師生完全處于平等的地位,學(xué)生才能敞開思想,積極參與教學(xué)活動,才能最大限度地調(diào)動學(xué)生的積極性,激發(fā)他們的學(xué)習(xí)興趣,引導(dǎo)他們多角度、多方位、多層次地思考問題,使他們有足夠的機會顯示靈性,展現(xiàn)個性。在問題探究、合作交流、形成共識的基礎(chǔ)上,在課堂活動中經(jīng)歷、感悟知識的生成、發(fā)展與變化過程,也只有這樣,才能將創(chuàng)新教育的目標(biāo)落到實處,讓學(xué)生在自主參與學(xué)習(xí),解決問題、嘗試到一題多證的方法,體驗到參與的樂趣、合作的價值,并獲得成功的體驗。
六、案例點評。
陳老師在本節(jié)課的教學(xué)設(shè)計上,內(nèi)容豐富,過程非常具體,設(shè)計也較合理。整節(jié)課以推導(dǎo)多邊形的內(nèi)角和為線索,讓學(xué)生經(jīng)歷了提問題、畫圖、判斷、找規(guī)律、猜想出一般性的結(jié)論。另外,能夠體現(xiàn)了用新教材的思想,體現(xiàn)了學(xué)生的主體地位,體現(xiàn)了新的教學(xué)理念,也符合初中生的心理特點和年齡特征,因此在教學(xué)設(shè)計上是比較好的。
但是隨堂練習(xí)太少而不精,并且沒有梯度,能否可以設(shè)計一些具有一定難度的練習(xí),使不同的學(xué)生得到不同層次的發(fā)展,為學(xué)有余力的學(xué)生提供更大的學(xué)習(xí)和發(fā)展空間。另外,關(guān)于多邊形的內(nèi)角和的推導(dǎo)不必要一一講解,只要引導(dǎo)學(xué)生解決了探索方法1和探索方法2就可以了,對于探索方法3,可以讓學(xué)生課后思考。
多邊形的內(nèi)角和教案四年級篇十一
《多邊形內(nèi)角和》這節(jié)課,我基本上完成了教學(xué)任務(wù),教學(xué)目標(biāo)基本達成,《多邊形內(nèi)角和》教學(xué)反思。學(xué)生明確了轉(zhuǎn)化的思想是數(shù)學(xué)最基本的思想方法,知道研究一個新的問題要從簡單的已知入手,能夠用多種方法探究出多邊形的內(nèi)角和,并且能夠運用多邊形的內(nèi)角和公式解決相關(guān)問題。同時也有幾個地方引起了我深深的思考。
首先,在這節(jié)課的設(shè)計中,我大膽的嘗試并使用網(wǎng)絡(luò)教學(xué)。在我最初的設(shè)計過程中,按照常規(guī)的方法引導(dǎo)學(xué)生先用分割的`方法得到四邊形內(nèi)角和,再探究多邊形的內(nèi)角和。但是網(wǎng)絡(luò)教學(xué)教學(xué)就成為一種形式,沒有充分的發(fā)揮它的作用,效果也不是很好。后來改為不做任何方法的指導(dǎo),采用完全開放的探究,每步探究先讓學(xué)生嘗試,把學(xué)生推到主動位置,放手讓學(xué)生自己學(xué)習(xí),教學(xué)過程主要靠學(xué)生自己去完成,盡可能做到讓學(xué)生在“活動”中學(xué)習(xí),在“主動”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。要充分體現(xiàn)學(xué)生學(xué)習(xí)的自主性:規(guī)律讓學(xué)生自主發(fā)現(xiàn),方法讓學(xué)生自主尋找,思路讓學(xué)生自主探究,問題讓學(xué)生自主解決。課前我很擔(dān)心,但事實說明,這種探究才是真正的讓學(xué)生去嘗試,去挑戰(zhàn)。因此,在課堂教學(xué)中選用探究式,可以讓學(xué)生在自主學(xué)習(xí)中探究,在質(zhì)疑問題中探究,在觀察比較中探究,在矛盾沖突中探究,在問題解決中探究,在實踐活動中探究,教學(xué)反思《多邊形內(nèi)角和》教學(xué)反思》??傊覍μ骄空n有了更深刻的理解。
這節(jié)課的第一個環(huán)節(jié):引入,我認(rèn)為比較精彩。利用諸葛八卦村作為情景引入,通過介紹他的三奇,一下子吸引學(xué)生的注意力。這樣這節(jié)課的開頭就像一塊無形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調(diào)動了學(xué)生的情緒,打動學(xué)生的心靈,形成良好的課堂氣氛切人口。第三個環(huán)節(jié):分層練習(xí)。充分發(fā)揮了網(wǎng)絡(luò)課的優(yōu)勢,真正做到了分層。
其次,在探究這個環(huán)節(jié)中,有一個關(guān)鍵的地方處理的很不到位。即:當(dāng)一個學(xué)生提出分割方法時,這時沒有及時把握住這個時機,讓更多的學(xué)生去嘗試這種方法,而是讓他自己把所得到的結(jié)論直接告訴大家,因此沒有讓更多的學(xué)生去體驗轉(zhuǎn)化的思想,我認(rèn)為這節(jié)課最大的敗筆就在于此。課下我反復(fù)的`思考出現(xiàn)問題的原因,是因為對學(xué)生估計的不足造成的。我總認(rèn)為,在教師不指導(dǎo)的情況下,不會有學(xué)生想到分割這種方法,當(dāng)課堂上學(xué)生出現(xiàn)這種方法時,我就有點激動,順著學(xué)生的思路走了,而忽視了大多數(shù)。因此,在備課時一定要更為細(xì)致的研究學(xué)生可能出現(xiàn)的情況,在上課時才能應(yīng)對自如。
總之,這節(jié)課我不是很滿意,細(xì)分析,偶然當(dāng)中也包含著必然。新課標(biāo)要求數(shù)學(xué)教學(xué)過程中要注重學(xué)生學(xué)習(xí)的過程,而知識的學(xué)習(xí)是一個建構(gòu)過程,教師通過以組織者、合作者、和引導(dǎo)者的身份,根據(jù)學(xué)生的具體情況,對教材進行再加工,有創(chuàng)造地設(shè)計教學(xué)過程,在教學(xué)設(shè)計中要求新求變。用“新”和“變”來激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的欲望和興趣。根據(jù)不同的教學(xué)內(nèi)容選擇不同的教學(xué)模式。因為只有這樣,課堂教學(xué)才能煥發(fā)出生機和活力。教師在這個過程中要為學(xué)生營造一個積極的、寬松的教學(xué)氛圍。所以,要做一個新時代的教師,除具備一定的專業(yè)知識外,還要具備領(lǐng)導(dǎo)才能,能夠駕御整個課堂。發(fā)現(xiàn)了自己的不足就意味著自己的進步。在今后的教學(xué)中,我會更加努力,讓我的每一位學(xué)生在我的每一節(jié)課上都能夠有新的收獲。
將本文的word文檔下載到電腦,方便收藏和打印。
多邊形的內(nèi)角和教案四年級篇十二
1、通過復(fù)習(xí),使學(xué)生理清各種平面圖形面積計算公式之間的關(guān)系。
2、使學(xué)生能夠應(yīng)用面積計算公式,熟練計算平行四邊形、三角形、梯形和組合圖形的面積。
3、能靈活運用所學(xué)知識解決有關(guān)的實際問題。
熟練計算平行四邊形、三角形、梯形及組合圖形的面積。
平行四邊形、三角形、梯形的磁片。
一、創(chuàng)設(shè)情境,揭示課題。
1、想一想,本單元我們學(xué)習(xí)了哪些知識?
揭示課題:今天這節(jié)課我們對第五單元的知識進行整理和復(fù)習(xí)。
2、在小組內(nèi)說一說,你學(xué)會了什么?
二、知識梳理,形成網(wǎng)絡(luò)。
老師根據(jù)學(xué)生所說,演示轉(zhuǎn)化過程,形成如教材96頁的板書。
(2)從整理圖中能看出各種圖形之間的關(guān)系嗎?
學(xué)生回答后老師簡要小結(jié)。
2、練一練:
老師出示下題讓學(xué)生獨立完成后集體核對。
選擇條件分別計算下列各圖形的面積。
3、師:剛才復(fù)習(xí)的是基本圖形的面積,而由幾個基本圖形組合而成的圖形叫什么?
出示第96頁的第2題,讓學(xué)生自己獨立完成。
集體核對時讓學(xué)生說一說自己的幾種方法。
學(xué)生可能會想到下面幾種方法。
比較哪種方法比較簡便?
三、應(yīng)用拓展。
1、練習(xí)十九第1題。
(1)讓學(xué)生審題,說一說解題步驟。
(2)獨立完成。
(3)小組交流,說一說你的發(fā)現(xiàn)。
(4)全班交流。
師小結(jié):幾個圖形都在兩條平行線之間,說明它們的`高是相等的,在高相等的條件下,面積不等,說明它們的高都不等。
2、練習(xí)十九第4題。
(1)先讓學(xué)生獨立完成第1小題,集體核對。
想一想該如何擺放小樹?讓學(xué)生在草稿本上畫一畫示意圖。
集體訂正,展示。
四、小結(jié):說一說今天這節(jié)課最大的收獲是什么?
五、課堂作業(yè):練習(xí)十九第2、3題。
多邊形的內(nèi)角和教案四年級篇十三
我在學(xué)校出了一節(jié)公開課,下面是我的教學(xué)反思。
教學(xué)回顧:
一:引入新課。提問三角形內(nèi)角和,正方形和長方形的內(nèi)角和是多少?那任意一四邊形內(nèi)角和都是360度嗎?小組討論交流證明任意四邊形內(nèi)角和都是360度的方法。學(xué)生分析有度量法、剪拼法、切割法,做輔助線。其中把四邊形切割成兩個三角形的方法最為簡單。類似的探究其他多邊形內(nèi)角和。
二:完成學(xué)案第一部分,用數(shù)學(xué)歸納法完成填空,總結(jié)得出多邊形內(nèi)角和公式。
三:練習(xí)。
四:課堂小結(jié)。
五:作業(yè)。
反思:
這節(jié)課本節(jié)的教學(xué)活動充分發(fā)揮學(xué)生的主體作用,激發(fā)了學(xué)生的學(xué)習(xí)興趣,使課堂充滿生機。在進行四邊形內(nèi)角和定理的教學(xué)時,設(shè)計完成三個步驟:
(1)通過動手操作,讓學(xué)生自己通過實驗的方法發(fā)現(xiàn)四邊形內(nèi)角和定理;
(2)讓學(xué)生把發(fā)現(xiàn)概括成命題;
(3)通過學(xué)生討論命題證明的不同方法。
整節(jié)課充滿著“自主、合作、探究、交流”的教學(xué)理念,營造了思維馳聘的空間,使學(xué)生在主動思考探究的過程中自然的獲得了新的知識。但由于本節(jié)課的.內(nèi)容多,學(xué)習(xí)時間較緊張,所以在給學(xué)生進行課堂討論四邊形內(nèi)角和的不同的證明方法這一環(huán)節(jié)時把握地不夠好。由于討論的問題有難度,討論時間不夠充分。而且我為了能完成這節(jié)課的內(nèi)容沒有對四邊形內(nèi)角和的證明方法做以補充(習(xí)題課時才加以補充)。
多邊形的內(nèi)角和教案四年級篇十四
1、使學(xué)生在理解的基礎(chǔ)上掌握三角形的面積計算公式,能夠正確地計算三角形的面積。
2、使學(xué)生通過操作和對圖形的觀察、比較,發(fā)展學(xué)生的空間觀念,使學(xué)生知道轉(zhuǎn)化的思考方法在研究三角形面積時的運用。
3、培養(yǎng)學(xué)生的分析、綜合、抽象、概括和運用轉(zhuǎn)化方法解決實際問題的能力。
1、用厚紙做完全相同的兩個直角三角形、兩個銳角三角形、兩個鈍角三角形。
教師:前面我們學(xué)習(xí)了平行四邊形面積的計算,今天我們來學(xué)習(xí)三角形面積的計算。
板書:三角形面積的計算。
1、用數(shù)方格的`方法計算三角形的面積。
教師:前面我們在學(xué)習(xí)長方形面積和平行四邊形面積時,都曾經(jīng)用過數(shù)方格的方法,下面我們再用數(shù)方格的方法來求三角形的面積。
2、通過操作總結(jié)三角形面積的計算公式。
讓學(xué)生拿出兩個完全一樣的銳角三角形,提問:
用兩個完全一樣的銳角三角形能不能拼成一個平行四邊形?讓每個學(xué)生都動手拼一拼,或者同桌的兩個學(xué)生一同拼擺。
教師邊說邊演示拼的過程。先將兩個銳角三角形重合放置,再按住三角形的右邊頂點,使三角形時針運動相反的方向轉(zhuǎn)動180,到兩個三角形的底邊成一條直線為止,再把右邊三角形向上沿著第一個三角形的右邊平移,直到拼成一個平行四邊形為止,并把拼成的平行四邊形圖畫在黑板上。然后再帶著學(xué)生規(guī)范地照上面的步驟做一遍,做時仍需邊做邊強調(diào):先要把兩個銳角三角形重合,再旋轉(zhuǎn),旋轉(zhuǎn)時哪個點不動?旋轉(zhuǎn)了多少度?平移時是沿著哪條直線移動的?學(xué)生學(xué)會把兩個完全一樣的銳角三角形拼成一個平行四邊形后,教師再說明:平移是圖上各點沿直線移動,旋轉(zhuǎn)是一個點不動,其它的點都圍繞著不動點轉(zhuǎn)。提問:
每個銳角三角形的面積和拼出的平行四邊形的面積有什么關(guān)系?
學(xué)生回答后,教師強調(diào):每個銳角三角形是拼成的平行四邊形面積的一半。
教師結(jié)合黑板上分別由兩個完全相同的三角形拼成的平行四邊形的圖指出:通過上面的實驗,兩個完全一樣的三角形,不論是直角三角形,銳角三角形,還是鈍角三角形,都可以拼成一個平行四邊形。提問:
這個平行四邊形的底和三角形的底有什么關(guān)系?
這個平行四邊形的高和三角形的高有什么關(guān)系?
這個平行四邊形的面積和其中一個三角形的面積有什么關(guān)系?
多邊形的內(nèi)角和教案四年級篇十五
知識與技能:掌握多邊形內(nèi)角和定理,進一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
重點:多邊形內(nèi)角和定理的探索和應(yīng)用。
教學(xué)難點:邊形定義的理解;多邊形內(nèi)角和公式的推導(dǎo);轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透.。
教學(xué)過程。
第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實情境,提出問題,引入新(3分鐘,學(xué)生思考問題,入)。
1.多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無處不在的多邊形.。
2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
第二環(huán)節(jié)概念形成(5分鐘,學(xué)生理解定義)。
第三環(huán)節(jié)實驗探究(12分鐘,學(xué)生動手操作,探究內(nèi)角和)。
(以四人小組為單位展開探究活動)。
活動一:利用四邊形探索四邊形內(nèi)角和。
要求:先獨立思考再小組合作交流完成.)。
(師巡視,了解學(xué)生探索進程并適當(dāng)點撥.)。
(生思考后交流,把不同的方案在紙上完成.)。
……(組間交流,教師展示幾種方法)。
進而引導(dǎo)學(xué)生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進一步提出新的探索活動。
活動二:探索五邊形內(nèi)角和。
(要求:獨立思考,自主完成.)。
第四環(huán)節(jié)思維升華(5分鐘,教師引導(dǎo)學(xué)生進行推算)。
教學(xué)過程:
探索n邊形內(nèi)角和,并試著說明理由。
(結(jié)合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)。
n邊形的內(nèi)角和=(n—2)180°。
正n邊形的一個內(nèi)角==。
第五環(huán)節(jié)能力拓展(12分鐘,學(xué)生搶答)。
搶答題:
1.正八邊形的內(nèi)角和為_______.
3.一個多邊形每個內(nèi)角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.
應(yīng)用發(fā)散:
第六環(huán)節(jié)時小結(jié):(3分鐘,學(xué)生填表)。
第七環(huán)節(jié)布置作業(yè):習(xí)題4、10。
b組(中等生)1。
c組(后三分之一生)1。
教學(xué)反思:
多邊形的內(nèi)角和教案四年級篇十六
學(xué)生已經(jīng)學(xué)過三角形的內(nèi)角和定理的知識基礎(chǔ),并且具備一定的化歸思想,但是推理能力和表達能力還稍稍有點欠缺。針對這種情況,我會引導(dǎo)學(xué)生利用分類、數(shù)形結(jié)合的思想,加強對數(shù)學(xué)知識的應(yīng)用,發(fā)展學(xué)生合情合理的推理能力和語言表達能力。
1.知識與技能:運用三角形內(nèi)角和定理來推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計算公式。
2.過程與方法:經(jīng)理探究多邊形內(nèi)角和計算方法的過程,培養(yǎng)學(xué)生的合作交流的意識。
3.情感態(tài)度與價值觀:感受數(shù)學(xué)化歸的思想和實際應(yīng)用的價值,同時培養(yǎng)學(xué)生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學(xué)習(xí)態(tài)度。
1、請看:我身后的建筑物是什么?——水立方。我看到水立方時發(fā)現(xiàn)它的膜結(jié)構(gòu)的結(jié)合處都是多邊形,你們想知道這些多邊形的內(nèi)角和嗎?(多媒體展示)。
知道四邊形的內(nèi)角和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?自主學(xué)習(xí)教材第34頁“動腦筋”
【教學(xué)說明】“解放學(xué)生的手,解放學(xué)生的大腦”,鼓勵學(xué)生積極參與合作交流,尋找多種圖形形式,深入全面轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決.
預(yù)設(shè)回答:能,可以引對角線,將多邊形分成幾個三角形。
讓學(xué)生合作交流討論,展示探究成果。教材第35頁“探究”
n邊形有幾個內(nèi)角?是否可以“轉(zhuǎn)化”為多個三角形的角來求得呢?如何“轉(zhuǎn)化”?
【教學(xué)說明】通過五邊形、六邊形、七邊形、八邊形等特殊多邊形內(nèi)角和的探索,讓學(xué)生從特殊到一般歸納總結(jié)出多邊形內(nèi)角和公式,體會數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學(xué)推理過程和數(shù)學(xué)思考方法.
例:教材第36頁例1。
【教學(xué)說明】讓學(xué)生利用多邊形的內(nèi)角和公式求一個多邊形的內(nèi)角和或它的邊數(shù),加深知識的理解與運用.
1、若從一個多邊形的一個頂點出發(fā),最多可以引10條對角線,則它是()。
a.十三邊形b.十二邊形。
c.十一邊形d.十邊形。
2、十二邊形的內(nèi)角和為,已知一個多邊形的內(nèi)角和是1260°,則這個多邊形的邊數(shù)是。
【教學(xué)說明】由學(xué)生自主完成,教師及時了解學(xué)生的學(xué)習(xí)效果,讓學(xué)生經(jīng)歷運用知識解決問題的過程.對需要幫助的學(xué)生及時點撥并加以強化.在完成上述題目后,讓學(xué)生完成練習(xí)冊中本課時的對應(yīng)訓(xùn)練部分.
1、這節(jié)課你有什么新的收獲?
教材第36頁練習(xí)1、2題。
邊數(shù)越多,內(nèi)角和就越大;
每增加一條邊,內(nèi)角和就增加180度。
多邊形的內(nèi)角和教案四年級篇十七
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理。因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
教學(xué)目標(biāo):
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。
教學(xué)重點:
教學(xué)難點:
四邊形的概念。
教學(xué)過程:
(一)復(fù)習(xí)。
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識。請同學(xué)們回憶一下這些圖形的概念。找學(xué)生說出四種幾何圖形的概念,教師作評價。
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念。
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序。
練習(xí):課本124頁1、2題。
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了。
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理。
定理:四邊形的內(nèi)角和等于.
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決。
(五)應(yīng)用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
證明:(1)(四邊形的內(nèi)角和等于),
練習(xí):
1.課本124頁3題。
小結(jié):
知識:四邊形的有關(guān)概念及其內(nèi)角和定理。
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。
作業(yè):課本130頁2、3、4題。
多邊形的內(nèi)角和教案四年級篇十八
《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標(biāo)不是這一課本身,而是對于這一課的研究給我們數(shù)學(xué)教學(xué)的一點啟發(fā)。
有幸與實驗小學(xué)趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀(jì)90年代,因為農(nóng)村小學(xué)學(xué)生人數(shù)的急劇減少,我們學(xué)校在課堂上嘗試性的進行了分層異步教學(xué),在同一節(jié)課中,根據(jù)學(xué)生認(rèn)知水平差異,把學(xué)生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學(xué)生分為一個小組,通常采用合——分——合的模式進行教學(xué),即,當(dāng)a組同學(xué)教學(xué)時,b組自學(xué),反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復(fù)式班學(xué)生在學(xué)習(xí)效果上有著明顯的成效?;谶@一基礎(chǔ),我采用分層的模式來進行多邊形的內(nèi)角和的教學(xué),這一嘗試,讓我對自己的.數(shù)學(xué)教學(xué)有了如下反思:
1,以經(jīng)驗為基礎(chǔ),讓學(xué)生得到不同的發(fā)展。
基于學(xué)生的認(rèn)知經(jīng)驗及活動經(jīng)驗,對學(xué)生進行分組,以期達到不同的學(xué)生在數(shù)學(xué)上得到不同程度的發(fā)展的目標(biāo),學(xué)習(xí)能力較強的同學(xué)要能吃飽,學(xué)習(xí)能力較弱的同學(xué)要在原有基礎(chǔ)上有所進步。在實際教學(xué)中,對于a組和b組的學(xué)生,除了在教學(xué)形式上有所區(qū)別外,a組教學(xué)為主,b組自學(xué)為主,我在教學(xué)時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應(yīng)對a組加以更細(xì)致的教學(xué)指導(dǎo),對b組更大膽的放手,讓學(xué)生上臺說,做,教,減少b組的教學(xué)時間。
2,勇于放手,培養(yǎng)學(xué)生自學(xué)的能力。
在一開始設(shè)計b組的學(xué)習(xí)單時,即使b組同學(xué)學(xué)習(xí)能力較強,但出于對學(xué)生的擔(dān)憂,擔(dān)心學(xué)生想不到用分一分的方法,在學(xué)習(xí)單上,我引導(dǎo)學(xué)生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學(xué)生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學(xué)生,多邊形的內(nèi)角和是多少,讓學(xué)生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學(xué)中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學(xué)生的探究自學(xué)能力比我預(yù)想的出色許多。
3,細(xì)節(jié)入手,培養(yǎng)學(xué)生良好習(xí)慣。
小學(xué)數(shù)學(xué)良好習(xí)慣的培養(yǎng)不僅對學(xué)生自身的數(shù)學(xué)學(xué)習(xí)有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學(xué)的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學(xué)生提出明確的要求,課前乃至平時都要對學(xué)生的學(xué)習(xí)習(xí)慣進行培養(yǎng),這樣才能讓我們的數(shù)學(xué)老師對課堂全局的把握更加深刻,才能夠讓數(shù)學(xué)課堂井然有序,數(shù)學(xué)教學(xué)效果得到最大程度的保證。
“授人以魚,不如授人以漁?!蔽覀兊臄?shù)學(xué)分層教學(xué)不光是為了學(xué)生掌握某一定的知識,而是讓學(xué)生在不同的學(xué)習(xí)方式中不斷感悟體會,尋找適合自己的學(xué)習(xí)方法,最終以得到不同程度的發(fā)展。
多邊形的內(nèi)角和教案四年級篇十九
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
(4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學(xué)目標(biāo):
2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。
3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學(xué)重點:
教學(xué)難點:
四邊形的概念。
教學(xué)過程:
(一)復(fù)習(xí)。
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習(xí):課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應(yīng)用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)。
練習(xí):
1.課本124頁3題.
小結(jié):
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
【本文地址:http://mlvmservice.com/zuowen/9605994.html】